GO-spaces and orderability of compactifications

東京学芸大学 田中祥雄 (Yoshio Tanaka)

In this paper, we give some characterizations for certain compactifications of GO-spaces to be orderable by means of "cuts" in GO-spaces.

Let (X, \leq) be a linearly ordered set. Then, a linearly ordered topological space (abbreviated LOTS) is a triple $(X, \tau(\leq), \leq)$, where $\tau(\leq)$ is the usual order topology (i.e., open-interval topology) by the order \leq . Also, $(X, \tau, \leq), \tau$ is a topology on X, is a generalized ordered space (abbreviated GO-space) if (i) $\lambda(\leq) \subset \tau$; and (ii) every point of X has a local τ -base consisting of (possibly degenerate) intervals of X. For a space (X, τ) , there exists a linear order \leq of X such that (X, τ, \leq) is a GO-space iff it is a (closed) subspace of a LOTS; see [L].

A space X is orderable (resp. suborderable) if X is homeomorphic to a LOTS (resp. GO-space) [N]. Thus, a space X is orderable iff the topology of X coincides with the order topology by some linear order of X [VRS].

For a space X, a compactification c(X) of X is a compact space such that X is homeomorphic to a dense subset of c(X). We call a compactification c(X) of X orderable if the topology of c(X) is the order topology by some order of c(X).

If no confusion, for a GO-space (or LOTS) (X, τ, \leq) , we shall omit " τ " or " \leq ". Also, we shall sometimes use "LOTS" (resp. "GO-spaces") instead of "orderable spaces" (resp. "suborderable spaces").

Let (X, τ, \leq) be a GO-space. Let us consider a space Y containing a subspace (X, τ) such that the order \leq on X can be so extended to some linear order \leq on Y as to yield the given topology of Y as the order topology $\tau(\leq)$ by \leq . Then, we say that Y is a linearly ordered extension of X. Also, let us call a compactification c(X) of X a linearly ordered compactification of X if c(X) is a linearly ordered extension of X. (When a GO-space (X, τ, \leq) is homeomorphic to a dense subspace D of c(X) under a map f, we shall consider a GO-space $(D, f(\tau), \leq_f)$ instead of (X, τ, \leq) , here $f(\tau) = \{f(G) : G \in \tau\}$, and $d <_f d'$ if x < x' for d = f(x), d' = f(x').

Let (X, τ, \leq) be a GO-space, and $\lambda = \tau(\leq)$ be the order topology on X defined by \leq . Let $R = \{x \in X : [x, +\infty) \in \tau - \lambda\}$, and $L = \{x \in X : [x, +\infty) \in \tau - \lambda\}$

 $(-\infty, x] \in \tau - \lambda$, and Z be the set of all integers.

Define subsets X^* and \widetilde{X} of $X \times Z$ as follows. Let X^* ; \widetilde{X} be a LOTS having the order topology by the lexicographic order on X^* ; \widetilde{X} respectively.

If X is not a LOTS, then \widetilde{X} is not a subspace of X^* , and X^* is not a linearly ordered extension of \widetilde{X} under the natural correspondence. For X^* ; \widetilde{X} , see [L] (or [N]); [MK] respectively.

- Remark 1. (1) For a GO-space X, X^* (resp. \widetilde{X}) is a minimal (in the sense of inclusion) linearly ordered extension of X containing X as a closed (resp. dense) subset [L] (resp. [MK]).
- (2) For the Sorgenfrey line S, S is separable, and perfect (i.e., every closed subset is a G_{δ} -set), and so is \widetilde{S} . But, S^* is neither separable nor perfect ([L]).

We note that there exists a perfect, GO-space X, but X has no perfect, linearly ordered extensions containing X as a closed or dense subset ([MK]).

- (3) For a GO-space X, if X is metrizable; first countable; locally compact; paracompact, then so is X^* respectively ([L]). But, \widetilde{X} need not be metrizable even if X is a discrete, GO-space ([MK]).
- Let (X, \leq) be a linearly ordered set. A pair (A|B) of subsets of X is called a *cut* of X, if $X = A \cup B$, $A \neq \emptyset$, $B \neq \emptyset$, and if $x \in A$ and $y \in B$, then x < y.

