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Some historical background on topological groups

Theorem (Pontryagin?): If the space of a topological group is a Ty-space, then it is
automatically Tychonoff.

Theorem (Markov [1941]): There exists a topological group the space of which is not
normal.

Theorem (Birkhoff-Kakutani [1930s]): A topological group is metrizable if and only
if it is first countable.

Theorem: Every locally compact group has a Haar measure. (This allows for integra-
tion on it.) '

Theorem: Let G be a locally compact abelian group, g € G and g # 0. Then there
exists a continuous group homomorphism 7 : G — T from G into the torus group T
such that 7(g) # 0.

Theorem (Peter-Weyl-van Kampen): Let G be a locally compact group, g € G and
g # 1g where 1¢ is the identity element of G. Then there exist a natural number n
and a continuous group homomorphism 7 : G — U(n) from G into the group U(n) of
unitary n X n matrices over the complex number field such that 7(g) # I. (Here I is the
identity matrix of U(n).) A cardinal 7 is Ulam nonmeasurable provided that for every
ultrafilter F on 7 with the countable intersection property there exists o € 7 such that
F={ACT:0€ A}

Theorem (Varopolous [1964]): Let G and H be locally compact groups, and let
7w : G — H be a group homomorphism. Assume that:
(i) |G| is an Ulam nonmeasurable cardinal, and

(ii) = is sequentially continuous, i.e. for every sequence S C G the image 7(S) is also
a convergent sequence.

Then 7 is continuous.

Theorem (Comfort-Remus [1994]): Let G be a compact group that is either abelian
or connected. Suppose also that every sequentially continuous group homomorphism



7w : G — H from G into any compact group H is continuous. Then |G| is an Ulam
measurable cardinal.

Theorem (Pasynkov [1961]): ind G = Ind G = dim G for a locally compact group G.
Note: Locally compact groups are paracompact (Pasynkov).

A continuous image of a Cantor cube {0,1}" is called a dyadic space.

Theorem (Kuz'minov [1959]): Compact groups are dyadic.

A compact space X is said to be Dugundji if any continuous function f: 4 — X
defined on a closed subset A of a Cantor cube {0,1}" has a continuous extension
F:{0,1}* — X.

Since we can choose the above f to be onto, Dugundji spaces are dyadic

Theorem (Coban [1970s]): Let X be a compact Gs-subset of some topological group.
Then X is a Dugundji space.

Theorem (Hagler, Gerlits and Efimov [1976/77]): An infinite compact group G con-
tains a homeomorphic copy of the Cantor cube

{o, 1}w(G)

As a corollary, one gets a particular version of Shapirovskii’s theorem about mappings
onto Tychonoff cubes:
Theorem: Every infinite compact group G admits a continuous map onto a Tychonoff
cube [0, 1]%(%),

Recall that a space X is o-compact if it is a union of countable family of its compact
subspaces.

A space X is ccc provided that X does not have an uncountable family of non-empty
pairwise disjoint open subsets.
Theorem (Tkachenko [1981]): A o-compact group is ccc.

A space is pseudocompact if every real-valued continuous function defined on it is
bounded.
Theorem (Comfort and Ross [1966]): Let G be a dense subggroup of a compact group
K. Then the following conditions are equivalent:

(i) G is pseudocompact,

(ii) G N B # B for every non-empty Gs-subset B of K.
Corollary (Comfort and Ross [1966]): The product of any family of pseudocompact
groups is pseudocompact.

A (Hausdorff) topological group (G,T) is called minimal provided that for every
Hausdorff group topology 7" on G with 7/ C T one has 7' = T.



Clearly, compact groups are minimal.

Theorem (Prodanov, Stoyanov [1984]): A minimal abelian group G is totally bounded,
i.e. G is (isomorphic to) a subgroup of some compact topological group.

Generating dense subgroups of topological groups
Suitable sets

If X is a subset of a group G, then (X) denotes the smallest subgroup of G that
contains X.

Let X be a subspace X of a topological group G.
We say that X algebraically generates G provided that (X) =
We say that X topologically generates G if (X) is dense in G.

A compact connected abelian group G has weight less than or equal to the continuum
if and only if it is monothetic; that is, there exists an element g € G such that G is
topologically generated by the subset {g}

This result was improved by Hofmann and Morris [1990] by showing that a compact
connected group G can be topologically generated by two elements if and only 1f the
weight of G is less than or equal to the continuum.

