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” Conjugate points” is a global concept in calculus of variation, and plays an important
role in discussing optimality. Though it has been a theme of differential geometry, math-
ematical programming approach has been recently developed with several extensions of
the conjugate points theory to optimal control problems and variational problems with
state constraints. In these extremal problems, the variable is not a vector $x$ in $R^{n}$ but
a function $x(t)$ . So a simple and natural question arises. Is it possible to establish a
conjugate points theory for a minimization problem: minimize $f(x)$ on $x\in R^{n}$? In
[3], the author positively answered this question. He introduced ”the Jacobi equation”
and ”conjugate points” for it, and describe optimality conditions in terms of”conjugate
points”. In this paper, we extend it to a constrained nonlinear programming.

1. Jacobi’s conjugate points theory
In this section, we review the classical conjugate points theory for the simplest problem
in calculus of variations :

$(SP)$ Minimize $\int_{0}^{T}f(t, x(t),\dot{X}(t))dt$

subject to $x(\mathrm{O})=A,$ $x(T)=B$ .

If $\overline{x}$ is a weak minimum for $(SP)$ , then it satisfies the Euler equation $df_{x}(t,\overline{X}(t),\overline{x}(t))/dt=$

$f_{x}(t,\overline{x}(t),\overline{x}(t))$ and the Legendre condition $f_{\dot{x}x}(t,\overline{X}(t),\overline{x}(t))\geq 0$ . Legendre attempted
to prove its inverse, that is, he expected that if a feasible solution $\overline{x}(t)$ satisfies the
Euler equation and the strengthened Legendre condition: $f_{xx}(t,\overline{X}(t),\overline{x}(t))>0$ , then
$\overline{x}(t)$ would be a weak minimum. However, his conjecture was false. Jacobi solved this
problem by introducing ”conjugate points” in 1837. Let $\overline{x}(t)$ be a feasible solution for
$(SP)$ , then conjugate points are defined via the Jacobi equation:

$\frac{d}{dt}\{\overline{f}_{xx}(t)y(t)+\overline{f}_{xx}(t)\dot{y}(t)\}=\overline{f}_{xx}(t)y(t)+\overline{f}_{xx}(t)\dot{y}(t)$. (1)

where $\overline{f}_{\dot{x}x}(t):=f_{x\dot{x}}(t,\overline{X}(t),\overline{x}(t))$ , etc. A point $c\in(0, T]$ is said to be conjugate to
$t=0$ if there exists a non-trivial solution $y(t)$ of the Jacobi equation (1) on $[0, c]$ and
$y(\mathrm{O})=y(c)=0$ . Then Jacobi proved the following result:

THEOREM 1 (Jacobi) If $\overline{x}(t)$ is a weak minimum for the simplest problem $(SP)$ and
it satisfies the strengthened Legendre condition, then there is no point conjugate to $t=0$

on $[0, T)$ . Conversely, if $\overline{x}(t)$ satisfies the Euler equation and the strengthened Legendre
condition, and if there is no point conjugate to $t=0$ on $[0, T]$ , then $\overline{x}(t)$ is a weak
$m\iota ni\ovalbox{\tt\small REJECT} mum$ .

1Supported in part by Grant-in-Aid for Scientific Research No. 11440033 from the Ministry of Edu-
cation, Science, Sports, and Culture of Japan.

数理解析研究所講究録
1187巻 2001年 58-65 58



Recently, ”conjugate points” has been extended to complex extremal problems such
as optimal control problems and variational problems with state constraints, see e.g.
Kawasaki-Zeidan [5], Loewen-Zheng [7], Warga [9], Zeidan [10], and Zeidan-Zezza [11] [12] [13].
The present paper is outside of this trend. In this $\mathrm{p}_{\mathfrak{c}\backslash }\mathrm{p}\mathrm{e}\mathrm{r}$ , we first quote the conjugate
points theory [3] for an unconstrained nonlinear programming problem $(P)$ :

