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Continuous maps of dendrites with finite branch points
and nonwandering sets
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1 Introduction.

Let f be a continuous map from a dendrite X to itself, Q(f) the set of nbnwandering points for
f, P(f) the set of periodic points of f and EP(f) and EP(f) the set of eventually periodic points
of f and the closure of it, respectively. When X is the interval, in [B], L. Block investigated (2( )

and P(f) and showed the followings :

(1) If Q(f) is finite, then we have Q(f) = P(f) and
(2) &f) C EP(f).

Then, after about 20 years, H. Hosaka and H. Kato examined dendrites and in [HK], they proved
that (1) and (2) satisfy when X is a tree. And they constructed two dendrites X;, X, and two
maps g1 : X1 = X1,92 : X2 — X such that Q(g;) is finite, Q(g1) # P(g1), and (g2) € EP(g,).
Since the sets of branch points of X; and X, are infinite, T. Arai asks the following question :
When the set of branch points of X is finite, do (1) and (2) hold good?

In [HK], they proved many lemmas to show the above (1). An important Lemma 2.6 in many
lemma is able to be extended from a tree to a dendrite with finite branch points.

Theorem 1 (Invariance of the unstable manifold) Let f be a map from a dendrite X with finite
branch points to itself and p a periodic point of f. If W(p, f) is the unstable manifold of p, then

But, for dendrites with finite branch points which are not trees, the above (1) doesn’t always

come into being.

Example. Let S be a subspace {re?® : n =1,2,---,0 = 2r/n and 0 < r < 1/n} of the complex
plane. For each m > n, there exists a continuous map fmn : S — S such that |Q(fm,n)| = m and

[P(fmn)| = n.
But, even if X has finite branch points, the above (2) satisfies.
Theorem 2 Let f be a map from a dendrite X with finite branch points to itself. Then Q(f) C
EP(f).
2 Notations and definitions.

Let X be a compact metric space and f a continuous map of X into itself. We denote the n-fold
composition of f with itself by fo---o f. Let f° denote the identity map. A point z € X is a



periodic point of period n > 1 for f if f™(x) = x. The least positive integer n for which f*(z) =z
is called the prime period of z. Especially, z € X is a fixed point for f if n=1. A point z € X is
an eventually periodic point of period n for fif there exists m > 0 such that f**(z)=f%(z) for all
i > m. That is, fi(z) is a periodic point of period n for i > m. A point z € X is nonwandering
point for fif for any open set U containing z there exist y € U and n > 0 such that f*(y) € U.

We denote the set of fixed points for f, periodic points for f, eventually periodic points for f,
and nonwandering points for f by F(f), P(f), EP(f) and Q(f), respectively. And A denotes the
closure of a set A. Notice that P(f) C Q(f), P(f) C EP(f), f(P(f)) C P(f), f(Q(f)) c Q)
and Q(f) is closed. :

An arc is any space which is homeomorphic to the closed interval [0,1]. A continuum is
nonempty, compact and connected metric space. A graph is a continuum which can be written as

the union of finitely many arcs any two of which are disjoint or disintersect only in one or both'

of their end points. From now on, X denotes a tree by which we mean a graph which contains no
simple closed curve. A dendrite is a locally connected, uniquly arcwise connected continuum. We
say subcontinuum A of a continuum X is of order less than or equal to 8 in X, written Ord(A4, X)
< B, provided that for each open subset U of X with A C U there exist an open subset V of X
such that A C V C U and |Bd(V)| < 3, where Bd(V) means the boundary of V. We say that A
is of order 8 in X, written Ord(4, X) = 3, if Ord(4, X) < 8 and Ord(4, X) £ « for any cardinal
number a < 3. A point z € X is called a branched point of X provided that Ord(z,X) > 3. Let
B ={b1,b2, ...,b,} be the set of branched points of a dendrite X. For x € X \ B, there exists an
open neighborhood V' of z such that V' is homeomorphic to (0, 1) or (0, 1].
And the unstable manifolds W (p, f) for some periodic point p is as follows: ‘

W(p, f) = {z € X | for any neighborhood Vof p,z € f*(V) for some n > 0}

Let X be a dendrite and Y a subspace of X. We denote the minimal connected set containing ¥’
by [Y]. Particularly, if Y = {z,y}, then write [Y] = [z, y].