Clearly, neither finite nor countable subsets of a topological group G with weight
greater than the continuum can generate a dense subgroup of G. This fact led Hofmann
and Morris to introduce the concept of suitable set as a way to define the notion of
topological generating sets which are in some sense ”close” to finite sets:

Definition (Hofmann and Morris [1990]): A subset S of a topological group G is
said to be suitable for G if S is discrete in itself, generates a dense subgroup of G and
SU{1lg} is closed in G, where 1¢ is the identity of G.

Theorem (Hofmann and Morris [1990]): Every locally compact group has a suitable
set.

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tkagenko [1998]):

Each metric group has a suitable set. A topological group G is almost metrizable
if there exists a compact subgroup K of G such that the space of left cosets G/K is
metrizable.

Theorem (Okunev and Tkachenko [1998]): An almost metrizable group has a suitable
set. :

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A topological group representable
as a countable union of closed metrizable subspaces has a suitable set.



Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): A free (abelian) topological group
over a metric space has a suitable set. :

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Suppose that a topological group
G is a countable union of its metrizable subspaces. Does G have a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): Every topological group with a
o-discrete network has a suitable set.

Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): Every topological group with a
countable network (i.e. a cosmic group) has a suitable set.

Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): Stratifiable groups have suitable
sets.

From the above results it follows that all countable groups have suitable sets. In fact,
even more can be said for countable groups:

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tkacenko [1998]):

Every countable topological group G has a closed discrete subspace S that algre-
braically generates G.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A separable o-compact group has
a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does every o-compact group of
size < ¢ have a suitable set?

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tkacenko [1998]):

Let G be the free (abelian) topological group of SN \ N. Then G does not have a
suitable set. In particular, a o-compact group need not have a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does every o-compact group has
a dense subgroup with a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): If G is a topological group with
a suitable set, then d(G) < I(G) - ¥(G). In particular, a non-separable Lindelof group
of countable pseudocharacter does not have a suitable set.

A space is submetrizable if it has a weaker metric topology.
Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): There exists a submetrizable

Lindelof non-separable linear topological space L of countable tightness. Thus, L does
not have a suitable set.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): Under some additional set-theoretic
assumptions (diamond) there exists a hereditarily Lindel6f non-separable linear topo-



logical space L of countable tightness. Thus no dense additive subgroup of L has a
suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Can one construct in ZFC a
topological group which does not contain a dense subgroup with a suitable set?

A space X is w-bounded if the closure of each countable subset of X is compact.
Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): There exists an w-bounded group
G without a suitable set. Moreover, each power G" of G does not have a suitable set.

Question: In ZFC, does there exists a separable (pseudocompact) group without a
suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A locally separable non-pseudocomapct
group has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does there exists an w-bounded
topological group of size ¢ without a suitable set?

Generating dense subgroups of topological groups:
Topologically generating weight

We use w(X) to denote the weight of a topological space X, i.e. the smallest size of
a base for the topology of X if such a base is infinite, or w otherwise.

Define

agw(G) = min{w(X) : X is closed in G and algebraically generates G}
and

tgw(G) = min{w(F) : F is closed in G and topologically generates G}.

We will call agw(G) an algebraically generating weight of G and tgw(G) a topologically
generating weight of G.

Clearly tgw(G) < agw(G) < w(G). While the definition of algebraically generating
weight appears to be more natural than that of topologically generating weight, it does
not lead to anything new for compact groups:

Theorem (Arhangel’skii): agw(G) = w(G) holds for every compact group G.
For an infinite cardinal 7 define /7 to be the smallest infinite cardinal x with 7 < k¥,
Clearly, /7 < 1.

Theorem (Dikranjan and Shakhmatov [1998]): tgw(G) = \/w(c(G)) - w(G/c(G)) for
every compact group G, where ¢(G) is the connected component of G.



Corollary (Dikranjan and Shakhmatov [1998]): tgw(G) = w(G) for a totally discon-
nected compact group G.

Corollary (Dikranjan and Shakhmatov [1998]): tgw(G) = y/w(G) for every connected
compact group G. A super-sequence is a compact space with at most one non-isolated
point.

Suitable sets in compact groups are precisely super-sequences, so Hofmann-Morris’
theorem justifies an introduction of the following cardinal number for a compact group

G:
seq(G) = w-min{|S| : S C G is a super-sequence topologically generating G'}.
Clearly tgw(G) < seq(G) < w(G).

