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1. Introduction

By a space we mean a topological space and $\gamma$ denotes an infinite cardinal.
Let $X$ be a space and $A$ a subspace of $X$ . By Shapiro [13], $A$ is said to be
$P^{\gamma}$-embedded in $X$ if every $\gamma$-separable continuous pseudo-metric on $A$ can
be extended to a continuous pseudo-metric on $X$ . A subspace $A$ is said to be
$P$-embedded in $X$ if $A$ is $P^{\gamma}$-embedded in $X$ for every $\gamma$ . Recently, Dydak [5]
defined that $A$ is $P^{\gamma}(\iota_{oC}a\iota\iota_{yfi}-nite)$-embedded in $X$ if for every locally finite
partition of unity $\{f_{\alpha} : \alpha\in\Omega\}$ on $A$ with $|\Omega|\leq\gamma$ , there exists a locally
finite partition of unity $\{g_{\alpha} : \alpha\in\Omega\}$ on $X$ such that $g_{\alpha}|A=f_{\alpha}$ for every
$\alpha\in\Omega$ . A subspace $A$ is said to be $P(\iota_{oC}a\iota\iota_{yfi}-nite)$-embedded in $X$ if $A$ is
$P^{\gamma}$ (locally-finite)-embedded in $X$ for every $\gamma$ . . .

It was proved in [5] that $P^{\gamma}$ (locally-finite)-embedding implies $P^{\gamma}$-embedding.
This fact is also verified from characterizations of $P^{\gamma}$-embedding and $P^{\gamma}$ (locally-
$\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})-\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ as the following. On Theorem 1.1, (1) $\Leftrightarrow(2)$ is well-known
(cf. [1]), and (1) $\Leftrightarrow(3)$ is in [5] or [11].

Theorem 1.1 ([1], [5], [11]). For a space $X$ and a subspace $A$ of $X$ , the
following statements are equivalent:

(1) $A$ is $P^{\gamma}$ -embedded in $X$ ;
(2) for every locally finite cozero-set cover $\{U_{\alpha} : \alpha\in\Omega\}$ ofA $with|\Omega|\leq\gamma$,

there exists a locally finite cozero-set cover $\{V_{\alpha} : \alpha\in\Omega\}$ of $X$ such that
$V_{\alpha}\cap A\subset U_{\alpha}$ for every $\alpha\in\Omega$ ;

(3) for every locally finite partition of unity $\{f_{\alpha} : \alpha\in\Omega\}$ on $A$ with $|\Omega|\leq$

$\gamma$ , there exists a (not necessarily locally finite) partition of unity $\{g_{\alpha} : \alpha\in\Omega\}$

on $X$ such that $g_{\alpha}|A=f_{\alpha}$ for every $a\in\Omega$ .

Theorem 1.2 ([14]). For a space $X$ and a subspace $A$ of $X$ , the following
statements are equivalent:

(1) $A$ is $P^{\gamma}(\iota_{oC}a\iota\iota_{yfi}-nite)$ -embedded in $X$ ;
(2) for every locally finite cozero-set cover $\{U_{\alpha} : \alpha\in\Omega\}$ of $A$ with $|\Omega|\leq\gamma$ ,

there exists a locally finite cozero-set cover $\{V_{\alpha} : \alpha\in\Omega\}$ of $X$ such that
$V_{\alpha}\cap A=U_{\alpha}$ for every $\alpha\in\Omega$ .

Notice that the space $Z$ given in [11, Example 3] admits a P- but not
$P^{\omega}$ (locally-finite)-embedded subspace (cf. [14]).
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, The first purpose of this talk is to characterize $P^{\gamma}$-embedding under the
viewpoint of exactly extending cozero-set covers such as in Theorem 1.2. The
second one is to investigate for $P^{\omega}$ (point-finite)-embedding (see Section 3 for
the definition) under the same viewpoint to Theorem 1.2, and apply it to
prove that the rationals $\mathbb{Q}$ of the Michael line $\mathbb{R}_{\mathbb{Q}}$ is not $P^{\omega}(\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})-$

embedded in $\mathbb{R}_{\mathbb{Q}}$ .
A collection $\{f_{\alpha} : a\in\Omega\}$ of continuous functions $f_{\alpha}$ : $Xarrow[0,1]$ , $a$ $\in\Omega$ ,

is said to be a partition of unity on $X$ if $\sum_{\alpha\in\Omega}f_{\alpha}(X)=1$ for every $x\in X$ . A
partition of unity $\{f_{\alpha} : a\in\Omega\}$ on $X$ is said to be locally finite (resp. point-
finite [5], or uniformly locally finite) if $\{f_{\alpha}^{-1}((0,1]) : \alpha\in\Omega\}$ is locally finite
(resp. point-finite, or uniformly locally finite) in $X$ . Here, a collection $\mathcal{F}$ of
subsets of $X$ is said to be uniformly locally finite (resp. uniformly discrete)
in $X$ if there exists a normal open cover $\mathcal{U}$ of $X$ such that every $U\in \mathcal{U}$ meets
at most finitely many members (resp. at most one member) of $F([9],$ $[10]$ ,
[3] $)$ .

