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Extensions of partitions of unity and covers
PR - HF%R LUBF R (Kaori Yamazaki)

1. Introduction

By a space we mean a topological space and v denotes an infinite cardinal.
Let X be a space and A a subspace of X. By Shapiro [13], A is said to be
P7-embedded in X if every vy-separable continuous pseudo-metric on A can
be extended to a continuous pseudo-metric on X. A subspace A is said to be
P-embedded in X if A is P"-embedded in X for every . Recently, Dydak [5]
defined that A is P(locally-finite)-embedded in X if for every locally finite
partition of unity {f, : & € Q} on A with || < v, there exists a locally
finite partition of unity {g, : @ € Q} on X such that g,|A = f, for every

a € €. A subspace A is said to be P(locally-finite)-embedded in X if A is
P"Y (locally-finite)-embedded in X for every 1.

It was proved in [5] that P?(locally-finite)- embeddmg implies P”’-embeddmg
This fact is also verified from characterizations of P?-embedding and P”(locally-
finite)-embedding as the following. On Theorem 1.1, (1) < (2) is well-known
(cf. [1]), and (1) & (3) is in [5] or [11]. '

Theorem 1.1 ([1], [5], [11]). For a space X and a subspace A of X, the
following statements are equivalent:

(1) A is P"-embedded in X;

(2) for every locally finite cozero-set cover {U, : a e Q} of A with |Q] < 7,
there exists a locally finite cozero-set cover {V, : a € Q} of X such that
VaNACU, for every a € Q;

(3) for every locally finite partition of unity {f,: o € Q} on n A with 1] <
v, there exists a (not necessarily locally finite) partition of unity {g, : @ € Q}
on X such that g,|A = fo for every a € .

Theorem 1.2 ([14]). For a space X and a subspace A of X, the following
statements are equivalent:

(1) A is P"(locally-finite)-embedded in X;

(2) for every locally finite cozero-set cover {U a€Q} of A with |Q] <7,
there exists a locally finite cozero-set cover {V, : oo € Q} of X such that
Vo N A =U, for every a € §).

Notice that the space Z given in [11, Example 3] admits a P- but not
P“(locally-finite)-embedded subspace (cf. [14]).



~ The first purpose of this talk is to characterize P”-embedding under the
viewpoint of exactly extending cozero-set covers such as in Theorem 1.2. The
second one is to investigate for P*(point-finite)-embedding (see Section 3 for
the definition) under the same viewpoint to Theorem 1.2, and apply it to
prove that the rationals Q of the Michael line Rg is not P“(point-finite)-
embedded in Rg.
A collection {f, : @ € Q} of continuous functions f, : X — [0,1], a € Q,
is said to be a partition of unityon X if 3 o fo(z) =1foreveryz € X. A
partition of unity {f, : @ € 2} on X is said to be locally finite (resp. point-
finite [5], or uniformly locally finite) if {f;1((0,1]) : @ € Q} is locally finite
(resp. point-finite, or uniformly locally finite) in X. Here, a collection F of
subsets of X is said to be uniformly locally finite (resp. uniformly discrete)
in X if there exists a normal open cover U of X such that every U € U meets
at most finitely many members (resp. at most one member) of F ([9], [10],

[31)-

56

2. Exact extensions of cozero-set covers and P-embedding

Our main result in this section is the following; Ald-Shapiro proved in [1] the
equivalence (1) < (3) assuming that X is normal and A is closed in X. -

Theorem 2.1 (Main). For a space X and a subépace A of X, the following

statements are equivalent:

(1) A is P7-embedded in X; '

(2) for every uniformly locally finite partition of unity {fo : o € Q}
on A with |Q| < v, there exists a uniformly locally finite partition of unity
{ga : @ € Q} on X such that go|A = fo for every o € Q;

(3) for every uniformly locally finite cozero-set cover {U, : o € Q} of A
with |Q] < v, there ezists a uniformly locally finite cozero-set cover {Vy : o €
Q} of X such that Vo, N A = U, for every o € Q.