Theorem (Dikranjan and Shakhmatov [1998]): tgw(G) = seq(G) for every compact
group G.

For topological spaces X and Y we use C(X,Y) to denote the family of all continuous
maps from X to Y. No topology is assumed on C(X,Y).

For topological groups G and H we will use Hom(G, H) to denote the family of all
continuous homomorphisms from G to H. No topology is assumed on Hom(G, H).

Lemma 1: Let X be a subset of a topological group G. Assume that X topologically
generates G. Then |Hom(G, H)| < |C(X, H)| for every topological group H.

Proof: Define a map f : Hom(G,H) — C(X, H) by f(n) = n|x for # € Hom(G, H).
We claim that f is an injection. Indeed, assume that 7, € Hom(G, H) and f(7) =
f(w). Then 7|x = w|x. Since both 7 and w are group homomorphisms from G to H,
one has 7|(xy = w|(x). Since (X) is dense in G, continuity of 7 and w implies now
that 7 = w.

PROOF OF THE TOTALLY DISCONNECTED CASE
Lemma 2: Let X be a totally disconnected compact space and H be a discrete space.
Then |C(X, H)| < w(X).

Let X be a closed subset of G that topologically generates G. Since G is compact
and totally disconnected, it is profinite, i.e. its topology is determined by the family
of all continuous homomorphisms into finite discrete groups. Let H be one of these
discrete groups.

Since G is totally disconnected, so is X. Therefore |C(X, H)| < w(X) by Lemma 2.

We also have [Hom(G, H)| < |C(X, H)| since X topologically generates G (Lemma
1).

Since there are only countably many pairwise non-isomorphic finite discrete groups
H, it now follows that w(G) < w - w(X) = w(X).

PROOF OF THE INEQUALITY /w(G) < tgw(G)



Lemma 3: Let X be a compact space and H be a separable metric space. Then
IC(X, H)| < w(X)~.

Theorem: +/w(G) < tgw(G) for every compact group G.

Proof: Let G be a compact group. By Peter-Weyl-van Kampen theorem the topology
of every compact group is determined by the set of its homomorphisms into the compact
metric group H = [],, U(n), where U(n) is the group of unitary n x n matrices over
the complex number field.

Therefore w(G) < |Hom(G, H)|.
Let X be a closed subspace of G that topologically generates G and satisfies the
equality w(X) = tgw(G). From Lemmas 1 and 3 we have the following:

[Hom(G, H)| < |C(X, H)| < w(X)* = tguw(G)*.

Therefore /w(G) < /tgw(G)¥ < tgw(G).
STRONGLY TOPOLOGICALLY FINITELY GENERATED GROUPS

Recall that a topological group G is topologically finitely generated provided that
there exists a finite subset of G topologically generating G.

Definition (Dikranjan and Shakhmatov): We say that a topological group G is strongly
topologically finitely generated provided that for every open set U containing the identity
element of G one can find a finite set /' C U such that F' topologically generates G.

Lemma 4: Let G be a topologically finitely generated group that has no proper
open subgroups. Then G is strongly topologically finitely generated. Proof: Let
D = {(g1,... ,9,) be a dense finitely generated subgroup of G.

Let U be an open neighbourhood of e in G. Then the subgroup H = (D NU) of D
is obviosuly open in D, hence also closed in D. On the other hand, its closure H in
G contains DNU D U since U is open and D is dense in G. Therefore H is an open
subgroup of G. Our hypothesis gives H = G.

Now closedness of H in D yields H=HND =GN D = D. We have proved in this
way that D = H.

Leti=1,...,n. Since
9 € D=H={(DnVU),

there exists a finite subset F; C D N U such that g; € (F;). Clearly the finite set set
F = \J._, F; generates the whole group D and F C U. Since D is dense in G, F
topologically generates G.

Lemma 5: Let G be a metric (not necessarily compact!) group that is strongly fopo—
logically finitely generated. Then for every infinite cardinal 7 one has seq(G™") < 7.



Proof: Fix an infinite cardinal 7, and let {U, : n € w} be a decreasing open base at
the identity element e of G. For each n € w use the hypothesis of our lemma to fix a
finite set F,, = {g" : i < mp} C U, such that (Fy) is dense in G.

For f € 7 and n € w let fln € 7™ be the restriction of the function f to n =
{0,1,...,n —1}.

