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GO-spaces and orderability of
compactifications

RRFEERF  HEPHEE (Yoshio Tanaka)

In this paper, we give some characterizations for certain compactifications
of GO-spaces to be orderable by means of “ cuts ” in GO-spaces.

Let (X, <) be a linearly ordered set. Then, a linearly ordered topological
space (abbreviated LOTS) is a triple (X, 7(<), <), where 7(<) is the usual
order topology (i.e., open-interval topology) by the order <. Also, (X, 7, <), T
is a topology on X, is a generalized ordered space (abbreviated GO-space)
if (i) M(<) C 7; and (ii) every point of X has a local 7-base consisting of
(possibly degenerate) intervals of X. For a space (X, 7), there exists a linear
order < of X such that (X, 7, <) is a GO-space iff it is a (closed) subspace
of a LOTS; see [L]. _

A space X is orderable (resp. suborderable) if X is homeomorphic to a
LOTS (resp. GO-space) [N]. Thus, a space X is orderable iff the topology of
X coincides with the order topology by some linear order of X [VRS].

For a space X, a compactification ¢(X) of X is a compact space such that
X is homeomorhic to a dense subset of ¢(X). We call a compactification ¢(X)
of X orderable if the topology of ¢(X) is the order topology by some order
of ¢(X).

If no confusion, for a GO-space (or LOTS) (X, 7, <), we shall omit “

r “ < ”. Also, we shall sometimes use “ LOTS ” (resp. ” GO-spaces )
instead of ” orderable spaces ” (resp. “ suborderable spaces ”).

Let (X,7,<) be a GO-space. Let us consider a space Y containing a
subspace (X,7) such that the order < on X can be so extended to some
linear order < on Y as to yield the given topology of Y as the order topology
7(=X) by <. Then, we say that Y is a linearly ordered eztension of X. Also,
let us call a compactification ¢(X) of X a linearly ordered compactification of
X if ¢(X) is a linearly ordered extension of X. (When a GO-space (X, 7, <)
is homeomorphic to a dense subspace D of ¢(X) under a map f, we shall
consider a GO-space (D, f(7), <;) instead of (X, 7, <), here f(7) = {f(G) :
Gert}handd<;d ifz <o’ for d= f(z), d = f(2')).

Let (X, 7,<) be a GO-space, and A = 7(<) be the order topology on X
defined by <. Let R = {z € X : [z,+00) € T— A}, and L = {z € X :



(—0o,z] € T — A}, and Z be the set of all integers. N
Define subsets X* and X of X x Z as follows. Let X*; X be a LOTS
having the order topology by the lexicographic order on X*; X respectively.

X*=(Xx{0h)u{(z,n):z€ R, n<0}U{(z,m):z €L, m>0}.

X=Xx{0})URx{-1}) UL x {1}).

If X is not a LOTS, then ,::Xv is not a subspace of X*, and X™ is not a
linearly ordered extension of X under the natural correspondence. For X*;
X, see [L] (or [N]); [MK] respectively.

Remark 1. (1) For a GO-space X, X* (resp. X) is a minimal (in the
sense of inclusion) linearly ordered extension of X containing X as a closed
(resp. dense) subset [L] (resp. [MK]).

(2) For the Sorgenfrey line .S, S is separable, and perfect (i.e., every closed
subset is a Gs-set), ans so is S. But, S* is neither separable nor perfect ([L]).

We note that there exists a perfect, GO-space X, but X has no perfect,
linearly ordered extensions containing X as a closed or dense subset ([MK]).

(3) For a GO-space X, if X is metrizable; first countable; locally compact;
paracompact, then so is X* respectively ([L]). But, X need not be metrizable
even if X is a discrete, GO-space ([MK]).

Let (X,<) be a linearly ordered set. A pair (A|B) of subsets of X is
caled a cutof X,if X = AUB, A# 0, B#0,and ifz € A and y € B, then
z<y.

For every cut (A|B) of X, exactly one of the following four cases arises.
A cut (A|B) is a jump if it satisfies (C1), and a gap if it satisfies (C4); see
([E])- Note that, for cuts (A|B) and (C|D) of X, AC C or C C A.