2. Exact extension.s of cozero-set covers and P-embedding

Our main result in this section is the following; A16-Shapiro proved in [1] the
equivalence (1) $\Leftrightarrow(3)$ assuming that $X$ is normal and $A$ is closed in $X$ .

Theorem 2.1 (Main). For a space $X$ and a subspace $A$ of $X$ , the following
statements are equivalent:

(1) $A$ is $P^{\gamma}$ -embedded in $X$ ;
(2) for every uniformly locally finite partition of unity $\{f_{\alpha}i. \alpha\in\Omega\}$

on $A$ with $|\Omega|\leq\gamma$ , there exists a uniformly locally finite partition of unity
$\{g_{\alpha} : a\in\Omega\}$ on $X$ such that $g_{\alpha}|A=f_{\alpha}$ for every $a\in\Omega$ ;

(3) for every uniformly locally finite cozero-set cover $\{U_{\alpha} : a\in\Omega\}$ of $A$

with $|\Omega|\leq\gamma$ , there exists a uniformly locally finite cozero-set cover { $V_{\alpha}$ : $a\in$

$\Omega\}$ of $X$ such that $V_{\alpha}\cap A=U_{\alpha}$ for every $\alpha\in\Omega$ .

We apply Theorem 2.1 to give another characterization of $P$-embedding by
exactly extending zero-set collections. Blair [3] essentially proved that: $A$

subspace $A$ of a space $X$ is $P^{\gamma}$ -embedded in $X$ if and only if for every uni-
formly discrete zero-set collection $\{Z_{\alpha} : \alpha\in\Omega\}$ of $A$ with $|\Omega|\leq\gamma$ , there
exists a uniformly discrete zero-set collection $\{F_{\alpha} : a\in\Omega\}$ of $X$ such that
$F_{\alpha}\cap A=Z_{\alpha}$ for every $a\in\Omega$ . In our case, we give the following:

Theorem 2.2. For a space $X$ and a subspace $A$ of $X$ , the following state-
ments are equivalent:

(1) $A$ is $P^{\gamma}$ -embedded in $X$ ;
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(2) every uniformly locally finite zero-set collection $\{Z_{\alpha} : a\in\Omega\}$ of $A$ with
$|\Omega|\leq\gamma$ , there exists a uniformly locally finite zero-set collection $\{F_{\alpha} : \alpha\in\Omega\}$

of $X$ such that $F_{\alpha}\cap A=Z_{\alpha}$ for every $\alpha\in\Omega$ .

As another application of Theorem 2.1, we give some results concerning
locations of spaces around functionally $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ spaces. Let $\gamma,$

$\kappa$ be infinite
cardinals. In [15], a space $X$ is said to be $(\gamma, \kappa)- Kat\check{e}t_{\mathit{0}}v$ if $X$ is normal
and for every closed subspace $A$ of $X$ and every locally finite $\kappa^{+}$-open cover
$\{U_{\alpha} : \alpha<\gamma\}$ of $A$ , there exists a locally finite $\kappa^{+}$-open cover $\{V_{\alpha} : \alpha<\gamma\}$ of
$X$ such that $V_{\alpha}\cap A=U_{\alpha}$ for every $\alpha<\gamma$ . Here, a subspace $U$ of $X$ is said
to be $\kappa^{+}$-open set if $U$ can be expressed as the union of $\kappa$ many cozero-sets
of $X$ . When $X$ is $(\gamma, \omega)- \mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ for every $\gamma,$ $X$ is said to be functionally
Kat\v{e}tov (cf. [7], [11], [15]). Similarily, when $X$ is $(\gamma, \kappa)-\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ for every

$\gamma$ and $\kappa$ (resp. $(\omega,$ $\kappa)- \mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ for every $\kappa$ , or $(\omega,$ $\omega)- \mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ ), $X$ is said
to be Kat\v{e}tov (resp. countably Kat\v{e}tov, or countably functionally $Kat\check{e}tov$).
Note that $\gamma$-collectionwise normal countably paracompactness implies being
$(\gamma, \kappa)- \mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ , and the latter implies $\gamma$-collectionwise normality (cf. [7],
[15] $)$ . Moreover they were proved in [11] that every hereditarily normal space
is countably $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{V}$, and that Rudin’s Dowker space is functionally $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{V}$

but not countably $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$. In [11], they were essentially proved that every
collectionwise normal $P$-space is functionally $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{V}$ and that every normal
$P$-space is countably functionally $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$; here a space is said to be a P-space
if every cozero-set is closed. A space $X$ is said to be hereditarily basically
disconnected if for every subspace $A$ of $X$ , the closure of a cozero-set of $A$ in
$A$ is open in $A$ .