For n € w, i < my, and ¢ € 7" we define a point T, ;4 € G7 as follows:

for each f € 7% let zp, ; 4(f) = g" if fin = ¢ and zn, ; ¢(f) = e otherwise. Then
X ={tnip:n€w,i<mp,¢eT"}

is a subset of GT° of size at most 7.

CLAIM 1. For every open set W which contains the identity element e of G™ the
set X \ W is at most finite.

Claim 1 implies that X U {e} is a super-sequence.

Proof of Claim 1. Since W contains a finite intersection of sets of the form
Vin={z€G" :z(f) € Up},
it suffices to prove that, for each f € 7 and for every n € w, z(f) € U, for all but
finitely many z € X, i.e., the set {z € X : z(f) € Uy,} is finite.

So let f € 7 and n € w. Our construction implies that if £k € w, j < mg, ¢ € Tk
and zi j,¢(f) & Un, then:

(i) k < n (because n < k implies Uy C Uy), and

(ii) flk = ¢ (because f|k # ¢ implies x j4(f) = e € Un)-

There are only finitely many of such z j 4, and the result follows.
CLAIM 2. For every finite subset F' of 7¥ there exists n € w (depending on F)
such that, for each f € F', the finite set
{Znifn:i<mp} CX

satisfies the following two properties:
(1) ({Zns,f1n(f) : i <my}) is dense in G,
(ii) Tn i fin(f') = € whenever f' € F\ {f}.

From Claim 2 it immediately follows that, for every finite set F' C 7, the projection
of _
<{$n,.'i,f|n : f € Fa"' < mn})

(where n is as in Claim 2) onto the subproduct G¥ is dense in GF. Since

{Znifin  f € Fyi <mn} C X,



this implies that (X U {e}) is dense in G™". Proof of Claim 2. There exists n € w such
that f'|n # f”|n whenever f', f” € F and f’ # f". We will show that this n works.

Indeed, let f € F. By our construction, one has z, ; ¢, (f) = g for all i < my, so

{xn,i,fln(f) ti<mp}={g; 1 i <my},

and the latter set generates a dense subgroup of G. This implies (i).
Again by our construction, f' € F'\ {f} implies f'|n # f|n and so z,; 5.(f') = e.
This gives (ii). :
| PROOF OF THE CONNECTED CASE
Theorem: (Universal compact connected group of a given weight)

There exists a sequence {L,, : n € w} of compact connected simple Lie groups L,
such that every compact connected group of weight < 7 is a quotient group of the group

G- =(Q)" x [z,

where Q is the Pontryagin dual of the discrete group Q of rational numbers. (Note that
G is a connected group of weight 7.)
Theorem: seq(G) < \/w(G) for a compact connected group G.

Proof: Let 7 = \/w(G). By the above theorem, G is a quotient group of the group

1= (@@« [] 14©
n

for a suitable sequence {L,, : n € w} of compact connected simple Lie groups L,,. Since
w(G) < 7, H is a natural quotient group (under projection map) of the group K7,
where

K =(Q) x[]Ln

Therefore seq(G) < seq(H) < seq(K™").

Since K is connected, it has no proper open subgroups. Since K is also topologically
finitely generated, K is strongly topologically finitely generated (Lemma 4).

Therefore seq(K™" ) < 7 by Lemma 5.
Finally, seq(G) < seq(K™ ) < 7 = y/w(G).

Applications of Michael’s selection theorem to proving results
about (mostly compact) topological groups
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Uspenskii [1988] was the first to notice how Michael’s selection theorem can be
applied to get a simple topological proof of the classical result of Kuzminov that compact
groups are dyadic. Recall that a set-valued map F : Y — Z is a map which assigns a
non-empty closed set F(y) C Z to every point y € Y. '

This set-valued map is lower semicontinuous if
V={yeY:Fly)nU # 0}

is open in Y for every set U open in Z.
A selection for a set-valued map F : Y — Z is a a (single-valued) continuous map
f:Y — Z such that f(y) € F(y) forally €Y.

Theorem (Michael [1956]): Every lower semicontinuous set-valued map F : Y — Z
from a zero-dimensional compact space Y into a complete metric space (in particular,
compact metric space) Z has a selection.

Lemma: Suppose that H and H' are topologcal groups, G is a subgroup of the product
HxH',p: HxH' — Hand 7 : Hx H — H' are projections onto the first and second
coordinates respectively. Assume also that:

(i) the restriction ¢|g : G — ¢(G) of ¢ to G is an open map,
(i) the restriction 7|g : G — 7(G) of 7 to G is a closed map, and
(iii) the subgroup 7(G) of H' is a complete metric group.