(C1) There exist Maz A and min B.

(C2) There exists Max A, but no min B.
(C3) There exists min B, but no Maz A.
(C4) There exists neither Maz A nor min B.

Let (X, <) be a GO-space. A cut (A|B) of X is called a pseudo-gap if A
and B are disjoint open sets satisfying (C2) or (C3); see [N]. We note that a
GO-space (X, <) is a LOTS iff (X, <) has no pseudo-gaps.

" Let (X, <) be a GO-space. Define a subset X~ of X x {0,+1} by

X~ = (X x {0}) U {{MazA,1) : (A|B) is a pseudo-gap of X having
MazA} U {(minB, —1) : (A|B) is a pseudo-gap of X having minB}.
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Let X~ be a LOTS having the order topology defined by the lexicographic
order on X~. Then X = X~

For a LOTS (X, <), define
Xt =XU{c=(A|B):cisagap of X} U {£oo}.

Let X* be a LOTS having the order topology by a linear order < on X+
as follows: (i) For a gap ¢ = (A|B), a < c for all a € A, and ¢ < b for all
b € B; and (ii) For gaps ¢ = (A|B) and ¢ = (A'|B'), c < if A C A’ and
A# A Also, let —o00 < z and z < +oo for all z € X, but put —oo = minX
if minX exists, and put +oo = Max X if MazX exists.

For a GO-space (X,<), X7 is defined by the closure of X in (X*)*.
Then, X* = (X*,7(=), %) is a linearly ordered compactification of X. See
[N; Example VIIL3]. X is called Dedekind compactification of X .

Let (X~)" = X~ U{(a,0): o = (A|B) is a gap of X} U {(£o0,0)} be a
subset of X* x {0,%+1}. Let (X™~)* be a LOTS having the order topology
by the lexcographlc order on (X~)*. Then, X+ = (X™)* = (X)*, so X+ is
a linearly ordered compactification of X ‘

Remark 2. For a GO-space (X, <), a compact LOTS £X was. defined in
[K1] as the minimal linearly ordered compactification of X in the following
sense: For each linearly ordered compactification L of X, there exists a
continuous map f : L — £X such that f|X is the identity map on X. (In
[K1], £X is used in the study on normality of products of GO-spaces and
cardinals). We can assume that X+ = £X (in view of [K1]). ‘

For a space X, let us consider the following compactifications of X.
a(X): Alezandroff’s one-point compactification.

B(X): Stone-Cech compactification.

X7*: Dedekind compactification, but Xisa GO-space.

The following facts are well-known. See [E] or [N], for example.

Fundamental Facts: (1) Every GO-space is hereditarily (collectionwise)
normal, and hereditarily countably paracompact.

(2) For a LOTS (X, <), X is compact < X has no gaps, and there exist
minX and MazX < For every A C X, there exists supA, here sup D=
minX, and supX = MazX.

(3) For a LOTS (X, <), X is connected < X has no jumps and no gaps.

(4) For a GO-space (X,7,<), 7 = 7(<) if X is compact or connected.

Ezample 1. (1) (i) Let X = (0,1)U{2} be a space with the usual topology.
Then, X is a GO-space which is the topological sum of LOTS (0, 1) and {2}.
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But, X is not orderable.

(11) None of the following subspaces of the Euchdean plane is suborder-
able: The circle S'; The square [0,1] X [0,1]; The space obtained from the
topological sum of n (> 3) many intervals [0, 1] by identifying all zero-points.

(2) The Sorgenfrey line and the Michael line are GO-spaces, but none of
them is orderable (in view of [L]).

(3) (i) Let X = {0} U (1, 2] be a space with the usual topology. Hence X
is a GO-space, but not a LOTS by the usual order. While, X is orderable
by the usual order <, but let z < 0 for all z € (1, 2].

(ii) Let Y = ([0, w1], <), where < is the usual order. Let 7 be the topology
on Y obtained from the order topology by isolating every countable limit
ordinal. Then, (Y,7,<) is a GO-space, but not a LOTS. While, (Y,7) is
orderable by the lexicographic order on ([0, w;) x Z) U {{w1,0)} ([L]).