For every cut (A|B) of X, exactly one of the following four cases arises. A cut (A|B) is a *jump* if it satisfies (C1), and a *gap* if it satisfies (C4); see ([E]). Note that, for cuts (A|B) and (C|D) of X, $A \subset C$ or $C \subset A$.

- (C1) There exist Max A and min B.
- (C2) There exists Max A, but no min B.
- (C3) There exists min B, but no Max A.
- (C4) There exists neither Max A nor min B.

Let (X, \leq) be a GO-space. A cut (A|B) of X is called a *pseudo-gap* if A and B are disjoint *open sets* satisfying (C2) or (C3); see [N]. We note that a GO-space (X, \leq) is a LOTS iff (X, \leq) has no pseudo-gaps.

Let (X, \leq) be a GO-space. Define a subset X^{\sim} of $X \times \{0, \pm 1\}$ by

 $X^{\sim} = (X \times \{0\}) \cup \{\langle MaxA, 1 \rangle : (A|B) \text{ is a } pseudo\text{-}gap \text{ of } X \text{ having } MaxA\} \cup \{\langle minB, -1 \rangle : (A|B) \text{ is a } pseudo\text{-}gap \text{ of } X \text{ having } minB\}.$

Let X^{\sim} be a LOTS having the order topology defined by the lexicographic order on X^{\sim} . Then $\widetilde{X} = X^{\sim}$.

For a LOTS (X, \leq) , define

 $X^{+} = X \cup \{c = (A|B) : c \text{ is a gap of } X\} \cup \{\pm \infty\}.$

Let X^+ be a LOTS having the order topology by a linear order \leq on X^+ as follows: (i) For a gap c=(A|B), $a \prec c$ for all $a \in A$, and $c \prec b$ for all $b \in B$; and (ii) For gaps c=(A|B) and c'=(A'|B'), $c \prec c'$ if $A \subset A'$ and $A \neq A'$. Also, let $-\infty \prec x$ and $x \prec +\infty$ for all $x \in X$, but put $-\infty = minX$ if minX exists, and put $+\infty = MaxX$ if MaxX exists.

For a GO-space (X, \leq) , X^+ is defined by the closure of X in $(X^*)^+$. Then, $X^+ = (X^+, \tau(\preceq), \preceq)$ is a linearly ordered compactification of X. See [N; Example VIII.3]. X^+ is called *Dedekind compactification* of X.

Let $(X^{\sim})^+ = X^{\sim} \cup \{\langle \alpha, 0 \rangle : \alpha = (A|B) \text{ is a gap of } X\} \cup \{\langle \pm \infty, 0 \rangle\}$ be a subset of $X^+ \times \{0, \pm 1\}$. Let $(X^{\sim})^+$ be a LOTS having the order topology by the lexcographic order on $(X^{\sim})^+$. Then, $X^+ = (X^{\sim})^+ = (\widetilde{X})^+$, so X^+ is a linearly ordered compactification of \widetilde{X} .

Remark 2. For a GO-space (X, \leq) , a compact LOTS ℓX was defined in [K1] as the minimal linearly ordered compactification of X in the following sense: For each linearly ordered compactification L of X, there exists a continuous map $f: L \to \ell X$ such that f|X is the identity map on X. (In [K1], ℓX is used in the study on normality of products of GO-spaces and cardinals). We can assume that $X^+ = \ell X$ (in view of [K1]).

For a space X, let us consider the following compactifications of X.

 $\alpha(X)$: Alexandroff's one-point compactification.

 $\beta(X)$: Stone-Čech compactification.

 X^+ : Dedekind compactification, but X is a GO-space.

The following facts are well-known. See [E] or [N], for example.

Fundamental Facts: (1) Every GO-space is hereditarily (collectionwise) normal, and hereditarily countably paracompact.