Then for every compact zero-dimensional space Y C ¢(G) there exists a homeomor-
phic embedding f : Y — G such that (¢ o f)(y) = y for every y € Y. Proof: Define
Z = n(G) and note that G C H x Z.

For y € Y define F(y) = {2 € Z : (y,2) € G}.
The set GN ({y} x H') is closed in G, so from (ii) it follows that

CF(y) ==(Gn({y} x HY)

is closed in Z = 7(G).

For y € Y, since y € Y C ¢(G), we have F(y) # 0. Therefore F : Y — Z is a
set-valued map.

We claim that F' is lower semicontinuous. Indeed, let U be an open subset of Z. We
have to check that the set

V={yeY:Fly)nU # 0}

is open in Y. To see this note that the set GN (H x U) is open in G, so o(GN (H x U))
is open in ¢(G) by (i). Since Y C ¢(G),

V=YneGn(HxU))
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is open in Y.

Since 7(G) = Z is a complete metric group, we can use Michael’s selection theorem
to pick a (single-valued) continuous selection f: Y — Z of F.

From the definition of F it follows that (¢ o f)(y) = y for all y € Y. In particular, f
is one-to-one. Since Y is compact, f is a homeomorphism.

Corollary: Suppose that H is a topologcal group, H' is a metric group, G is a compact
subgroup of the product H x H', and ¢ : H x H' — H is the projection onto the first
coordinate.

Then for every compact zero-dimensional space Y C ¢(G) there exists a homeomor-
phic embedding f : Y — G such that (¢ o f)(y) =y for every y € Y.

Proof: Let m: H x H' — H' be the projection onto the second coordinate.

Since G is compact, the restriction ¢|g : G — ¢(G) of ¢ to G is a closed continuous
map, soa quotient map, and so an open map. This gives (i).

Since G is compact, the restriction 7|g : G — 7(G) of 7 to G is a closed map. This
gives (ii). - ' ‘

The subgroup 7(G) of H' is compact, being a continuous image of the compact group
G. Since H' is metric, so is 7(G). In particular, m(G) is a complete metric group. This
gives (iii).

A subset X of an abelian group G is independent provided that (A) N (X \ A) = {0}
for every A C X.

For a prime number p > 2, a subset X of an abelian group G is called p-independent
provided that X is independent and

min{l<n<p:nzr=0}=p
for every z € X. For an abelian group G and a prime number p, cardinal numbers
70(G) = sup{|X| : X C G is independent}

and
mp(G) = sup{|X|: X C G is p-independent}
are called rank and p-rank of G respectively.
For a cardinal number 7 we define log(7) to be the smallest infinite cardinal o such
that 27 > 7.
Theorem (Shakhmatov): Let G be an infinite compact abelian group. Then:

(i) G contains an independent subset X homeomorphic to the Cantor cube {0, 1}°870(G)
of weight logro(G), and :
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(i) for every prime number p > 2 the group G contains a p-independent subset X
homeomorphic to the Cantor cube {0, 1}'°67»(%) of weight log,(G).

Even the following corollary to the above general theorem is new:
Corollary (Shakhmatov): Let G be an infinite compact abelian group. Then:
(i) G contains a closed independent subset X with | X| = ro(G), and

(ii) for every prime number p > 2 the group G contains a closed p-independent subset
X with | X| = rp(G).

Wallace’s problem and continuity of separately continuous
multiplication in semigroups

A semigroup is a pair (S, ) consisting of a set S and a binary associative operation -
onS.

A semigroup S has the cancellation property provided that either of sz = sy and
s = ys implies £ = y whenever z,y,s € S.

A topological semigroup is a semigroup equipped with a topology which makes its
binary operation continuous.

Clearly, every topological group is a topological semigroup with the cancellation
property.
Theorem (Gelbaum, Kalish and Olmsted [1951]): A compact semigroup with the
cancellation property is a topological group.

Problem (Wallace [1955]): Is a countably compact Hausdorff semigroup with the
cancellation property a topological group?

A series of positive results by Mukhurjea-Tserpes, Grant, Korovin, Reznichenko,
Yur’eva culminated in the following most general result:
Theorem (Bokalo-Guran [1996]): A sequentially compact Hausdorff semigroup with

the cancellation property is a topological group.