3 Lemmas.

By the proof of {Y, Lemma 2.8], we have the following.

Lemma 1 Let X be a dendrite, f a continuous map from X into itself and X \ B = ﬂ;‘;l L. If
an open interval J C I; for some j = 1,2,--- satisfies JN P(f) = 0, then JN fA(JNQ(f)) =0
for any positive integer n.

By the proof of [HK, Lemma 2.4], we have the following.

Lemma 2 Let f be a continuous map from a dendrite X to itself and p a fized point of f. Then
W (p, f) is connected.

Lemma 3 Let f be a continuous map from a dendrite X with finite branch points to itself and p
a fized point of f. Then f(W(p, f)) = W(p, f).
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Proof. By the definition, we see that f(W (p, f)) C W(p, f). We show that f(W(p, f)) D W(p, f). .

It suffuices to show that f~1(z) N W(p, f) # 0 for each z € W(p, f). We suppose that f~1(z) N
W(p, f) = 0 for some z € W(p, f).



Since z € W (p, f), there exist an increasing sequence ny,ny,--- and z; € X(i = 1,2,---) such
that f™(z;) = z for each i = 1,2,--- and =; — p(i = oo). We notice that ¥ = {f™"(z;) :
i=1,2,---} C f~(2). We suppose that |{i : y = f™~!(z;)}| = oo for some y € f~*(z). Since
p is a fixed point of f, we have y € W(p, f) and this is a contradiction. We may assume that
fril(z;) # f~1(z;)(i # j). Moreover we may assume that y; = f™ ! (z;) = zo(i = 00)-

Since f~1(z) is closed, we have o € f~*(z). We suppose that zo € W (p, f). Since p is a fixed
point of f, Y NW (p, f) = ® and W (p, f) is connected, we have zo € ;2 [p,¥:] C W (p, f) and this
is a contradiction. We may assume that zo & W (p, f). We have that Y U {zo} is contained in a
component C of X\W (p, f). There exists the component Cy of C'\{zo} such that ConW(p, f) # 0.
If Co NY is finite, we have zo € W(p, f) and a contradiction. We may assume that Co NY is
infinite. But since y; = zo(i = 00), Y N [p, zo) N Cp is infinite and is contained in W (p, f). This

is contadiction.
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Lemma 4 Let f be a continuous map from a dendrite X to itself and p a point of X with
f*(p) = p(n > 1). Then f(W(p, f)) = W(f(p), f")-

Proof. By the definition, we have f(W(p, f*)) C W(f(p),f*). Thinking of p as *(p)
(k = 1,2,---,n), we have f(W(f*(p), ")) C W(f**'(p), f*). We see that f*(W(f(p),f")) C
YW (A p), ) C - C FW(f™(p), ) = F(W(p, f™)). Since f(p) is a fixed point of f*,
by Lemma 3, we have that f*(W(f(p), f™) = W(f(p), f*). Thus it holds that W(f(p), f*) C
F(W(p, f*)). We conclude that f(W(p, f™)) = W(f(p), f").

4 Proofs.

Proof of Theorem 1. Let p be an n-periodic point of f. We have

FW (o, £)) |

= f(W(p, f) U F(W(f(D), f))U--- FW (f*~(p), f*)) (by [HK Lemma 2.5])
=W(f(p), fHYUW(f*(p), fr)U---W(f"(p), f*) (by Lemma 4)

= f(W(p, f)) (by [HK,Lemma 2.5])

In [HK, Example 1.5], for each point p € P(g1) we have f(W(p, f)) = W(p, ).
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Question. Let f be a map from a dendrite X to itself and p a periodic point of f. Do we have

fWe f)=W(p,f)?