- (2) For a LOTS (X, \leq) , X is compact $\Leftrightarrow X$ has no gaps, and there exist minX and $MaxX \Leftrightarrow$ For every $A \subset X$, there exists supA, here $sup \emptyset = minX$, and supX = MaxX.
 - (3) For a LOTS (X, \leq) , X is connected $\Leftrightarrow X$ has no jumps and no gaps.
 - (4) For a GO-space (X, τ, \leq) , $\tau = \tau(\leq)$ if X is compact or connected.

Example 1. (1) (i) Let $X = (0,1) \cup \{2\}$ be a space with the usual topology. Then, X is a GO-space which is the topological sum of LOTS (0,1) and $\{2\}$.

But, X is not orderable.

- (ii) None of the following subspaces of the Euclidean plane is suborderable: The circle S^1 ; The square $[0,1] \times [0,1]$; The space obtained from the topological sum of n (≥ 3) many intervals [0,1] by identifying all zero-points.
- (2) The Sorgenfrey line and the Michael line are GO-spaces, but none of them is orderable (in view of [L]).
- (3) (i) Let $X = \{0\} \cup (1,2]$ be a space with the usual topology. Hence X is a GO-space, but not a LOTS by the usual order. While, X is orderable by the usual order \leq , but let x < 0 for all $x \in (1,2]$.
- (ii) Let $Y = ([0, \omega_1], \leq)$, where \leq is the usual order. Let τ be the topology on Y obtained from the order topology by isolating every countable limit ordinal. Then, (Y, τ, \leq) is a GO-space, but not a LOTS. While, (Y, τ) is orderable by the lexicographic order on $([0, \omega_1) \times Z) \cup \{\langle \omega_1, 0 \rangle\}$ ([L]).
- (4) (i) Let X be the unit square $[0,1] \times [0,1]$, and define the order topology on X by the the lexicographic order. Then, as is well-known, X is a first countable, compact, connected LOTS, but X is not separable, hence not metrizable.
- (ii) Let Y be $[0,1] \times \{0,1\}$, and define the order topology on Y by the lexicographic order. Then, as is well-known, Y is a first countable, compact, separable LOTS, but Y is not metrizable.
- Remark 3. (1) Related to (1) of Example 1, the following modifications hold: (i) Let Y be a topological sum of a connected LOTS (X, \leq) and a point p. Then Y is suborderable, and Y is orderable iff $Max\ X$ or $min\ X$ exists. (ii) Any connected space X with $|X| \geq 2$ is not orderable if $X \{p\}$ is connected for any point $p \in X$, or $X \{q\}$ has at least three components for some point $q \in X$.
- (2) Let X be suborderable. Then X is orderable if X is a topological group ([LiSaT]), or X is a metrizable space which is totally disconnected (i.e., any connected subset of X is a singleton).
- (3) ([VRS]) If $X \times Y$ is suborderable, then X is totally disconnected, or Y is discrete. Conversely, for any orderable (resp. suborderable) space X, $X \times Y$ is so respectively if Y is discrete. While, even if $X \times Y$ is orderable with Y discrete, X need not be orderable. (In fact, let X be the space $\{0,1\} \cup \{2\}$ in Example 1(1), and let Y be a countably infinite discrete space).

Proposition 1. Let X be a GO-space. If X is separable metrizable, then X^* , and X^+ are separable metrizable, hence so is \widetilde{X} .

Corollary 2. Let (X, \leq) be a GO-space. If X is separable metrizable, then X has at most countably many jumps and pseudo-gaps.

- Remark 4. (1) Let X be a separable metrizable space. Then, as is well-known, $\alpha(X)$ is metrizable if X is locally compact, but, $\beta(X)$ is not even first countable if X is not compact.
- (2) For a compactification Y of a space X, if Y is first countable, then $|Y| \le c = 2^{\omega}$ (thus, $|X| \le c$).

Proposition 3. For a LOTS (X, \leq) , the following are equivalent.