Theorem (Robbie, Svetlichny [1996]): Suppose that there exists an abelian topological
group G with the following properties:

(i) G is countably compact,

(ii) every infinite closed subset of G has cardinality greater or equal than the contin-
uum,

(iii) G is torsion-free, i.e. for every z € G and each n > 1 one has ng # 1g.

Then, (inside of G) one can find a Tychonoff counterexample to the Wallace prob-
lem, i.e. there exists a commutative Tychonoff countably compact semigroup with the
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cancellation property that is not a topological group.

Theorem (Tkagenko [1990]): Assume CH. Than there exists a topological group G
with the following properties: '

(i) G is countably compact,

(ii) every infinite closed subset of G has cardinality greater or equal than the contin-
uum,

(iii) G is a free abelian group (in particular, G is torsion-free).

Tomita [1997] constructed similar group under Martin’s Axiom for Countable Sets.

Question: Is there such a group in ZFC?

Theorem (Ellis [1957]): A group equipped with a locally compact topology such that
multiplication is separately continuous is a topological group.

Theorem (Korovin [1992]): A group equipped with a countably compact topology
such that multiplication is separately continuous is a topological group.

Theorem (Reznichenko [1994]): Let G be group equipped with a pseudocompact
topology such that multiplication is separately continuous. Then G is a topological
group provided that one of the following conditions holds: -

(i) G has countable tightness,
(ii) G is separable,
(iii) G is a k-space.

Theorem (Korovin [1992]): There exists an abelian group (of period 2) equipped with
a pseudocompact group topology such that multiplication is separately continuous but
is not jointly continuous.

Since the group is of period 2, i.e. x +z = 0 and so x = —z for all z € G, the
inverse operation is just the identity map, and so the inverse operation is automatically
continuous.

Thus a pseudocompact group with a separately continuous multiplcation (and even
continuous inverse) need not be a topological group.

Convergence properties in topological groups and
function spaces

Let X be a topological space. For A C X we use A to denote the closure of A in X.

A sequence converging to x € X is a countable infinite set S such that S\ U is finite
for every open neighbourhood U of z.
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A space X is Fréchet-Urysohn provided that for each set A C X if z € A, then there
exists a sequence S C A converging to z.

Definition (Arhangel’sk'ii: [1970]): The tightness t(X) of a topological space X is
defined as the smallest cardinal 7 such that

A= U{F : B € [A]57} for every A C X.

metric — first countable —

— Fréchet-Urysohn — #(X) = w

Definition (Arhangel’skii [1972]): Let X be a topological space. For ¢ = 1,2,3 and
4 we say that X is an o;-space if for every countable family {S, : n € w} of sequences
converging to some point £ € X there exists a (kind of diagonal) sequence S converging
to  such that:

(1) Sp \ S is finite for all n € w,

(a2) Sp NS is infinite for all n € w,

(a3) Sp NS is infinite for infinitely many n € w,
(aq) S, NS # O for infinitely many n € w.

Definition (Nyikos [1990]): We say that a space X is an ag/;-space if for every
countable family {S,, : n € w} of sequences converging to some point € X such that
Sp NSy = 0 for n # m, there exists a sequence S converging to z such that S, \ S is
finite for infinitely many n € w.

metric — first countable —

——>a1—>a3/2—)a2—>a3—>a4
The only nontrivial implication ag/, — a2 is due to Nyikos [1992].
GENERAL TOPOLOGICAL SPACES

Theorem (Simon [1980]): There exists a compact Fréchet-Urysohn ay-space that is
not as.

Theorem (Reznichenko [1986], Gerlits, Nagy [1988] and Nyikos [1989]): There exists
a compact Fréchet-Urysohn as-space that is not as.

Theorem (Dow [1990]): a9 implies o in the Laver model for the Borel conjecture.
For f,g € w* we write f <* g if f(n) < g(n) for all but finitely many n € w.

A family F C w¥ is unbounded if for every function g € w* there exists f € F such
that g <* f.
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We define b to be the smallest cardinality of an unbounded family in (w¥, <*).

Theorem (Nyikos [1992]): If b = w; holds, then there exists a countable Fréchet-
Urysohn asj-space that is not a;.

Corollary: The existence of a (Fréchet-Urysohn) as-space that is not o is both con-
sistent with and independent of ZFC.