Example. Let S be a subspace {re? : n = 1,2,---,8 = 2r/n and 0 < r < 1/n} of the
complex plane. Take integers m > n. We construct a continuous map fn,, : S — S such that
|Q(fm,n)| = m and |P(fm,n)| = n. '

First, we construct a continuous map f : S — S such that Q(f) = {(0,0),(1/2,0)} and
P(f) = {(0,0)}. Denote I, = {re?™/" : 0 < r < 1/n} C S, Jo = {(z,0) : 1/2+1/2n < z <
1/2+1/2(n— 1)} for each n = 2,3,--- and J = {(2,0) : 1/2 < z < 1} = oo, Jn-
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Define f({(z,0) : 0 <z <1/20rz=1/2+1/2n for each n = 2,3,---}) = {(0,0)}, f(In) = In—1
for each n > 2, f(I,) = {(z,0) : 0 < z < 1/2} and f(J,) = I, for each n = 2,3,---. Since
f*(I.) = {(0,0)} for each n = 2,3, - -, we have Q(f) NI, = {(0,0)} for each n =2,3,---. And we
see that Q(f) N {(z,0): 0 < = < 1/2} = {(1/2,0)}. -

Since f™(J)NJ = @ for each m > 1, we have Q(f) N J, = 0. We conclude that Q(f) =
{(0,0),(1/2,0)} and P(f) = {(0,0)}.

There exists a continuous map g : [0, 1] — [0, 1] such that Q(g) = P(g) = {0,1}. See Figure 3.
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Denote the space S Ug,0)=0 [0, 1] attached by a point (0,0) of S and a point 0 of [0, 1]. We see that
S U(0,0)=0 [0, 1] is homeomorphic to S. Define f32 = fUg: S U,0)=0 [0, 1] = S U(o,0)=0 [0, 1]. We
have |Q(fs2)| = 3 and |P(fs2)| = 2. ’
Denote the space S U(g,0)=(0,0) S attached by a point (0,0) of S and a point (0,0) of an another
spase S. We see that SU(g,0)=(0,0) S is homeomorphic to S. Define f31 = fU f : SU(0,0)=(0,0) S =
SU(0’0)=(0’0) S. We have |Q(f3’1)| =3 and |P(f3,1)| =1.
By the above, we have a continuous map f,, », : S = S such that [Q(fm,»)| = m and |P(fm n)| =

n.

Proof of Theorem 2. We suppose that Q(f) ¢ EP(f), ie. VNQ(f) # 0, where V =
X \ EP(f). Let z be an element of V N Q(f) and W the component of V containing z. Since
V is open, W is a neighborhood of z. Since z € Q(f), there exists a positive integer n such that
fP(W)NW # 0. Denote g = f™ and T = |2, ¢°(W) which is connected containing z. We see
that Y = {g*(z) : 4 =0,1,---} C T D ¢(T), that TN EP(f) = 0 and that T is a dendrite. )

Let B be the set of branch points of X. By [HK, Theorem 1.2], we may assume that U;f’_:l I'=
T\ B, where each I; is a component of T \ B. If there exist disjoint integers 4,42 and j =0,1,---
such that g*(z), g% (z) € I;, by Lemma 1, then I; N P(f) # 0 and we have a contradiction. We
may assume that |Y N I;| < 1 for each j. This shows that Y \Y C BNT. Since g(Y) C Y and
gY)CY,wehave g(Y \Y)CY\Y.

We have n(1) < n(2) < --- and b € BNT that [Y N I,;| = 1 for each j and that {b} =
N2y In(j)- Since B is finite, we have b ¢ Y and b € EP(f). And since [Y' N I,(;)| = 1 for each j
and {b} = (\;2; In(j), We have b € T. This contradicts because T N EP(f) = 0.
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