$(P)$ Minimize $f(x)$ on $x\in R^{n}$ ,

where $f$ : $R^{n}arrow R$ is assumed to be twice continuously differentiable. It seems to
the author that one reason why researchers have not paid much attention to conjugate
points for $(P)$ lies in the f.ollowing elementary results on it:

THEOREM 2 If $\overline{x}$ is a minimum for $(P)f$ then it satisfies $f’(\overline{x})=0$ and $f”(\overline{x})\geq 0$ ,
Conversely, if $\overline{x}$ satisfies $f’(\overline{x})=0$ and $f”(\overline{X})>0$ , then it is a minimum for $(P)\rangle$ where
$,,\geq$

”
$an,d’$

)
$>$

” stand for non-negative defin.$ite$ and positive definite, respectively.

Theorem 2 seems to assert that there is no room for ”conjugate points” to play a role in
$(P)$ . However, an interesting connection between Jacobi’s condition and the theory of
quadratic forms was discussed in Gelfand and Fomin [1, p.125]. We quote it in the next
section. Furthermore, the author [2] recently found a stimulating example that strongly
indicates possibility to establish a conjugate points theory for $(P)$ , see Example 1 below.
Example 1 ([2]) Let us first consider the shortest path problem on the unit sphere $S$

in $R^{3}$ . The problem is finding a shortest path on $S$ joining two points $A=(1,0,0)$ and
$B=(\cos\tau_{\mathrm{s}},\mathrm{i}\mathrm{n}T, 0)$ , where $0<T<2\pi$ is given. When $T>\pi$ , the equatorial arc, say
$AB$ , in Fig. 1 is not a weak minimum. Indeed, take another great circle arc (the broken
curve in Fig. 1) joining $A$ and $C=(-1,0,0)$ , say $AC$ , and join $AC$ and the equatorial
arc $CB$ . Then it has the same length with the equatorial arc $AB$ . However, we get a
shorter curve by taking a short cut around $C$ .

Figure 1

According to the classical conjugate point theory, $C$ is conjugate to $A$ . Next, let us
approximate the shortest path problem by an extremal problem in a finite dimensional
space as follows:

1: Take a finite number of equally located longitudes $\ell_{0},$ $\ell_{1},$

$\ldots,$
$\ell_{n+}1$ , where we

assume that $A\in\ell_{0}$ and $B\in\ell_{n+1}$ , see Fig. 2.
2: Choose one point, say $X_{k}$ , on each $p_{k}$ for $k=1,2,$ $\ldots n$ .
3: Minimize the length of the polygonal curve joining $A,$ $X_{1},$

$\ldots,$
$X_{n},$ $B$ .
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Figure 2 Figure 3

Then the above observation on the classical shortest path problem can be also applied
to this extremal problem in $R^{n}$ . In fact, by taking a short cut around $C$ in Fig. 3, we
obtain a shorter polygonal curve. Hence $C$ can be regarded as a conjugate point in the
finitedimensional analogue.

2. Connection between Jacobi’s condition and Quadratic Form

In this section, we quote from [1, p.127] an interesting observation on a connection
between Jacobi’s condition and the theory of quadratic forms in $R^{n}$ . According to the
classical conjugate point theory, the quadratic functional

$\int_{0}^{T}\{P\dot{y}^{2}+Ry^{2}\}dt$ , (2)

where $P(t)>0$ and $R(t)\in R$, is positive for all non-trivial $y(t)$ such that $y(\mathrm{O})=y(T)=$

$0$ if and only if $[0, T]$ contains no point conjugate to $0$ , where the corresponding Jacobi
equation is

$\frac{d}{dt}\{P\dot{y}\}=Ry$ ,

see [1, p.lll]. By introducing the points $0=t_{0}<t_{1}<\cdots<t_{n}<t_{n+1}=T$, we
get $n+1$-equal parts of length $\triangle t:=T/(n+1)$ . Then the quadratic functional (2) is
approximated by the quadratic form:

$\sum_{k=0}^{n}\{P_{k}(\frac{y_{k+1}-y_{k}}{\triangle t})2+Rkyk\}2\triangle t$ , (3)

where $P_{k}:=P(t_{k}),$ $R_{k}:=R(t_{k}),$ $y_{k}:=y(t_{k})$ , and $y_{0}=y_{n+1}=0$ . By putting $a_{k}$ $:=$

$R_{k}\triangle t+(P_{k-1}+P_{k})/\triangle t,$ $b_{k}:=-P_{k-1}/\triangle t,$ $y=(y_{1}, \ldots , y_{n})$ , and

$A_{n}$$:=$ , (4)
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quadratic form (3) is expressed as $y^{T}A_{\mathrm{t}},y$ . So, let us now discuss $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}_{\mathrm{V}}\mathrm{c}\mathrm{x}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}11\mathrm{e}\mathrm{s}\mathrm{S}$

of $A_{[\iota}$ . According to Sylvester’s criterion, $A_{n}$ is positive definite if and only if its de-
scending principal minors $|A_{k}|,$ $(k=1, \ldots, n)$ are positive. On the other hand, there is
a recurrence formula for tribunal matrix (4)

$|A_{k}|=a_{k}|A_{k-1}|-b^{2}k-1|A_{k_{-}2}|$ . (5)

By making the change of variables $Y_{0}:=0$ , $Y_{1}:=\triangle t$ , and

$Y_{k+1}:= \frac{(\triangle t)^{k.1}+.|A_{k}|}{P_{1}\cdot P_{k}}$ , $k=1,$ $\ldots,$
$n$ ,

recursion relation (5) reduces to

$\frac{P_{k}\frac{Y_{i+1}-Y_{k}}{\triangle t}-P_{k1^{\frac{Y_{k}-Y_{k-1}}{\triangle t}}}-}{\triangle t}=R_{k}Y_{k}$ . (6)

Tending $\triangle tarrow \mathrm{O}$ in (6), we get the Jacobi equation $d(P\dot{Y})/dt=RY$ . Therefore expan-
sion (5) can be regarded as the Jacobi equation.

3. Conjugate Points for (P)
In this section, we define the Jacobi equation and conjugate points for $(P)$ , and

describe sufficient optimality conditions in terms of conjugate points.
First, let us discuss positive-definiteness of symmetric matrices. According to Sylvester’s

criterion, an $n\cross n$-symmetric matrix $A=(a_{ij})$ is positive-definite if and only if its de-
scending principal minors $|A_{k}|(k=1, \ldots,n)$ are positive, where

$A_{k}:=$ .

The following lemma shows that the determinant of any square matrix is expanded w.r.t.
the descending principal minors:

LEMMA 1 ([3]) For any $n\mathrm{X}n- matr?\dot{x}A=(a_{ij})$ , its determinant is expanded as follows:

$|A|= \sum_{=k0}^{n-1}\sum_{\beta}\epsilon(\rho)ak+1\rho(k+1)a_{k2}(k+2)\ldots a_{n\rho(}+\rho n)|A_{k}|$ (7)

where $|A_{0}|:=1,$ $\epsilon(\rho)$ denotes the sign of $\rho$ , and the summation is taken over all permu-
tations $\rho$ on $\{k+1, \ldots, n\}$ satisfying that there is no $p>k$ such that $\rho$ is closed on
$\{\ell+1, \ldots, n\}$ .

When $A$ is tridiagonal, expansion (7) reduces to (5). So we obtain our definition of
the Jacobi equation and conjugate points for (P):
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DEFINITION 1 $([,U\mathit{3}J)$ For any $n\cross n$ -matrtr $A=(a_{ij})$ , we call th, $e$ recvrsion relation on
$/\mathrm{t}_{0},$

$\ldots,$
$y,\iota$

$/ \mathrm{t}\mathrm{A}\cdot=\sum_{0}^{-}\mathrm{A}\cdot 1i=\sum_{\rho}\in(\rho)ai+1\rho(i+1)ai+2\rho(i+2)\ldots ak\rho(k)^{\mathrm{t}_{i}}J$ , $k=1,$ $\ldots,$
$n$ (8)

the Jacobi equation for A. We say that $k$ is conjugate to 1 if the solution $\{y_{i}\}$ of the
Jacobi equation with $y_{0}>0$ changes the sign from positive to non-positive at $k$ . Namely,

$y_{0}>0,$ $y_{1}>0,$
$\ldots,$

$y_{k-1}>0$ , and $y_{k}\leq 0$ . (9)

THEOREM 3 $([\mathit{3}J)$ For any $(n, n)$ -symmetric matrix $A,$ $A$ is positive-definite if and
only is there is no point conjugate to 1.