Theorem (Gerlits, Nagy [1988] and Nyikos [1989]): There exists a countable Fréchet-
Urysohn as-space that is not first countable. ‘

Theorem (Gerlits, Nagy [1982]): There exists a (uncountable) Fréchet-Urysohn ;-
space that is not first countable. ‘

Theorem (Nyikos [1989]): Every space of character < b is a;.
c is the cardinality of the continuum.

Theorem (Malyhin, Shapirovskii [1974]): If M A + ~CH holds, then every countable
space of character < c is Fréchet-Urysohn.

Corollary: M A+ —-~CH implies the existense of a countable Fréchet-Urysohn a;-space
that is not first countable.

Theorem (Dow, Steprans [1990]): There is a model of ZFC in which all countable
Fréchet-Urysohn a;-spaces are first countable.

Corollary: The existence of a countable Fréchet-Urysohn «; space that is not first
countable is both consistent with and independent of ZFC.

Theorem (folklore): Let

G={fe2 : {Bew : f(B) =1} <w}

Then G is a Fréchet-Urysohn topological group that is @y but is not first countable.
TOPOLOGICAL GROUPS '

Theorem (Nyikos [1981]): Every Fréchet-Urysohn topological group is oy4.

Theorem (Shakhmatov [1990]): Let M be a model of ZFC obtained by adding w;
many Cohen reals to an arbitrary model of ZFC. Then M contains a countable Fréchet-
Urysohn topological group G that is not az. (Note that G is a4 by Nyikos’ theorem.)

Theorem (Shibakov [1999]): CH implies the existence of a countable Fréchet-Urysohn
topological group that is as but is not as. ,

Theorem (Shakhmatov [1990]): Let M be a model of ZFC obtained by adding w;
many Cohen reals to an arbitrary model of ZFC. Then M contains a countable Fréchet-
Urysohn topological group G that is as but is not agz/;.

Theorem (Shibakov [1999]): A Fréchet-Urysohn topological group that is an ag/,-
space is ;. Thus ag/; and a; are equivalent for Fréchet-Urysohn topological groups.
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Theorem (Birkhoff, Kakutani [1936]): A topological group is metrizable if and only
if it is first countable.

Question (Shakhmatov [1990]): Is it consistent with ZFC that every Fréchet-Urysohn
topological group is az3? What about countable Fréchet-Urysohn topological groups?

Question: Is it consistent with ZFC that every Fréchet-Urysohn topological group that
is an as-space is automatically as? What about countable Fréchet-Urysohn topological
groups?

Question (Shakhmatov [1990]): Is it consistent with ZEC that every countable Fréchet-
Urysohn topological group that is an ay-space is first countable?

Question (Malyhin [1977]): Without any additional set-theoretic assumptions beyond
ZFC, does there exist a countable Fréchet-Urysohn topological group that is not first
countable?

Theorem (Malyhin [1977]): M A+ —~CH implies the existence of such a group.

Definition (Sipacheva [1998]): Let F be a filter on w. We say that F is a FUF-filter
privided that the following property holds:

if £ C [w]<¥ is a family of finite subsets of w such that for every F' € F there exists
K € K with K C F, then there exists a sequence {K, : n € w} C K so that for every
F € F one can find n € w with K,,, C F for all m > n.

For a filter F on w let wx be the space obtained by adding to the discrete copy of w
a single point * whose filter of open neighbourhoods is {F U {*} : F € F}.

Theorem (Sipacheva [1998]): If F is a FUF-filter on w, then the space wr is a. For
A, B € [w]<¥ define
A-B=(A\B)U(B\A) € [w]<¥.

This operation makes [w]<“ into an Abelian group with § as the identity element such
that A- A = (0 (thus A coincides with its own inverse, and all elements of [w]<* have
order 2).

For a filter F on w let G(F) be the group ([w]<¥,-,0) equipped with the topology
whose base of open neighbourhoods of  is given by the family {[F]<¥ : F € F}.

Theorem (folklore): Let F be a filter on w. Then:
(i) G(F) is Hausdorff if and only if F is free (i.e. (| F = 0),
(ii) G(F) is Fréchet-Urysohn if and only if F is an FUF-filter,
(iii) G(F) is first countable if and only if F is countably generated.

Theorem (folklore): If there exists a free FUF-filter on w that is not countably
generated, then there exists a countable Fréchet-Urysohn topological group that is not
first countable.