With the aid of Theorem 2.1, we slightly generalize the result mentioned
above in the $\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}:$

. $l$

Lemma 2.3. Let $X$ be a $\gamma$ -collectionwise normal space. Assume that for
every closed subspace $A$ of $X$ , every locally finite $\kappa^{+}$ -open cover, with card
$\leq\gamma$ , of $A$ is uniformly locally finite in A. Then, $X$ is $(\gamma, \kappa)$ -Kat\v{e}tov.

Hence we have:

Theorem 2.4. Every $\gamma$ -collectionwise normal and hereditarily basically dis-
connected space is $(\gamma, \omega)$ -Kat\v{e}tov.

It also follows from Lemma 2.3 that: If $X$ is a collectionwise normal and
hereditarily extremally disconnected space, then $X$ is Kat\v{e}tov; where $X$ is
said to be hereditarily extremally disconnected if for every subspace $A$ of $X$ ,
the closure of an open set of $A$ in $A$ is open in $A$ . The auther does not know
the assumption of $X$ above implies countable paracompactness of $X$ .
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3. $P(\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}-\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$-embeddings and covers

Let $X$ be a space and $A$ a subspace of $X$ . On exactly extending partitions
of unity, consider the following conditions:

(i) for every partition of unity $\{f_{\alpha} : a\in\Omega\}$ on $A$ with $|\Omega|\leq\gamma$ , there
exists a $\mathrm{P}^{\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{o}}\overline{\mathrm{f}}}$unity $\{g_{\alpha}. a\in\Omega\}$ on $X$ such that $g_{\alpha}|A=f_{\alpha}$ for every
$\alpha\in\Omega$ ;

(ii) for every point-finite partition of unity $\{f_{\alpha} : \alpha\in\Omega\}$ on $A$ with
$|\Omega|\leq\gamma$ , there $\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\overline{\mathrm{s}\mathrm{a}\underline{\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}}}$-finite partition of unity $\{g_{\alpha} : a\in\Omega\}$ on $X$ such
that $g_{\alpha}|A=f_{\alpha}$ for every $a\in\Omega$ ;

(iii) for every locally finite partition of unity $\{f_{\alpha} : a\in\Omega\}$ on $A$ with
$|\Omega|\leq\gamma$ , there $\mathrm{e}\mathrm{x}\mathrm{i}_{\mathrm{S}}\overline{\mathrm{t}_{\mathrm{S}}}$alocally finite partition of unity $\{g_{\alpha} : \alpha\in\Omega\}$ on $X$

such that $g_{\alpha}|A=f\alpha \mathrm{y}a$for $\overline{\mathrm{e}\mathrm{V}\mathrm{e}\mathrm{r}\in\Omega\cdot,}$

(iv) for every uniformly locally finite partition of unity $\{f_{\alpha} : \alpha\in\Omega\}$

on $A$ with $|\Omega|\leq\gamma,\overline{\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}}$existsa uniformly locally finite partition of unity
$\{g_{\alpha} : a\in\Omega\}$ on $X$ such that $g_{\alpha}|A=f_{\alpha}f_{\alpha}\mathrm{f}--$for every $\alpha\in\Omega$ .

Dydak proved in [5] that (i) equals that $A$ is $P^{\gamma}$-embedded in $X$ , and The-
orem 2.1 shows that (iv) also equals that $A$ is $P^{\gamma}$-embedded in $X$ . The
condition (iii) is precisely the definition of $P^{\gamma}(1_{\mathrm{o}\mathrm{C}}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$-embedding; as
was already commented in the introduction, (iii) is strictly stronger than the
$P^{\gamma}$-embedding. By Dydak [5], the above condition (ii) is said to be that $A$

is $P^{\gamma}(p_{oi}nt-finite)$ -embedded in $X$ and it is proved in [5] that this condition
is also strictly stronger than the $P^{\gamma}$-embedding (cf. Theorem 3.4 below).