- (a) $\alpha(X)$ is a linearly ordered compactification of (X, \leq) .
- (b) One of the following (i), (ii), and (iii) holds.
- (i) X has no gaps, and there exists minX, but no MaxX.
- (ii) X has no gaps, and there exists MaxX, but no minX.
- (iii) X has only one gap, and there exist minX and MaxX.
- (c) $\alpha(X) = X^{+}$.

Remark 5. The linearly ordered extension for $\alpha(X)$ in Proposition 3 is essential (by Example 2 below).

Example 2. Let $N = \{1, 2, ...\}$. Let N be a LOTS (N, \leq) with the usual order \leq . Let $X = (N, \preceq)$ be a LOTS, but the order \preceq is defined as follows: ... $\prec 4 \prec 2 \prec 1 \prec 3 \prec 5 \prec ...$. Then, $\alpha(\mathbf{N}) = \mathbf{N}^+$, but a linearly ordered compactification $\alpha(X)$ of $X = (N, \preceq)$ doesn't exist (by Proposition 3). While, $\mathbf{N} \cong X$, so $\alpha(\mathbf{N}) \cong \alpha(X)$, but $\mathbf{N}^+ \ncong X^+$. Hence, $\alpha(X)$ is orderable, but $\alpha(X) \ncong X^+$.

Proposition 4. ([VRS]) Let Y be a space having a dense subset X. If Y is suborderable, then the following hold.

- (1) If $|X| \ge \omega$, then the character $\chi(Y) \le |X|$, and $|Y| \le 2^{|X|}$.
- (2) If X is connected, then Y is connected and $|Y X| \le 2$.

The following lemma is shown by referring to [E; 6.3.2].

- **Lemma 5**. (1) Let X be a separable connected, compact space. If X is orderable, then X is homeomorphic to the closed unit interval [a, b] in the Euclidean line \mathbf{R} .
- (2) Let X be a separable connected space. If X is orderable, then X is homeomorphic to an interval of \mathbf{R} .
- (3) Let X be a separable metrizable space. If X is suborderable, then X is homeomorphic to a subspace of \mathbb{R} .
- Remark 6. (1) Not every separable compact LOTS is metrizable, also, not every compact connected LOTS is metrizable (by Example 1(4)).
- (2) As is well-known, every separable suborderable space X is first countable, hereditarily separable, hereditarily Lindelöf, and $|X| \leq 2^{\omega}$.

Remark 7. (1) For a separable connected LOTS (X, \leq) , $X \cong \mathbf{R} \Leftrightarrow X$ has no Maxmal point and no minimal point $\Leftrightarrow X$ is a topological group.

(2) Let $(K, +, \times)$ be a *field*, here (K, +) is an additive Abelian group, and (K, \times) is a multiplicative Abelian group with respect to $K - \{0\}$. Then, K with a linearly order \leq on K is called an *ordered field* if it is a LOTS $(K, \tau(\leq), \leq)$ satisfying: For any $a, b, c \in K$, $a < b \Rightarrow a + c < b + c$; and a < b and $c > 0 \Rightarrow a \times c < b \times c$. An order field (K, \leq) is *Archimedian* if, for each $a, b \ (> 0) \in K$, there exists $n \in N$ with $a < n \times b$. Every Archimedian order field is a separable metrizable LOTS, thus it is homeomorphic to a subspace of \mathbf{R} (by Lemma 5(3)).

Let $(K, \tau(\leq), \leq)$ be an ordered field. For $x \in K$, define the absolute value |x| by |x| = x if $x \geq 0$, and |x| = -x if x < 0. Then, $\{V_{\varepsilon}(a) : a, \varepsilon \in K \text{ with } \varepsilon > 0\}$ is a base for the order topology $\tau(\leq)$, here $V_{\varepsilon}(a) = \{x \in K : |x-a| < \varepsilon\}$. For a function f: K (or $[a,b] \subset K$) $\to K$, using absolute values, the following can be defined by the same way as in \mathbf{R} : f is bounded, continuous, differentiable, or integrable.