Question (folklore): Is there, in ZFC only, a free FUF-filter on w that is not countably
generated? ‘
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Theorem (Nogura, Shakhmatov [1995]): All a; properties (i = 1,3/2,2,3,4) coincide
for locally compact topological groups.

Theorem (Nogura, Shakhmatov [1995]): The following conditions are equivalent:
(i) every compact group that is an o;-space is metrizable,
(ii) every locally compact group that is an ay4-space is metrizable,
(iii) b = w;.

Corollary (Nogura, Shakhmatov [1995]):  Under CH, a locally compact group is
metrizable if and only if it is a4.



18

FUNCTION SPACES C,(X)

For a topological space X let Cp(X) be the set of all real-valued continuous functions
on X equipped with the topology of pointwise convergence, i.e with the topology which
the set Cp,(X) inherits from RX  the latter space having the Tychonoff product topology.

For every space X, Cp(X) is both a (locally convex) topological vector space and a
topological ring.

Theorem (Scheepers [1998]): Let X be a topological space. Then Cp(X) is as if and
only if Cp(X) is as. Therefore, all three properties as, o3 and oy coincide for spaces of
the form Cp(X).

Corollary (Scheepers [1998]): If Cp(X) is Fréchet-Urysohn, then Cp(X) is ao.

Theorem (Scheepers [1998]): It is consistent with ZFC that there exists a subset of
real numbers X C R such that Cp,(X) is Fréchet-Urysohn (and thus as) but is not a;.

Note that the existence of the above space is not only consistent with ZFC but also
independent of ZFC by Dow’s theorem.

Theorem (Scheepers [1998]): It is consistent with ZFC that there exists a subset of
real numbers X C R such that Cp(X) is a; but is not Fréchet-Urysohn.

PRODUCTS OF GENERAL SPACES

Theorem (Nogura [1985]):
(i) For i = 1,2,3, if X and Y are a;-spaces, then X X Y is also an aj-space.

(ii) There exist compact Fréchet-Urysohn ag4-spaces X and Y such that X x Y is
neither Fréchet-Urysohn nor ay.

Theorem (Arangel’skii [1971]): If X is a Fréchet-Urysohn as-space and Y is a (count-
ably) compact Fréchet-Urysohn space, then X x Y is Fréchet-Urysohn.

Theorem (Costantini, Simon [1999]): There exist two countable Fréchet-Urysohn
as-spaces X and Y such that X x Y is a4 but fails to be Fréchet-Urysohn.

Theorem (Simon [1999]): Under CH, there exist two countable Fréchet-Urysohn aq-
spaces X and Y such that X x Y is Fréchet-Urysohn but is not a.

Question: Is there such an example in ZFC?
PRODUCTS OF TOPOLOGICAL GROUPS

Theorem (Todorgevié [1993]): There exist two (compactly generated) Fréchet-Urysohn

groups G and H such that (G x H) > w (in particular, G x H is not Fréchet-
Urysohn). Moreover, every countable subset of G and H is metrizable, and so both G
and H are ;.

Theorem (Malyhin, Shakhmatov [1992]):
Add a single Cohen real to a model of M A + -CH. Then, in the generic extension,
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the exists a (hereditarily separable) Fréchet-Urysohn topological group G such that
t(G x G) > w (in particular, G x G is not Fréchet-Urysohn). Moreover, G is an a;-
space.

Theorem (Shibakov [1999]): Under CH, there exists a countable Fréchet-Urysohn
topological group G such that G x G is not Fréchet-Urysohn.

Question: Is there such an example in ZFC only?

Question: In ZFC only, does there exist two countable Fréchet-Urysohn topological
groups G and H such that G x H is not Fréchet-Urysohn?

Question: In ZFC only, is there a Fréchet- Urysohn topological group G such that G is
a1 but G x G is not Fréchet-Urysohn? :

PRODUCTS OF Cp(X)
Theorem (Tkacuk [1984]): If Cp(X) is Fréchet-Urysohn, then even its countable
power Cp(X)¥ is Fréchet-Urysohn.

Theorem (Todoréevié [1993]): There exist two spaces X and Y such that both C’p( )
and Cp(Y') are Fréchet-Urysohn but

HC(X) X Cp(Y)) > w

(in particular, Cp(X) x Cp(Y) is not Fréchef-Urysohn). Moreover, vévery coﬁntable
subset of Cp(X) and Cp(Y') is metrizable, and so both Cp(X) and Cp(Y) are a;.