THEOREM 4 ([3]) A sufficient condition for an extremal $\overline{x}$ to be a minimum for $(P)$

is that, concerning the Hesse matrix $f”(\overline{x})\rangle$ there is no point conjugate to 1.

REMARK 1 It is easy to give a necessary optimality condition for $(P)$ in ternw of con-
jugate points, see [3]. However, since the descending principal minors $|A_{1}|,$

$\ldots,$
$|A_{n}|$ are

not enough to characterize $A\geq 0_{\rangle}$ the situation is slightly different from the sufficiency
case. Namely, though the implication $A\geq 0\Rightarrow|A_{k}|\geq 0(1\leq k\leq n)$ is true, its inverse
is not true in general. In order to check $A\geq 0$ , we have to test the sign of all principal
minors.

4. Example
Example 2 ([3]) This example is same with Example 1. Here we compute conjugate
points for it. By means of the spherical coordinates, any point on the k-th longitude $p_{k}$

is expressed as $X_{k}=(\sin\theta(t_{k})\cos t_{k}, \sin\theta(t_{k})\sin tk,$ $\cos\theta(t_{k}))$ . Hence the minimization
problem of the length of the polygonal arc joining $n+2$ points $\mathrm{A}=X_{0},$ $X_{1},$

$\ldots,$
$X_{n+1}=$

$B$ is formulated as follows:

$(P_{1})$ Minimize

where $\theta_{0}=\theta_{n+1}=\pi/2$ . The variable $\theta\in R^{n}$ that corresponds to the equatorial arc
$\overline{\theta}(t)\equiv\pi/2$ is $\overline{\theta}:=(\pi/2, \ldots, \pi/2)$ . Then the Hesse matrix of $f$ at $\overline{\theta}$ is

$f”( \overline{\theta})=\frac{1}{\sqrt{2(1-c)}}$ (10)

where $c:=\cos\triangle t$ . Since

$k \{=\frac{\sin(k+1)\triangle t}{\sin\triangle t}$ ,
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the principle minor of size $k$ of (10) is positive if $(k+1)\triangle t<\pi$ . Since $\triangle t=T/(n+1)$ ,
we conclude that

(a) when $T<\pi$ , there is no point conjugate to 1,
(b) when $T\geq\pi$ , the first number $k_{\mathrm{S}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}^{\frac{k+1}{n+1}}\geq\pi/T$ is conjugate to 1,

which matches the classical result.

5. Constrained case
In this section, we deal with a nonlinear programming problem with equality con-

straints:

$(P_{2})$ Minimize $f(x)$

subject to $h(x):=(h_{1}(t), \ldots, hm(x))^{T}=(0, \ldots , 0)^{T}$ ,
$x\in R^{n}$

Before going further, we remark that all the results in this section can be easily ex-
tended to the case where there are equality and inequality constraints under the strict
complimentarity assumption.

Now, let $\overline{x}$ be a feasible solution for $(P_{2})$ . In the following, we assume that $h_{j}’(\overline{x}),$ $(j\in$

$J)$ are linearly independent. Then there exists $\lambda\in R^{m}$ such that $L’(\overline{x})=0$ and

