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1. INTRODUCTION

The purpose of this note is to introduce my recent work [15] about cohomological
dimension and resolutions of complexes. We recall that the covering dimension $\dim X$ of
a compactum $X$ is the smallest natural number $n$ such that there exists an $(n+1)$-fold
covering by arbitrarily fine open sets. The characterization of dimension in terms of
mappings to spheres led to the cohomological characterization of dimension under the
assumption of finite-dimensionality of a space [8]. This characterization was the point
of departure for cohomological dimension theory. We give below the definition of coho-
mological dimension. The cohomological dimension $\mathrm{C}-\dim c^{X}$ of a compactum $X$ with
coefficients in an abelian group $G$ is the largest integer $n$ such that there exists a closed
subset $A$ of $X$ with $H^{n}(X,$ $A;^{c)}\neq 0$ , where $H^{n}$ $($ ; $G)$ means the \v{C}ech cohomology with
coefficients in $G$ . Clearly, $\dim X\leq n$ implies that $\mathrm{c}-\dim cx\leq n$ for all $G$ . Alexandroff
formulated the theory in his paper [1].

Recent progress of cohomological dimension theory follows from $\mathrm{R}.\mathrm{D}$ .Edwards the-
orem [6] (details can be found in [13]). The theorem is based on the excellent idea,
which is the so-called Edwards-Walsh modification. An equivalent reformulation below
caused the advances: associating to each simplicial complex $L$ , a combinatorial resolu-
tion $\omega:\mathrm{E}\mathrm{W}_{G}(L, n)arrow|L|$ (see Definition 2.1 below) specified that $\mathrm{c}-\dim cX\leq n$ if and
only if for every simplicial complex $L$ and map $f:Xarrow L$, there exists an approximate
lift $\tilde{f}:Xarrow \mathrm{E}\mathrm{W}_{G}(L, n)$ of $f$ ; see [5]. Recent analyses in the theory led to a need for those
resolutions for general groups. By reason of the necessity, Dydak-Walsh [5, Theorem
3.1] stated a necessary and sufficient condition for the existence of an Edwards-Walsh
resolution of an $(n+1)$-dimensional simplicial complex. They [5, Theorem 4.1] also
analyzed the modification and investigated a general property of an abelian group $G$

that admits such a resolution of a complex.
For reason of a difficulty, Koyama and the author [11] introduced a property of

an abelian group $G$ that induces the existence of an Edwards-Walsh resolution of a
simplicial complex: an abelian group $G$ has property $(\mathrm{E}\mathrm{W})$ provided that there exists a
homomorphism $\alpha:\mathrm{Z}arrow G$ such that

$(\mathrm{E}\mathrm{W}_{1})\alpha\otimes \mathrm{i}\mathrm{d}:\mathrm{Z}\otimes Garrow G\otimes G$ is an isomorphism, and
$(\mathrm{E}\mathrm{W}_{2})\alpha^{*}:$ $\mathrm{H}\mathrm{o}\mathrm{m}(G, G)arrow \mathrm{H}\mathrm{o}\mathrm{m}(\mathrm{z}, G)$ is an isomorphism.

Throughout this note, $\mathrm{Z}$ is the additive group of all integers and $\mathrm{Q}$ is the additive
group of all rational numbers. $\mathrm{Z}_{(P)}$ is the ring of integers localized at a subset $P$ of
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$P=$ {all prime numbers}. We denote by $\mathrm{Z}/p,$ $\mathrm{Z}/p^{\infty}$ and $\hat{\mathrm{Z}}_{p}$ the cyclic group of order
$p$ , the quasi-cyclic group of type $p^{\infty}$ and the group of p–adic integers, respectively.

For a brief historical view of cohomological dimension theory, we refer the reader to
[2], [4], [9] and [10].

2. EDWARDS-WALSH RESOLUTIONS OF COMPLEXES

As mentioned above, an important tool of characterizing compacta $X$ with finite co-
homological dimension with respect to $G$ is an Edwards-Walsh resolution $\omega:\mathrm{E}\mathrm{W}_{G}(L, n)arrow$

$|L|$ of a simplicial complex $L$ . For $G=\mathrm{Z}$ , those resolutions were formulated in [13].
The relation of Edwards-Walsh resolutions to cohomological dimension theory and their
existence for certain other groups were discussed in [3] and [5].

Definition 2.1. Let $G$ be an abelian group and $L$ a simplicial complex. An Edwards-
Walsh resolution of $L$ in the dimension $n$ is a pair (EW$c(L,$ $n),$ $\omega$ ) consisting of a CW-
complex $\mathrm{E}\mathrm{W}_{G}(L, n)$ and a combinatorial map $\omega:\mathrm{E}\mathrm{W}_{G}(L, n)arrow|L|$ (that is, $\omega^{-1}(|L/|)$

is a subcomplex for each subcomplex $L’$ of $L$) such that
(i) $\omega^{-1}(|L^{(n})|)=|L^{(n)}|$ and $\omega|_{||}L^{(n)}$ is the identity map of $|L^{(n)}|$ onto itself,

(ii) for every simplex $\sigma$ of $L$ with $\dim\sigma>n$ , the preimage $\omega^{-1}(\sigma)$ is an Eilenberg-
$\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{n}\mathrm{e}$ complex of type $(\oplus G, n)$ , where the sum here is finite, and

(iii) for every simplex $\sigma$ of $L$ with $\dim$ a $>n$ , the inclusion $\omega^{-1}(\partial\sigma)arrow\omega^{-1}(\sigma)$

induces an epimorphism $H^{n}(\omega^{-1}(\sigma);G)arrow H^{n}(\omega^{-1}(\partial\sigma);c)$ .

