Related Topics to Transferable Utility Games — An Infinite Market Game —

Hidetoshi Komiya (小宮 英敏)
Faculty of Business and Commerce (商学部)
Keio University (慶應義塾大学)
e-mail:hkomiya@fbc.keio.ac.jp

1 Introduction

Let $(\Omega, \mathscr{F}, \mu)$ be a finite measure space throughout this paper. A game v is a nonnegative real valued function, defined on the σ -field \mathscr{F} , which maps the empty set to zero. An outcome of a game v is a finitely additive real valued function α on \mathscr{F} scuh that $\alpha(\Omega) = v(\Omega)$. For an outcome α of v, an integrable function f satisfying $\int_S f \, d\mu = \alpha(S)$ for all $S \in \mathscr{F}$ is said to be an outcome density of α with respect to μ . An outcome indicates outcomes to each coalitions while an outcome density designates outcomes to every players. The core of v is the set of outcomes α satisfying $\alpha(S) \geq v(S)$ for all $S \in \mathscr{F}$.

To every game v we associate an extended real number |v| defined by

$$|v| = \sup \left\{ \sum_{i=1}^n \lambda_i v(S_i) : \sum_{i=1}^n \lambda_i \chi_{S_i} \le \chi_{\Omega} \right\},$$

where $n = 1, 2, ..., S_i \in \mathscr{F}$, λ_i is a real number. The notation χ_A denotes the characteristic function of a subset A of Ω . For a game v with $|v| < \infty$, we define two games \overline{v} and \hat{v} by

$$\overline{v}(S) = \sup \left\{ \sum_{i=1}^{n} \lambda_{i} v(S_{i}) : \sum_{i=1}^{n} \lambda_{i} \chi_{S_{i}} \leq \chi_{S} \right\}, \quad S \in \mathcal{F},$$

$$\hat{v}(S) = \min \left\{ \alpha(S) : \alpha \text{ is additive, } \alpha \geq v, \ \alpha(\Omega) = |v| \right\}, \quad S \in \mathcal{F},$$

following [3]. A game v is said to be balanced if $v(\Omega) = |v|$, totally balanced if $v = \overline{v}$ and exact if $v = \hat{v}$, respectively. It is proved in [3] that the core of a game is nonempty if and only if it is balanced, every exact game is totally balanced, and every totally balanced game is balanced.

A game v is said to be *monotone* if $S \subset T$ implies $v(S) \leq v(T)$ for any S and T in \mathscr{F} . A game v is said to be *continuous* at Ω if it follows that $\lim_{n\to\infty} v(S_n) = v(\Omega)$ for any nondecreasing sequence $\{S_n\}$ of measurable sets such that $\bigcup_{n=1}^{\infty} S_n = \Omega$.

2 Market Games

We denote utilities of players by a Carathéodory type function u defined on $\Omega \times R_+^l$ to R_+ , where R_+^l denotes the nonnegative orthant of the l-dimensional Euclidean space R^l , and R_+ is the set of nonnegative real numbers. The nonnegative number $u(\omega,x)$ designates the density of the utility of a player ω getting goods x. We always use the ordinary coordinatewise order when having concern with an order in R_+^l . We suppose that the function $u: \Omega \times R_+^l \to R_+$ satisfies the conditions:

- 1. The function $\omega \mapsto u(\omega, x)$ is measurable for all $x \in \mathbb{R}^l_+$;
- 2. The function $x \mapsto u(\omega, x)$ is continuous, concave, nondecreasing, and $u(\omega, 0) = 0$, for almost all ω in Ω ;
- 3. $\sigma \equiv \sup\{u(\omega, x) : (\omega, x) \in \Omega \times B_+\} < \infty$, where $B_+ = \{x \in R_+^l : \|x\| \le 1\}$, and $\|x\|$ denotes the Euclidean norm of $x \in R_+^l$.