Let $K = (K, \tau(\leq), \leq)$ be an ordered field. Let us say that K is a real number field if it has no gaps (i.e., K is connected). As is well-known, every real number field is isomorphic, hence, homeomorphic to \mathbf{R} (by (1)). We know many equivalent conditions for K to be \mathbf{R} (for example, every upper bounded subset A of K has $\sup A$). Besides, we have the following equivalences by means of cuts of K. Here, a map means a continuous function defined on a closed interval [a, b] in K.

(Theorem): ([T2]) For an ordered field K, K is $\mathbf{R} \Leftrightarrow \operatorname{Any} \operatorname{map}$ to K is bounded and K is Archimedian $\Leftrightarrow \operatorname{Any} \operatorname{map}$ to \mathbf{R} is bounded $\Leftrightarrow \operatorname{For} \operatorname{any} \operatorname{map} f$ to K (or \mathbf{R}), f([a,b]) has the Maxmal (minimal) value $\Leftrightarrow \operatorname{For} \operatorname{any} \operatorname{map} f$ to K (or \mathbf{R}), f([a,b]) = [f(a),f(b)] if $f(a) \leq f(b) \Leftrightarrow \operatorname{Any} \operatorname{differentiable} \operatorname{map} \operatorname{to} K$ satisfies the Rolle's theorem $\Leftrightarrow \operatorname{Any} \operatorname{bounded} \operatorname{map} \operatorname{to} K$ is integrable.

Proposition 6. For a space X, the following are equivalent.

- (a) X is a locally separable, metrizable, suborderable space.
- (b) X is the topological sum of subspaces of \mathbb{R} .

Proposition 7. Let X be a separable connected space, and let c(X) be a compactification of X. Then, (a) \Leftrightarrow (b), and (b) \Rightarrow (c) hold.

- (a) c(X) is orderable.
- (b) $c(X) \cong [0,1]$.
- (c) X is homeomorphic to an interval of R, and $|c(X) X| \leq 2$

Remark 8. The implication (c) \Rightarrow (a) (or (b)) in Proposition 7 doesn't hold. (In fact, put $c(\mathbf{R}) = \alpha(\mathbf{R})$, then $|c(\mathbf{R}) - \mathbf{R}| = 1$, but $c(\mathbf{R}) \cong S^1$ is not orderable (by Example 1(1))).

Lemma 8. ([Sh]) Let (X, \leq) and (Y, \preceq) be connected LOTS. For a homeomorphism $f: X \cong Y$, (a) or (b) below holds.

- (a) For all $x, y \in X, x < y$ iff $f(x) \prec f(y)$.
- (b) For all $x, y \in X, x < y$ iff $f(y) \prec f(x)$.

Theorem 9. ([Sh]) Let X be a connected LOTS, and let c(X) be a compactification of X. Then the following are equivalent.

- (a) c(X) is orderable.
- (b) $c(X) \cong X^{+} (= X \cup \{\pm \infty\})$
- Remark 9. (1) The connectedness of X in Theorem 9 is essential. (In fact, for a case $c(X) = \alpha(X)$ (resp. $c(X) = \beta(X)$), see Example 2 (resp. Example 3(2))).
- (2) Let c(X) be a linearly ordered compactification of a connected LOTS X such that $|c(X) X| \leq 2$. If $c(X) = \beta(X)$, then c(X) is orderable (by Corollary 19), however, if $c(X) = \alpha(X)$, c(X) need not be orderable (by Remark 8).

For the following lemma, refer to [GJ], [E], or [T1]. Recall that a space X has countable tightness (abbreviated $t(X) \leq \omega$) if, whenever $x \in clA$, there exists a countable subset C of A with $x \in clC$.

- **Lemma 10**. (1) Let X be a normal space. If X is not countably compact, then $\beta(X) X$ contains a copy of $\beta(N)$ as well as $\beta(N) N$.
- (2) $\beta(\mathbf{N})$ is neither hereditarily normal nor hereditarily countably paracompact, in particular, $\beta(\mathbf{N})$ is not orderable. Also, $|\beta(\mathbf{N})| = 2^c$ $(c = 2^{\omega})$, and $t(\beta(\mathbf{N})) > \omega$.

Lemma 11. For a suborderable space X, as is known, the following hold.