(4) (i) Let X be the unit square [0,1]x [0, 1], and define the order topology
on X by the the lexicographic order. Then, as is well-known, X is a first
countable, compact, connected LOTS, but X is not separable, hence not
metrizable.

(ii) Let Y be [0,1] x {0,1}, and define the order topology on Y by the
lexicographic order. Then, as is well-known, Y is a first countable, compact,
separable LOTS, but Y is not metrizable.

Remark 3. (1) Related to (1) of Example 1, the following modifications
hold: (i) Let Y be a topological sum of a connected LOTS (X, <) and a
point p. Then Y is suborderable, and Y is orderable iff Maz X or min X
exists. (ii) Any connected space X with |X| > 2 is not orderable if X — {p}
is connected for any point p € X, or X — {¢} has at least three components
for some point ¢ € X.

(2) Let X be suborderable. Then X is orderable if X is a topological
group ([LiSaT]), or X is a metrizable space which is totally disconnected
(i.e., any connected subset of X is a singleton).

(3) ([VRS]) If X x Y is suborderable, then X is totally disconnected, or
Y is discrete. Conversely, for any orderable (resp. suborderable) space X,
X XY is sorespectively if Y is discrete. While, even if X xY is orderable with
Y discrete, X need not be orderable. (In fact, let X be the space (0,1)U{2}
in Example 1(1), and let Y be a countably infinite discrete space).

Proposition 1. Let X be a GO-space. If X is separable metrizable,
then X*, and X are separable metrizable, hence so is X.

Corollary 2. Let (X, <) be a GO-space. If X is separable metrizable,
then X has at most countably many jumps and pseudo-gaps.
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Remark 4. (1) Let X be a separable metrizable space. Then, as is well-
known, o(X) is metrizable if X is locally compact, but, 3(X) is not even
first countable if X is not compact.

(2) For a compactification Y of a space X, if Y is first countable, then
Y| < c¢=2% (thus, |[X]| < ¢).

Proposition 3. For a LOTS (X, <), the following are equivalent.
(a) a(X) is a linearly ordered compactification of (X, <).

(b) One of the following (i), (ii), and (iii) holds.

(i) X has no gaps, and there exists minX, but no MazX.

(ii) X has no gaps, and there exists Maz X, but no minX.

(iii) X has only one gap, and there exist minX and MazX.

(c) o(X) =

Remark 5. The linearly ordered extension for «(X) in Proposition 3 is
essential (by Example 2 below).

Ezample 2. Let N = {1,2,...}. Let N be a LOTS (N, <) with the
usual order <. Let X = (NN, =) be a LOTS, but the order < is defined as
follows: ... <4 <2<1<3<5<=<.... Then, o(N) = N*, but a linearly
ordered compactification a(X) of X = (IV, X) doesn’t exist (by Proposition
3). While, N = X, so a(N) = a(X), but N* % X*. Hence, a(X) is
orderable, but a(X) 2 X*.

Proposition 4. ([VRS]) Let Y be a space having a dense subset X If
Y is suborderable, then the following hold.

(1) If | X| > w, then the character x(Y) < |X|, and |Y| < 2XI.

(2) If X is connected, then Y is connected and |[Y — X| < 2.

The following lemma is shown by refering to [E; 6.3.2].

Lemma 5. (1) Let X be a separable connected, compact space. If X is
orderable, then X is homeomorphic to the closed unit interval [a, b] in the
Euclidean line R.

(2) Let X be a separable connected space. If X is orderable then X is
homeomorphic to an interval of R.

(3) Let X be a separable metrizable space. If X is suborderable then X
is homeomorphic to a subspace of R.

Remark 6. (1) Not every separable compact LOTS is metrizable, also,
not every compact connected LOTS is metrizable (by Example 1(4)).

(2) As is well-known, every separable suborderable space X is first count-
able, hereditarily separable, hereditarily Lindeléf, and | X| < 2¢.