For any set S in \mathscr{F} , the set of integrable functions on S to R_+^l is denoted by $L_1(S, R_+^l)$. We take an element e of $L_1(\Omega, R_+^l)$ as the density of initial endowments for the players. For any S in \mathscr{F} , define

$$v(S) \equiv \sup \left\{ \int_S u(\omega, x(\omega)) d\mu(w) : x \in L_1(S, \mathbb{R}^l_+), \int_S x d\mu = \int_S e d\mu \right\}.$$

The set function v defined above is called a market game derived from the market $(\Omega, \mathcal{F}, \mu, u, e)$.

It is well known that the function $\omega \mapsto u(\omega, x(\omega))$ is measurable for any $x \in L_1(S, \mathbb{R}^l_+)$. Moreover we need to show that the function $\omega \mapsto u(\omega, x(\omega))$ is integrable in order to define v(S) as a real number.

Lemma 1 If $x \in L_1(S, R_+^l)$, then $u(\cdot, x(\cdot)) \in L_1(S, R_+)$ for any $S \in \mathscr{F}$ and the map $x \mapsto u(\cdot, x(\cdot))$ is continuous with respect to the norm topologies of $L_1(S, R_+^l)$ and $L_1(S, R_+^l)$.

Proof Let $x \in L_1(S, \mathbb{R}^l_+)$. Since $u(\omega, \cdot)$ is concave, for any $x \in \mathbb{R}^l_+$ with ||x|| > 1, we have the inequality

$$\frac{u(\omega, x) - u(\omega, x/\|x\|)}{\|x - x/\|x\| \|} \le \frac{u(\omega, x/\|x\|) - u(\omega, 0)}{\|x/\|x\| - 0\|},$$

and hence we have $u(\omega,x) \leq \|x\|\sigma$ for any $\omega \in \Omega$ and $x \in R_+^l$ with $\|x\| > 1$. It is obvious from the definition of σ that $u(\omega,x) \leq \sigma$ for any $\omega \in \Omega$ and $x \in R_+^l$ with $\|x\| \leq 1$. Thus we have $u(\omega,x) \leq \sigma(1+\|x\|)$ for any $(\omega,x) \in \Omega \times R_+^l$ and this leads to the inequalities

$$\int_{S} u(\omega, x(\omega)) d\mu(\omega) \leq \int_{S} \sigma(1 + ||x(\omega)||) d\mu(\omega)$$

$$= \sigma \left(\mu(S) + \int_{S} ||x(\omega)|| d\mu(\omega) \right)$$

$$< \infty.$$

Thus it follows that $u(\cdot, x(\cdot)) \in L_1(S, R_+)$. The second part of the assertion is verified in Theorem 2.1 of [2]. Although Theorem 2.1 of [2] is proved under the hypotheses that S is a measurable set in R^l and the second argument x of the function u runs over R, the proof of Theorem 2.1 of [2] is valid even in our setting. Thus the map $x \mapsto u(\cdot, x(\cdot))$ is norm continuous. Q.E.D.

Lemma 2 A market game v is actually a game and is monotone.

Proof It is obvious $v(\emptyset) = 0$. The finiteness of v(S) follows since the inequalities

$$\int_{S} u(\omega, x(\omega)) d\mu(\omega) \le \sigma \int_{S} (1 + ||x||) d\mu$$

$$\le \sigma \left(\mu(S) + \sum_{i=1}^{l} \int_{S} x^{i} d\mu\right) = \sigma \left(\mu(S) + \sum_{i=1}^{l} \int_{S} e^{i} d\mu\right)$$

hold if

$$\int_{S} x \, d\mu = \int_{S} e \, d\mu,$$

where x^i and e^i are the *i*-th coordinate functions of x and e, respectively. Moreover v is monotone because u has nonnegative values. Q.E.D.

3 Cores of Market Games

We start with a lemma on concave functions.