- (1) If X is countably compact, then X is sequentially compact.
- (2) If $t(X) \leq \omega$, then X is first countable, thus, every countably compact subset is closed.

Proposition 12. ([VRS]) Let $\beta(X)$ be orderable. Then X is countably compact, hence sequentially compact.

Corollary 13. Let $\beta(X)$ be orderable. Then X is compact if (a) or (b) below holds. (For F-spaces and P-spaces, see [GJ]).

- (a) $\beta(X)$ has countable tightness.
- (b) X satisfies one of the following properties: Paracompact space; Real-compact space; Separable space; F-space.

For a GO-space (X, \leq) , define a subset X^{\sharp} of $X^+ \times \{0, \pm 1\}$ by the following. Let X^{\sharp} be a LOTS having the order topology defined by the lexicographic

order on X^{\sharp} .

 $X^{\sharp} = (X \times \{0\}) \cup \{\langle MaxA, 1 \rangle : (A|B) \text{ is a } pseudo\text{-}gap \text{ of } X \text{ having } MaxA\} \cup \{\langle minB, -1 \rangle : (A|B) \text{ is a } pseudo\text{-}gap \text{ of } X \text{ having } minB\} \cup \{\langle c, 1 \rangle, \langle c, -1 \rangle : c = (A|B) \text{ is a } gap \text{ of } X\} \cup \{\langle \pm \infty, 0 \rangle\}.$

Namely, $X^{\sharp} = \widetilde{X} \cup \{\langle c, 1 \rangle, \langle c, -1 \rangle : c = (A|B) \text{ is a } gap \text{ of } X\} \cup \{\langle \pm \infty, 0 \rangle\}$. Obviously, if X has no gaps, $X^{\sharp} = X^{+}$. If X has a gap, then X^{\sharp} is not minimal (in the sense of Remark 2).

Proposition 14. Let (X, \leq) be a GO-space. Then the following hold.

- (1) X^{\sharp} and X^{+} are linearly ordered compactfications of X, as well as X.
- (2) X^{\sharp} is connected $\Leftrightarrow \beta(X)$ is connected $\Leftrightarrow X$ is connected. While, X^{+} is connected $\Leftrightarrow X$ has no jumps and no pseudo-gaps.
- (3) X^{\sharp} is metrizable $\Leftrightarrow X$ is a separable metrizable space having at most countably many gaps $\Leftrightarrow X$ is a separable metrizable space with $|X^{\sharp} X| \leq \omega$.

Lemma 15. For a countably compact GO-space (X, \leq) , the following (1) and (2) hold.

- (1) For every continuous real-valued function f on X, there exist $a, b \in X$ with $a \leq b$ such that f is constant on $R_b = \{x \in X : x \geq b\}$, and on $L_a = \{x \in X : x \leq a\}$.
- (2) Every continuous real-valued function f on X can be continuously extendable over X^{\sharp} (hence, $\beta(X) \cong X^{\sharp}$).

(In fact, for (1), assuming X has no Maximal point, we show that each real valued function f on X is constant on some R_b as in the poof of the Vickery's result on the ordinal space $[0, \omega_1)$ (see [D; p.81], etc.). For (2), note that for a cut c = (A|B) of X, A and B are clopen in X (so, they are countably compact GO-spaces) if c is a gap, a pseudo-gap, or a jump. Then, using (1), we can define a continuous extension F of f over X^{\sharp} naturally).

Theorem 16¹. Let (X, \leq) be a GO-space. Then following are equivalent.

- (a) $\beta(X)$ is orderable.
- (b) X is countably compact (equivalently, sequentially compact).
- (c) $\beta(X) \cong X^{\sharp}$.
- (d) $\beta(X)$ is a linear ordered compactification of X.
- (e) $\beta(X)$ is orderable with $\beta(X) \cong \beta(X)$.
- (f) $\beta(X) \cong \beta(\widetilde{X}) \cong X^{\sharp}$.

¹S. Purisch [P] (resp. R. Kaufman [Ka]) has already proved that the equivalence (a) ⇔ (b) for a GO-space (resp. LOTS) holds by a different proof.