Remark 7. (1) For a separable connected LOTS (X, <), X £ R < X has
no Maxmal point and no minimal point < X is a topological group.

(2) Let (K,+, x) be a field, here (K, +) is an additive Abelian group,
and (K, x) is a multiplicative Abelian group with respect to K — {0}. Then,
K with a linearly order < on K is called an ordered field if it is a LOTS
(K, 7(<), <) satisfying: For any a,b,c€ K,a<b=a+c<b+c;anda<b
and ¢ >0 = a X c < bxec. An order field (K, <) is Archimedian if, for each
a,b (> 0) € K, there exists n € N with a < n x b. Every Archimedian order
field is a separable metrizable LOTS, thus it is homeomorphic to a subspace
of R (by Lemma 5(3)).

Let (K, 7(<Z), <) be an ordered field. For z € K, define the absolute value
|z| by |z] =z if £ > 0, and |z| = —z if z < 0. Then, {V.(a) : a,e € K with
g > 0} is a base for the order topology 7(<), here V;(a) ={z € K : [z —a| <
e}. For a function f : K (or [a,b] C K) — K, using absolute values, the
following can be defined by the same way as in R: f is bounded, continuous,
differentiable, or integrable.

Let K = (K,7(<),<) be an ordered field. Let us say that K is a real
number field if it has no gaps (i.e., K is connected). As is well-known, every
real number field is isomorhic, hence, homeomorphic to R (by (1)). We know
many equivalent conditions for K to be R (for example, every upper bounded
subset ‘A of K has sup A). Besides, we have the following equivalences by
means of cuts of K. Here, a map means a continuous function defined on a
closed interval [a,b] in K. _

~ (Theorem): ([T2]) For an ordered field K, K is R < Any map to K is
bounded and K is Archimedian < Any map to R is bounded < For any map
fto K (or R), f([a,b]) has the Maxmal (minimal) value <> For any map fto
K (or R), f([a,b]) = [f(a), ()] if f(a) < f(b) < Any differentiable map to
K satisfies the Rolle’s theorem < Any bounded map to K is integrable.

Proposition 6. For a space X, the following are equivalent.
(a) X is a locally separable, metrizable, suborderable space.
(b) X is the topological sum of subspaces of R.

Proposition 7. Let X be a separable connected space, and let ¢(X) be
a compactification of X. Then, (a) < (b), and (b) = (c) hold.

(a) ¢(X) is orderable.

(b) c(X) = [0,1].

(c) X is homeomorphic to. an interval of R, and |¢(X) — X| <2

Remark 8. The implication (c) = (a) (or (b)) in Proposition 7 doesn’t
hold. (In fact, put ¢(R) = a(R), then [¢(R) — R| =1, but ¢(R) = S' is not
orderable (by Example 1(1))).
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Lemma 8. ([Sh]) Let (X,<) and (Y, <) be connected LOTS. For a
homeomorphism f: X 2 Y, (a) or (b) below holds.

(a) For all z,y € X,z < y iff f(z) < f(y).

(b) For all z,y € X,z < y iff f(y) < f(=).

Theorem 9. ([Sh]) Let X be a connected LOTS, and let ¢(X) be a
compactification of X. Then the following are equivalent.

(a) ¢(X) is orderable. -

(b) ¢(X) 2 X+ (= X U {Fo0})

Remark 9. (1) The connectedness of X in Theorem 9 is essential. (In
fact, for a case ¢(X) = a(X) (resp. ¢(X) = ,B(X)),'see Example 2 (resp.
Example 3(2))). ‘

(2) Let ¢(X) be a linearly ordered compactification of a connected LOTS

X such that |¢(X) — X| < 2. If ¢(X) = B(X), then ¢(X) is orderable (by
Corollary 19), however, if ¢(X) = a(X), ¢(X) need not be orderable (by
Remark 8).

For the following lemrﬁa refer to [GJ], [E], or [Tl] Recall that a spaée X

has countable tightness (abbreviated ¢(X) < w) if, whenever z € clA, there

exists a countable subset C of A with z € .clC.