Lemma 3 If $f: R_+^l \to R$ is concave and f(0) = 0, then for any $x_1, \ldots, x_n \in R_+^l$ and $\lambda_1, \ldots, \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i \leq 1$, it follows that

$$\sum_{i=1}^{n} \lambda_i f(x_i) \le f(\sum_{i=1}^{n} \lambda_i x_i).$$

Proof We can assume that $\lambda = \sum_{i=1}^{n} \lambda_i > 0$ without loss of generality. It follows that

$$\sum_{i=1}^{n} \lambda_{i} f(x_{i}) = \lambda \sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda} f(x_{i})$$

$$\leq \lambda f(\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda} x_{i})$$

$$= (1 - \lambda) f(0) + \lambda f(\frac{1}{\lambda} \sum_{i=1}^{n} \lambda_{i} x_{i})$$

$$\leq f(\sum_{i=1}^{n} \lambda_{i} x_{i}).$$

Q.E.D.

Let S be a measurable set. For any $x \in L_1(S, \mathbb{R}^l_+)$, define $\overline{x} \in L_1(\Omega, \mathbb{R}^l_+)$ by

$$\overline{x}(\omega) = \begin{cases} x(\omega), & \text{if } \omega \in S; \\ 0, & \text{if } \omega \in S^c. \end{cases}$$

Proposition 1 A market game v is totally balanced.

Proof Take any $S \in \mathcal{F}$ and $S_i \in \mathcal{F}$ and $\lambda_i > 0$, i = 1, ..., n with $\sum_{i=1}^n \lambda_i \chi_{S_i} \leq \chi_S$. We can assume that $\mu(S) > 0$ without loss of generality.

Let ϵ be an arbitrary positive number. Take $x_i \in L_1(S_i, \mathbb{R}^l_+)$ such that

$$\int_{S_i} x_i d\mu = \int_{S_i} e d\mu \quad \text{and} \quad v(S_i) - \frac{\epsilon}{n} < \int_{S_i} u(\omega, x_i(\omega)) d\mu(\omega),$$

and define $y \in L_1(S, \mathbb{R}^l_+)$ by

$$y = \sum_{i=1}^{n} \lambda_i \overline{x}_i.$$

Then we have the following:

$$\int_{S} y \, d\mu = \sum_{i=1}^{n} \lambda_{i} \int_{S} \overline{x}_{i} \, d\mu$$

$$= \sum_{i=1}^{n} \lambda_{i} \int_{S_{i}} e \, d\mu$$

$$= \int_{S} e \sum_{i=1}^{n} \lambda_{i} \chi_{S_{i}} \, d\mu$$

$$\leq \int_{S} e \, d\mu.$$

Define $y' \in L_1(S, \mathbb{R}^l_+)$ by

$$y' = y + \frac{1}{\mu(S)} \left(\int_S e \, d\mu - \int_S y \, d\mu \right).$$

Then it is easily seen that $\int_S y' d\mu = \int_S e d\mu$.

On the other hand, let \mathcal{A} be the family of all nonempty subsets A of $\{1,\ldots,n\}$ such that $T_A \equiv \bigcap_{i\in A} S_i \cap \bigcap_{j\in A^c} (S\setminus S_j) \neq \emptyset$. Then it is easily seen that $S_i = \bigcup_{A\ni i} T_A$ for $i=1,\ldots,n$ and $\{T_A:A\in\mathcal{A}\}$ is a partition of $\bigcup_{i=1}^n S_i$, and $\sum_{i\in A} \lambda_i \leq 1$ for all $A\in\mathcal{A}$. For any i and A with $i\in A\in\mathcal{A}$, define $x_i^A = x_i|_{T_A}$, the restriction of x_i to T_A . Then we have

$$\overline{x}_i = \sum_{A \ni i} \overline{x}_i^A$$
 and $y = \sum_{A \in \mathcal{A}} \sum_{i \in A} \lambda_i \overline{x}_i^A$.