Corollary 17. For a GO-space X, let $R(X) = \beta(X) - X$ be the remainder of $\beta(X)$. Then the following are equivalent.

- (a) $\beta(X)$ is orderable.
- (b) R(X) is suborderable.
- (c) R(X) is hereditarily normal.
- (d) R(X) is hereditarily countably paracompact.
- (e) R(X) contains no copy of $\beta(N)$.

Corollary 18. For a GO-space X, $\beta(X)$ is orderable if R(X) satisfies one of the following properties: $|R(X)| < 2^c$; $t(R(X)) \le \omega$; Each point of R(X) is a G_{δ} -set in R(X).

Corollary 19. For a conected LOTS X, the following are equivalent.

- (a) $\beta(X)$ is orderable.
- (b) $|R(X)| \leq 2$.
- (c) $\beta(X) \cong X^{+} (= X \cup \{\pm \infty\}).$

Corollary 20. For a GO-space X, $\beta(X) \cong X^+ \Leftrightarrow X$ is a countably compact space with $X^{\sharp} \cong X^+$.

Corollary 21. For GO-spaces (X, \leq) and (Y, \preceq) with $X \cong Y$, if X is countably compact, then $X^{\sharp} \cong Y^{\sharp}$.

Remark 10. (1) In Theorem 16, even if $\beta(\widetilde{X})$ is orderable with $\beta(\widetilde{X}) \cong X^{\sharp}$, $\beta(X)$ need not be orderable (by Example 3(1)). Note that, for a GO-space Y, if $\beta(Y)$ is orderable, then so is $\beta(\widetilde{Y})$, but the converse doesn't hold.

- (2) In Corollary 17, we can replace "R(X)" by " $\beta(X)$ ". We can't omit "hereditarily" in (c) and (d). (In fact, let X be a GO-space which is locally compact, in particular, connected, but X is not countably compact).
- (3) (i) Related to Corollary 18, as a special case, the following holds ². For |R(X)| = 1, X is orderable iff $\beta(X)$ is orderable. But, for |R(X)| = 2, the " if " part need not hold (by Example 3(2)).
- (ii) For Corollary 18, even if $|R(X)| = 2^c$, $\beta(X)$ need not be orderable. (In fact, let X be a GO-space which is separable, but not compact).

The author has the following question³: Is there a GO-space X such that $|R(X)| = 2^c$, but $\beta(X)$ is orderable (equivalently, X is countably compact)?

(4) In Corollary 19, for the implications (a) \Rightarrow (b) or (c), and (b) \Rightarrow (c), the connectedness of X is essential (by Example 3(2)). Also, in Corollary 21, the countable compactness of X is essential (by Example 2).

²K. Miyazaki announced this fact (with a different proof).

³N. Kemoto gave an affirmative answer to this question (in general, for any cardinal κ with $cf\kappa \geq \omega_2$, there exists a countably compact GO-space X with $|R(X)| = \kappa$) in [K2].