Recall Theorem 1.2 and (2) $\Leftrightarrow(3)$ of Theorem 2.1. Then, we see that
$P^{\gamma}$-embedding and $P^{\gamma}(1_{0}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$ -embedding can be stated by extensions
of cozero-set covers as well as extensions of partitions of unity. On the other
hand, for $P^{\gamma}$ (point-finite)-embedding, we have the following theorem and
examples.

Theorem 3.1 (Main). For a space $X$ and a subspace of $A$ , the following
statements are equivalent:

(1) $A$ is $P^{\omega}(point_{-finiie})$ -embedded in $X$ ;
(2) for every point-finite countable cozero-set cover $\{U_{n} : n\in \mathrm{N}\}$ of $A$ ,

there exists a point-finite countable cozero-set cover $\{V_{n} : n\in \mathrm{N}\}$ of $X$ such
that $V_{n}\cap A=U_{n}$ for every $n\in \mathbb{N}$ .

The following examples show that Theorem 3.1 need not hold on uncountable
cardinal cases.

Example 3.2. Let $\gamma$ be an uncountable cardinal. There exist a space $X$

and a closed subspace $A$ of $X$ such that every point-finite cozero-set cover
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of $A$ can be extended to a point-finite cozero-set cover of $X$ , but $A$ is not
$P^{\gamma}$ -embedded in $X$ .

Sketch of the construction. We use notations as in [2] and [8]. In particular,
we assume the uncountable set $P$ in [2] as $|P|=\gamma$ . Let $F,$ $f_{p}$ and $F_{p}$ be the
same as in [2]. Let $G$ be the space in [8], namely,

$G=F_{p}\cup$ {$f\in F:f(q)=0$ except for finitely many $q\in Q$}.
Consider the space introduced in the last part of [8, Example 2] and denote
it $X$ , namely,

$X=(F_{p}\cross\{0\})\cup(G\cross\{1/i : i\in \mathrm{N}\})$

taking as a base at a point $(y, 0)$ the sets $\{(y, \mathrm{o})\}\cup(U\cross\{1/i:i\geq j\})$ , where
$U$ is a neighborhood of $y$ in $G$ and $j\in \mathbb{N}$ , and other points be isolated. Let
$A=F_{p}\cross\{\mathrm{o}\}$ .

Example 3.3. There exist a space $X$ and a closed subspace $A$ of $X$ such that
$A$ is $P(p_{oi}nt- finite)$ -embedded in $X$ , but that $A$ has a point-finite cozero-set
cover which can no.t be extended to a cozero-set cover of $X$ .

Sketch of the construction. Consider the product space $Z=L(\omega_{1})\cross(\omega+$

1) $\cross(\omega_{2}+1)$ , where $L(\omega_{1})$ is the set $\omega_{1}+1$ taking a base at the point $\omega_{1}$ as
$\{[\beta, \omega_{1}]. \beta<\omega_{1}\}$ and other points be isolated; and $\omega+1$ and $\omega_{2}+1$ have
the usual order topology. Let $X=Z-\{(\omega_{1}, \omega,\omega_{2})\}$ and $A=L(\omega_{1})\mathrm{x}(\omega+$

1) $\mathrm{x}\{\omega_{2}\}-\{(\omega_{1}, \omega, \omega_{2})\}$ a subspace of $X$ .

We give an application of Theorem 3.1. Let $\mathbb{R}_{\mathbb{Q}}$ be the Michael line and
$\mathbb{Q}$ be the rationals. Dydak commented in [5] that “we do not know if $\mathbb{Q}$ is
$P(\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}-\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$ -embedded in $\mathbb{R}_{\mathbb{Q}}$

” and contstructed his own example of a P-
embedding which is not $P(\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}-\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$ -embedding. Answering his question,
we have the following:

Theorem 3.4. $\mathbb{Q}$ is not $P^{\omega}$ (point-finite)-embedded in $\mathbb{R}_{\mathbb{Q}}$ .

Finally we give a result that three extension properties equal under a
condition only for the subspace $A$ .

Theorem 3.5. Let $X$ be a space, $A$ a subspace of $X$ and $\gamma$ an infinite
cardinal. If $A$ is a $P$ -space, then the following statements are equivalent:

(1) $A$ is $P^{\gamma}$ -embedded in $X$ ;
(2) $A$ is $P^{\gamma}(\iota_{oCa}l\iota y-finite)$ -embedded in $X$ ;
(3) $A$ is $P^{\gamma}$ (point-finite)-embedded in $X$ .

Note that every closed subspace of Rudin’s Dowker space is $P(\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})-$

embedded; it can be proved by combining some results in [5], [6] and [12].
This fact can also be seen by the above theorem directly.
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