Thus we have

$$\begin{split} \sum_{i=1}^n \lambda_i v(S_i) - \epsilon &< \sum_{i=1}^n \lambda_i \int_{S_i} u(\omega, x_i(\omega)) \, d\mu(\omega) \\ &= \sum_{i=1}^n \sum_{A\ni i} \lambda_i \int_{T_A} u(\omega, x_i^A(\omega)) \, d\mu(\omega) \\ &= \sum_{A\in\mathcal{A}} \sum_{i\in A} \lambda_i \int_{T_A} u(\omega, x_i^A(\omega)) \, d\mu(\omega) \\ &= \sum_{A\in\mathcal{A}} \int_{T_A} \sum_{i\in A} \lambda_i u(\omega, x_i^A(\omega)) \, d\mu(\omega) \\ &\leq \sum_{A\in\mathcal{A}} \int_{T_A} u(\omega, \sum_{i\in A} \lambda_i x_i^A(\omega)) \, d\mu(\omega) \quad \text{by Lemma 3} \\ &= \int_S u(\omega, \sum_{A\in\mathcal{A}} \sum_{i\in A} \lambda_i \overline{x}_i^A(\omega)) \, d\mu(\omega) \quad \text{by } u(\omega, 0) = 0 \\ &= \int_S u(\omega, y(\omega)) \, d\mu(\omega) \\ &\leq \int_S u(\omega, y'(\omega)) \, d\mu(\omega) \quad \text{by monotonicity of } u(\omega, \cdot) \\ &\leq v(S). \end{split}$$

Therefore, we have

$$\sum_{i=1}^{n} \lambda_i v(S_i) \le v(S).$$

Thus $\overline{v}(S) \leq v(S)$ and the reverse inequality is obvious. Hence we have $\overline{v} = v$. Q.E.D.

Proposition 2 A market game v is continuous at Ω .

Proof Let $\{S_n\}$ be a nondecreasing sequence of measurable sets with $\Omega = \bigcup_{n=1}^{\infty} S_n$ and ϵ an arbitrary positive number. Then, there is $x \in L_1(S, R_+^l)$ such that

$$v(\Omega) - \epsilon < \int_{\Omega} u(\omega, x(\omega)) \, d\mu(\omega) \quad \text{and} \quad \int_{\Omega} x \, d\mu = \int_{\Omega} e \, d\mu.$$

Let x_n be the restriction $x|_{S_n}$ and define a sequence $\{y_n\}$ of functions in $L_1(S_n, R_+^l)$ by

$$y_n^i = \begin{cases} \frac{\int_{S_n} e^i d\mu}{\int_{S_n} x_n^i d\mu} x_n^i, & \text{if } \int_{S_n} x_n^i d\mu > \int_{S_n} e^i d\mu; \\ x_n^i + \frac{1}{\mu(S_n)} \left(\int_{S_n} e^i d\mu - \int_{S_n} x_n^i d\mu \right), & \text{if } \int_{S_n} x_n^i d\mu \le \int_{S_n} e^i d\mu, \end{cases}$$

for i = 1, ..., l. It is obvious that

$$\int_{S_n} y_n \, d\mu = \int_{S_n} e \, d\mu.$$

On the other hand, since

$$\lim_{n o\infty}\int_{S_n}|y_n^i-x_n^i|\,d\mu=\lim_{n o\infty}\left|\int_{S_n}e^i\,d\mu-\int_{S_n}x_n^i\,d\mu
ight|=0,$$

for $i = 1, \ldots, l$, we have

$$\lim_{n\to\infty} \int_{\Omega} \|\overline{y}_n - x\| d\mu = \lim_{n\to\infty} \int_{S_n} \|y_n - x\| d\mu + \lim_{n\to\infty} \int_{S_n^c} \|x\| d\mu = 0,$$

and hence \overline{y}_n converges to x with respect to the norm topology of $L_1(\Omega, R_+^l)$. Therefore, by Lemma 1, it follows that

$$\lim_{n\to\infty}\int_{S_n}u(\omega,y_n(\omega))\,d\mu(\omega)=\lim_{n\to\infty}\int_{\Omega}u(\omega,\overline{y}_n(\omega))\,d\mu(\omega)=\int_{\Omega}u(\omega,x(\omega))\,d\mu(\omega)$$

and hence, for sufficiently large n,

$$v(\Omega) - \epsilon < \int_{S_n} u(\omega, y_n(\omega)) d\mu(\omega) \le v(S_n).$$

Thus we have $\lim_{n\to\infty} v(S_n) = v(\Omega)$. Q.E.D.