Dydak-Walsh established a property of $G$ that characterizes those groups for $\mathrm{w}..\mathrm{h}$ich
such resolutions exist for all $(n+1)$-dimensional simplicial complexes.

Theorem [5, Theorem 3.1]. Let $G$ be an abelian $gro$up and $n\geq 1$ . An Edwards-Walsh
resol $\mathrm{u}$tion $\omega:\mathrm{E}\mathrm{W}_{G}(L, n)arrow|L|$ exists for all simplicial complexes $L$ with $\dim L\leq n+1$

if and on$ly$ if there exists an in$t$eger $m\geq 1$ and a homomorphism $\alpha:\mathrm{Z}arrow G^{m}$ such that
any homomorphism $\beta:\mathrm{Z}arrow G$ factors as $\beta=\tilde{\beta}\circ\alpha$ for some $\tilde{\beta}:G^{m}arrow G$ .

We extend the theorem above to all simplicial complexes of dimension $\geq n+2$ . Before
stating our theorem, we recall a proposition in [11].

Proposition 2.2. Let $\sigma$ be an $(n+2)$ -simplex and $(K(G, n),$ $s^{n})$ a pair ofan Eilenberg-
$MacL\mathrm{a}ne$ complex of type $(G, n)$ and an $n$-dimension$al$ sphere $S^{n}$ in $K(G, n)$ . Let $E$

be the $CW$-complex $ob\mathrm{t}$ained by replacing each $(n+1)$ -face $\tau$ of $\partial\sigma$ by $(K(G, n),$ $Sn)$

along $\partial\tau\cong S^{n}$ . Then we have

$H_{n}(E) \approx(G/{\rm Im}\alpha)\oplus\frac{G\oplus\cdots\oplus G}{n+2}$

and an exact sequence

where $\alpha=\pi_{n}(S^{n_{\mathrm{c}}}\Rightarrow K(G, n))$ and $\Delta_{\alpha}$ an$dq$ are given by

$\Delta_{\alpha}(j)=(\alpha(j), -\alpha(j),$
$\ldots,$

$-\alpha(j))$
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and
$q((\mathit{9}0,$ $g_{1\cdot.g))=},.,n+2$ ([go], $g_{1}+g0,$ $\ldots,$

$g_{n}+2+g\mathrm{o}$ ).

The next is our main theorem.

Theorem 2.3. Let $\alpha:\mathrm{Z}arrow G$ be a $homomorphi_{S}m.from$ the $gro$up of integers to an
abelian $gro$up G. Then the following are equivalent:

(1) there exists an Edwards-Walsh resolution $\omega$ : EW$c(L, n)arrow|L|$ ofeach simplicial
complex $L$ with $\dim L\geq n+2$ such that
(iv) the inclusion-indu$ced$ homomorphism $\pi_{n}(\omega^{-1}(\partial\tau))arrow\pi_{n}(\omega^{-1}(\tau))$ is $\alpha$ for

each $(n+1)$ -simplex $\tau$ of $L$ , and
(v) the inclusion-induced homomorphism $\pi_{n}(\omega^{-1}(\partial\sigma))arrow\pi_{n}(\omega^{-1}(\sigma))$ maps

the subgroup $G/{\rm Im}$ $a$ to zero for any $(n+2)$ -simplex $\sigma$ of $L$ (where if
$n=1$ , we consider the abelianization of the fundamental $gro\mathrm{u}$ps),

$..(2)$ the homomorphism $a_{\wedge}^{*}:$
$\mathrm{H}\mathrm{o}\mathrm{m}(G, G)arrow \mathrm{H}\mathrm{o}\mathrm{m}(\mathrm{z}, G)$ induced by $\alpha$ is an isomor-

phism.

Remark 2.4. The subgroup $G/{\rm Im}\alpha$ in condition (v) above depends upon the enumera-
tion of $(n+1)$-faces of each $(n+2)$-simplex, since we calculate the group by Proposition
2.2. We also note that (v) is natural for constructing our desired resolution.

Remark. The groups $\mathrm{Z},$ $\mathrm{Z}/p$ and $\mathrm{Z}_{(p)}$ satisfy such a condition, that is, there are such
resolutions with respect to the groups (those are well-known [13], [5] and [2, 3]).

Example. If $G=\mathrm{Z}/p\oplus \mathrm{Z}_{(q)}$ or $\hat{\mathrm{Z}}_{p}$ , where $p\neq q$ , then Edwards-Walsh resolutions
$\omega:\mathrm{E}\mathrm{W}_{G}(L, n)arrow|L|$ exist for all $n$ and all simplicial complexes.

As we have previously stated, property $(\mathrm{E}\mathrm{W})$ seems strong to construct a resolution.
How..ever, the condition group-theoretically give us an interesting future.

Theorem 2.5. Let $G$ be an abelian $gro$up with property $(\mathrm{E}\mathrm{W})$ . Then the $gro$up is
precisely either a cyclic group or a localization of the integer $g\mathrm{r}o$up at some prime
$n\mathrm{u}mb\mathrm{e}rs$.
Remark. We note that if $G$ is either a cyclic group or a localization of the integer group
at some prime numbers, then $G$ has property $(\mathrm{E}\mathrm{W})$ . Thus the condition characterizes
the group of integers and the Bockstein groups except quasi-cyclic ones.
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