Lemma 10. (1) Let X be a normal space. If X is not countably compact
then B(X) — X contains a copy of S(N) as well as S(N) — N. ;

(2) B(N) is neither hereditarily normal nor hereditarily countably para-
compact, in particular, 3(N) is not orderable. Also, |3(N)| = 2¢ (¢ = 2¥),
and t(B(N)) > w. : :

Lemma 11. For a suborderable spa{ce X asis known, the:following hbid;
(1) If X is countably compact, then X is sequentially compact.

(2) If t(X) < w, then X is first countable, thus, every countably compact

subset is closed.

Proposition 12. ([VRS]) Let 8(X) be orderable. Then X is countably
compact, hence sequentially compact. ‘

Corollary 13. Let 8(X) be orderable. Then X is compact if (a) or (b)
below holds. (For F-spaces and P-spaces, see [GJ]) '

(a) B(X) has countable tightness. :

(b) X satisfies one of the following properties: Paracompact space; Real-
compact space; Separable space; F'-space; P-space.

For a GO-space (X, <), define a subset X" of X+ x {0, %1} by the follow-
ing. Let X* be a LOTS having the order topology defined by the lexicographic
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order on X*.

X' = (X x {0}) U {{MazA,1) : (A|B) is a pseudo-gap of X having
MazA} U {{(minB,-1) : (A|B) is a pseudo-gap of X having minB} U
{{c,1),{c,—1) : c = (A|B) is a gap of X} U {(£o0,0)}.

Namely, X! = X U{(c, 1), (c, —1) : ¢ = (A|B) is a gap of X} U {(Z00,0)}.
Obviously, if X has no gaps, X! = X*. If X has a gap, then X" is not
minimal (in the sense of Remark 2).

Proposition 14. Let (X, <) be a GO-space. Then the following hold.

(1) X* and X+ are linearly ordered compactfications of X, as well as X.

(2) X" is connected < ((X) is connected <> X is connected. While, X+
is connected < X has no jumps and no pseudo-gaps.

(3) X" is metrizable < X is a separable metrizable space having at most
countably many gaps < X is a separable metrizable space with | X! X| < w.

Lemma 15. For a countably compact GO-space (X, <), the following
(1) and (2) hold.

(1) For every continuous real-valued function f on X, there exist a,b € X
with @ < b such that f is constant on R, = {z € X : £ > b}, and on

={reX:z<a}

(2) Every continuous real-valued function f on X can be continuously
extendable over X! (hence, 3(X) = X*).

(In fact, for (1), assuming X has no Maximal point, we show that each
real valued function f on X is constant on some R, as in the poof of the
Vickery’s result on the ordinal space [0, w;) (see [D; p.81], etc.). For (2),
note that for a cut ¢ = (A[B) of X, A and B are clopen in X (so, they are
countably compact GO-spaces) if ¢ is a gap, a pseudo-gap, or a jump. Then,
using (1), we can define a continuous extension F of f over X* naturally).

Theorem 16'. Let (X, <) be a GO-space. Then following are equivalent.
(a) B(X) is orderable.

(b) X is countably compact (equivalently, sequentially compact).

(c) B(X) = X

(d) B(X) is a linear ordered compactification of X.

(e) B(X) is orderable w1th B(X) = B(X).

( _

f) B(X) = A(X) =

1S. Purisch [P] (resp. R. Kaufman [Ka]) has already proved that the equlvalence (a)
& (b) for a GO-space (resp. LOTS) holds by a different proof.
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Corollary 17. For a GO-space X, let R(X) = 3(X) — X be the remain-
der of B(X). Then the following are equivalent.

(a) B(X) is orderable.

(b) R(X) is suborderable.

(c) R(X) is hereditarily normal.

(d) R(X) is hereditarily countably paracompact.

(e) R(X) contains no copy of B(N).

Corollary 18. For a GO-space X, B(X) is orderable if R(X) satisfies
one of the following properties: |R(X)| < 2¢ t(R(X)) < w; Each point of
R(X) is a Gs-set in R(X).