- Example 3. (1) Let $X = [0,1] \cup (2,3]$. Then X is a GO-space by the usual topology (also, X is orderable). Then, $\widetilde{X} = X^{\sharp} = X^{+} = X \cup \{\langle 1,1 \rangle\}$ is a compact LOTS. Thus, $\beta(\widetilde{X}) = X^{\sharp}$ is orderable. But, $\beta(X)$ is not orderable (by Proposition 11).
- (2) Let Ω be the Long line; that is, Ω is a space $(\Omega, \tau(\leq), \leq)$ obtained by replacing all jumps in the ordinal space $[0, \omega_1)$ by the closed intervals, where \leq is the obvious order. Then Ω is a connected and countably compact LOTS, but Ω is neither separable nor compact. Also, $\alpha(\Omega) \cong \beta(\Omega) \cong \Omega^+ = \Omega \cup \{+\infty\}$ (by means of Lemma 15).
- (i) Define $(-\Omega)$ by a LOTS $(\Omega, \tau(\leq'), \leq')$, but \leq' is defined as follows: x' <' x if x < x'. Let $\Sigma = (-\Omega) \cup \Omega$ be a LOTS defined by an order \preceq : $x \prec x'$ if x <' x' in $(-\Omega)$, $y \prec y'$ if y < y' in Ω , and $x \prec y$ if $x \in (-\Omega)$ and $y \in \Omega$. Then, Σ is a countably compact, connected space having no Maxmal point and no minimal point. Let T be the topological sum of (Σ, \preceq) and a point $+\infty$. Let τ be the topology of the space T, and define the obvious order \preceq' of T with the Maximal point $+\infty$. Then (T, τ, \preceq') is a countably compact GO-space which is not orderable, and $\beta(T) \cong T^+ = T \cup \{\pm \infty\} \cup \{\langle +\infty, -1 \rangle\}$ (hence, |R(T)| = 2).
- (ii) For $n \in N$ $(n \neq 1)$, let X be the topological sum of n many LOTS (Σ, \preceq) . Then X is a countably compact disconnected LOTS having gaps but no jumps. Then, X^+ is a connected space with $|X^+ X| = n + 1$. While, $\beta(X)$ is a disconnected space with $|\beta(X) X| = 2n$. Thus, $\beta(\Gamma)$ is orderable such that $|\beta(X) X| = 2n$ $(|X^+ X| = n + 1)$, but $\beta(X) \not\cong X^+$.
- (iii) Let $\Gamma = \Omega \cup (-\Omega)$ be a LOTS defined by a similar way as Σ . Then Γ is a countably compact space having only one gap $\omega_1 = (\Omega | (-\Omega))$ and no jumps. Then, $\Gamma^+ = \Gamma \cup \{\omega_1\}$ is connected. While, $\beta(\Gamma) \cong \Gamma \cup \{\langle \Omega, \pm 1 \rangle\}$ is disconnected. Hence, $\beta(\Gamma)$ is orderable, but $\beta(\Gamma) \not\cong \Gamma^+$.

Acknowlegement. The author would like to thank Professors N. Kemoto and T. Miwa for their valuable suggestions.

REFERENCES

- [D] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1967.
- [E] R. Engelking, General Topology, PWN-Polish Scientific Pub. Warszawa, 1977.
- [GJ] L. Gillman and M. Jerison, Rings of continuous functions, van Nostrand, Princeton, 1960.
- [Ka] R. Kaufman, Ordered sets and compact spaces, Colloquim Math., 17(1967), 35-39.

- [K1] N. Kemoto, Normality of products of GO-spaces and cardinals, Topology Proc., 18(1993), 133-142.
 - [K2] N. Kemoto, personal communication.
- [LiSaT], C. Liu, M. Sakai, and Y. Tanaka, Orderability of topological groups and biradial spaces, to appear in Questions and Answers in General Topology, 19(2001).
- [L] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math., Warszawa, 1971, 1-36.
- [MK] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-spaces, Topology and Appl., 54(1993), 133-140.
- [N] J. Nagata, Moderan General Topology, North-Holland, Amsterdam, Newyork, Oxford, 1983.
- [P] S. Purisch, On the orderability of Stone-Čech compactifications, Proc. Amer. Math. Soc., 1973, 55-56,
- [Sh] T. Shinoda, Linearly ordered topological spaces and their generalization, Master-thesis (Tokyo Gakugei univ.) 2000, 1-55.
- [T1] Y. Tanaka, On closedness of C- and C^* -embeddings, Pacific J. Math., 68(1977), 283-292.
- [T2] Y. Tanaka, Ordered fields and the axiom of continuity, Bull. Tokyo Gakugei Univ., Sect. 4, 46(1994), 1-6.
- [VRS] M. Venkataraman, M. Rajagopalan and T. Soundararajan, Orderable spaces, Gen. Topology and Appl., 2(1972), 1-10.

Department of Mathematics, Tokyo Gakugei University, Koganei, Tokyo, 184-8501, JAPAN

e-mail address: ytanaka@u-gakugei.ac.jp