$\xi^{T}L^{J\prime}(\overline{X})\xi\geq 0$ if $h’(\overline{X})\xi=0$ , (11)

where $L(x):=f(x)+\lambda^{T}h(X)$ . Conversely, if there exists A $\in R^{m}$ such that $L’(\overline{x})=0$

and
$\xi^{T}L’’(\overline{x})\xi>0$ if $h’(\overline{x})\xi=0(\xi\neq 0)$ , (12)

then $\overline{x}$ is a minimum, see Fiacco and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{C}\mathrm{k}$ .
Since $h’(\overline{x})$ has full rank, $m\cross n$-matrix $h’(\overline{x})$ can be divided as $h’(\overline{x})=(B, N)$ , where

$B$ is an $m\cross m$-nonsingular matrix and $N$ is an $m\cross(n-m)$-matrix. Similarly, we divide
$\xi\in R^{n}$ as $\xi=(y, z)\in R^{m}\cross R^{n-m}$ . Then $h’(\overline{x})\xi=0$ is equivalent to $y=-B^{-1}Nz$ , so
that

$\xi^{\tau_{L’}\prime}(\overline{x})\xi=z^{T}(-N\tau B-T, I)L’’(\overline{X})z$ (13)

Hence the following matrix is the key to describe optimality conditions.

$K:=(-N^{T}B^{-\tau}, I)L’’(\overline{x})$ (14)

THEOREM 5 A sufficient condition for a feasible solution $\overline{x}$ be a minimum for $(P_{2})$ is
that there exists $\lambda\in R^{m}$ such that $L’(\overline{x})=0and_{J}$ concerning $K$ defined by (14), there
is no point conjugate 1.

Example 3 In Example 2, we computed conjugate points for a finite-dimensional ana-
logue to the classical shortest path problem on the unit sphere $S$ . Here we present
another approach. It is treating the problem as a constrained problem:

1. For $k=1,$ $\ldots$ , $n+1$ , let $R_{k}$ be the ring defined by $\{(\cos\frac{kT}{n+1}, y, z)\in S\}$ .
2: Choose one point, say $X_{k}$ , on each $R_{k}$ for $k=1,2,$ $\ldots n$ .
3: Minimize the length of the polygonal curve joining $A=(1,0,0),$ $X_{1},$

$\ldots,$
$x_{n},$ $B=$

$(\cos T, \sin\tau, 0)$ .
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Figure 4

Then this finite-dimensional analogue is formulated as follows:

$\min$ $f(y_{1}, \ldots, yn’ 1z, \ldots, zn)$

$:= \sum_{k=0}\sqrt{(y_{k+1}-y_{k})2+(Z_{k}+1-z_{k})2+(\cos(k+1)\triangle t-\cos k\triangle t)2}n$

$\mathrm{s}.\mathrm{t}$ . $(y_{0}, z_{0})=(0,0)$ , $(y_{n++1}1, z_{n})=(\sin T, 0)$

$h_{k}(y_{1}, \ldots , y_{n}, z_{1}, \ldots , z_{n}):=y_{k}^{2}+z_{k}^{2}-\sin k2\triangle t=0$ , $k=1,$ $\ldots,$
$n$ ,

where $\triangle t:=T/(n+1)$ . Since the equatorial arc corresponds to

$(\overline{y},\overline{z}):=(\overline{y}_{1}, \ldots,\overline{y}_{n’ 1,.,n}\overline{Z}..\overline{z})=(\sin\triangle t, \ldots, \sin n\triangle t, \mathrm{o}, \ldots, 0)$

it can be easily seen that

$h’(\overline{y},\overline{z})=2(\sin\triangle t$

sin $2\triangle t$

$..$ .
$\sin n\triangle t000.\cdot$. $000..\cdot \text{ノ}\backslash$ (15)

Hence we may choose as $B$ and $N$ in (13)

$B=2$, $N=$ ,

respectively. Furthermore, we get $L(y, z)=f(y, z)- \sin\triangle t\sum_{k}^{n}=1(y_{k}^{2}+z_{k}^{2}-\sin^{2}k\triangle t)$ .
Hence

$(-N^{T}B^{-T}, I)=L_{zz}= \frac{1}{\sin\frac{\triangle t}{2}}$
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where $c:=\cos\triangle t$ , which is same with (10) up to constant. Therefore we get the same
conclusion with Example 2.
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