Corollary 19. For a conected LOTS X, the following are equivalent.
(a) B(X) is orderable.

(b) [R(X)| < 2.

(c) B(X) =2 X+ (= X U{£oo}).

Corollary 20. For a GO-space X, B(X) & X* < X is a countably
compact space with X# = X+,

Corollary 21. For GO-spaces (X, <) and (Y, <) with XY, 1f X is
countably compact, then X! = Y.

Remark 10. (1) In Theorem 16, even if 8(X) is orderable with ﬂ(f )2 X ”,
B(X) need not be orderable (by Example 3(1)). Note that, for a GO-space
Y, if B(Y) is orderable, then so is 3(Y), but the converse doesn’t hold.

(2) In Corollary 17, we can replace ” R(X) ” by ” 8(X) ”. We can’t omit
” hereditarily ” in (c) and (d). (In fact, let X be a GO-space which is locally
compact, in particular, connected, but X is not countably compact). -

(3) (i) Related to Corollary 18, as a special case, the following holds 2

For |[R(X)| =1, X is orderable iff B(X) is orderable. But, for IR(X )= 2

the ” if 7 part need not hold (by Example 3(2)).

(ii) For Corollary 18, even if |R(X)| = 2¢, 8(X) need not be orderable.
(In fact, let X be a GO-space which is separable, but not compact).

The author has the following question®: Is there a GO-space X such that
|R(X)| = 2¢, but B(X) is orderable (equivalently, X is countably compact) ?

(4) In Corollary 19, for the implications (a) = (b) or (c), and (b) = (c),
the connectedness of X is essential (by Example 3(2)). Also, in Corollary 21,
the countable compactness of X is essential (by Example 2).

2K. Miyazaki announced this fact (with a different proof).
3N. Kemoto gave an affirmative answer to this question (in general, for any cardinal &
with c¢fk > ws, there exists a countably compact GO-space X with |R(X)| = &) in [K2].
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~ Ezample 3. (1) Let X = [0,1]U(2,3]. Then X is a GO-space by the usual
topology (also, X is orderable). Then, X=Xt=Xt=XU{{1,1)}isa
compact LOTS. Thus, 5(X) = X! is orderable. But B(X) is not orderable
(by Proposition 11).

(2) Let © be the Long line; that is, ) is a space (Q 7(<), <) obtained
by replacing all jumps in the ordinal space [0,w;) by the closed intervals,
where < is the obvious order. Then (2 is a connected and countably compact
LOTS, but € is neither separable nor compact. Also, a(Q) & 4(2) ¢ QF =
QU {+oo} (by means of Lemma 15).

(i) Define (—2) by a LOTS (Q,7(<'), <), but <’ is defined as follows:
< zrifzr <z'. Let L = (—Q)UQ be a LOTS defined by an order <: z < z’
fr<z'in(-Q),y<yify<yinQ andz<yifz € (—Q) and y € Q.
Then, ¥ is a countably compact, connected space having no Maxmal point
and no minimal point. Let T be the topological sum of (£, <) and a point
+o00o. Let 7 be the topology of the space T, and define the obvious order <’
of T with the Maximal point +0o. Then (T, 7,=') is a countably compact
GO-space which is not orderable, and S(T') = T+ = TU{+oo}U{(+00, —1)}
(hence, |R(T)| = 2).

(ii) For n € N (n # 1), let X be the topological sum of n many LOTS
(¥,=X). Then X is a countably compact disconnected LOTS having gaps but
no jumps. Then, X+ is a connected space with | X+ — X| = n + 1. While,
B(X) is a disconnected space with |3(X) — X| = 2n. Thus, 8(T') is orderable
such that |3(X) —X|=2n (| X* - X|=n+1), but (X) ¥ X*.

(iii) Let I' = QU (—Q) be a LOTS defined by a similar way as ¥. Then
I’ is. a countably compact space having only one gap w; = (Q|(—=)) and no
jumps. Then, I't = I' U {w;} is connected. While, 8(T") = ' U{(Q, £1)} is
disconnected. Hence, §(I') is orderable, but G(T") % I'*.
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