Now we have reached our main theorem combining Proposition 1 and Proposition 2.

Theorem 1 A market game v has a nonempty core, and every element α of the core is countably additive and has a unique outcome density f in $L_1(\Omega, R_+)$ with respect to μ , and hence it follows that

$$\alpha(S) = \int_{S} f \, d\mu, \quad S \in \mathscr{F}.$$

Proof The core is nonempty by Proposition 1. Since v is continuous at Ω by Proposition 2, any element α of the core is continuous at Ω , which implies that α is countably additive. To prove existence of an outcome density for α , it is sufficient to show that α is absolutely continuous with respect to μ by virtue of the Radon-Nikodym theorem. If $\mu(S) = 0$, then $v(S^c) = v(\Omega)$ by the definition of the market game v, and hence we have $\alpha(S^c) \geq v(S^c) = v(\Omega) = \alpha(\Omega)$, that is, $\alpha(S) = 0$. Q.E.D.

Remark 1 Similar to the assertion of Theorem 1, an exact game which is continuous at Ω has a nonempty core and every element of the core is countably additive. Moreover, there is a measure λ on \mathscr{F} such that every element of the core is absolutely continuous with respect to λ according to [3]. The following example shows that there is a market game which is not exact and Theorem 1 is independent of the results of [3].

Example 1 [[1], pp. 192] Let $l=1,\ \Omega=[0,1]$ and μ be the Lebesgue measure. Define $u:[0,1]\times R_+\to R_+$ by

$$u(\omega,x) = \sqrt{x+\omega} - \sqrt{\omega}$$
 and $e(\omega) = \frac{1}{32}$ for all $\omega \in [0,1]$.

According to [1], the supremum is attained for every measurable sets in the definition of the market game, and the core has only one element α and the outcome density f of α is given by

$$f(\omega) = \begin{cases} (\frac{1}{2} - \sqrt{\omega})^2 + \frac{1}{32}, & \text{if } \omega \in [0, \frac{1}{4}]; \\ \frac{1}{32}, & \text{if } \omega \in [\frac{1}{4}, 1]. \end{cases}$$

Thus it follows $\alpha([\frac{1}{2},1]) = \frac{1}{64}$, and hence $\hat{v}([\frac{1}{2},1]) = \frac{1}{64}$. On the other hand, we have

$$\sqrt{x+\omega}-\sqrt{\omega} \leq \sqrt{x+\frac{1}{2}}-\sqrt{\frac{1}{2}} \leq \sqrt{\frac{1}{2}}x$$

for $1/2 \le \omega \le 1$ and $x \ge 0$. Thus, if $x \in L_1([0,1], R_+)$ satisfies

$$\int_{\frac{1}{2}}^{1} x \, d\mu = \int_{\frac{1}{2}}^{1} e \, d\mu = \frac{1}{64},$$

then

$$\int_{\frac{1}{2}}^1 u(\omega, x(\omega)) \, d\mu(\omega) \le \int_{\frac{1}{2}}^1 \sqrt{\frac{1}{2}} x \, d\mu = \frac{1}{64\sqrt{2}} < \frac{1}{64}.$$

Therefore we have $v([\frac{1}{2},1]) < \hat{v}([\frac{1}{2},1])$ and v is not exact.

References

- [1] R.J. Aumann and L.S. Shapley, Values of Non-Atomic Games, Princeton University Press, Princeton, 1974.
- [2] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergmon Press, Oxford, 1963.
- [3] D. Schmeidler, Cores of Exact Games, I, J. Math. Anal. Appl. 40 (1972), 214-225
- [4] L.S. Shapley and M. Shubik, On Market Games, J. Econ. Theory 1 (1969), 9–25.