We apply Theorem 2.1 to give another characterization of P-embedding by
exactly extending zero-set collections. Blair [3] essentially proved that: A
subspace A of a space X is P"-embedded in X if and only if for every uni-
formly discrete zero-set collection {Z, : o € Q} of A with || < v, there
ezists a uniformly discrete zero-set collection {F, : o € Q} of X such that
F,NA=2Z, for every a € Q. In our case, we give the following:

Theorem 2.2. For a space X and a subspace A of X, the following state-

ments are equivalent:
(1) A is P7-embedded in X;



(2) every uniformly locally finite zero-set collection {Z, : o € Q} of A with
|2 < v, there exists a uniformly locally finite zero-set collection {Fo:a€Q}
of X such that Fo N A = Z, for every a € Q.

As another application of Theorem 2.1, we give some results concerning
locations of spaces around functionally Katétov spaces. Let v,k be infinite
cardinals. In [15], a space X is said to be (v, k)-Katétov if X is normal
and for every closed subspace A of X and every locally finite k*-open cover
{Ua : @ < v} of A, there exists a locally finite £-open cover {Va:a<~v}of
X such that Vo, N A = U, for every a < . Here, a subspace U of X is said
to be kt-open set if U can be expressed as the union of x many cozero-sets
of X. When X is (v,w)-Katétov for every vy, X is said to be functionally
Katétov (cf. [7], [11], [15]). Similarily, when X is (v, k)-Katétov for every
v and £ (resp. (w,k)-Katétov for every x, or (w,w)-Katétov), X is said
to be Katétov (resp. countably Katétov, or countably functionally Katétov).
Note that y-collectionwise normal countably paracompactness implies being
(7, k)-Katétov, and the latter implies y-collectionwise normality (cf. [7],
[15]). Moreover they were proved in [11] that every hereditarily normal space
is countably Katétov, and that Rudin’s Dowker space is functionally Katétov
but not countably Katétov. In [11], they were essentially proved that every
collectionwise normal P-space is functionally Katétov and that every normal
P-space is countably functionally Katétov; here a space is said to be a PQSpace
if every cozero-set is closed. A space X is said to be hereditarily basically
disconnected if for every subspace A of X, the closure of a cozero-set of 4 in
A is open in A.

With the aid of Theorem 2.1, we slightly generalize the result mentioned
above in the following: ' '

Lemma 2.3. Let X be a vy-collectionwise normal space. Assume that for
every closed subspace A of X, every locally finite k*-open cover, with card
<7, of A is uniformly locally finite in A. Then, X is (v, k)-Katétov.

Hence we have:

Theorem 2.4. Every v-collectionwise normal and hereditarily basically dis-
connected space is (7y,w)-Katétov.

It also follows from Lemma 2.3 that: If X s a collectionwise normal and
hereditarily extremally disconnected space, then X is Katétov; where X is
said to be hereditarily extremally disconnected if for every subspace A of X ,
the closure of an open set of A in A is open in A. The auther does not know
the assumption of X above implies countable paracompactness of X.
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3. P(point-finite)-embeddings and covers

Let X be a space and A a subspace of X. On exactly extending partitions
of unity, consider the following conditions:

(i) for every partition of unity {f, : @ € Q} on A with || < v, there
exists a partition of unity {g, : @-€ Q} on X such that g,|A = f, for every
a € €

(i3) for every point-finite partition of unity {f, : @ € Q} on A with
|Q| < 7, there exists a point-finite partition of unity {g, : @ € 2} on X such
that g,|A = f, for every a € §;

(4ii) for every locally finite partition of unity {f, : o € Q} on A with
|Q| < v, there exists a locally finite partition of unity {g, : @ € @} on X
such that g4|A = f, for every o € §;

(iv) for every uniformly locally finite partition of unity {fo : @ € Q}
on A with |Q| < ~, there exists a uniformly locally finite partition of unity
{ga : @ € Q} on X such that go|A = f, for every a € Q.

Dydak proved in [5] that (i) equals that A is P"-embedded in X, and The-
orem 2.1 shows that (iv) also equals that A is P7-embedded in X. The
condition (ii7) is precisely the definition of P7(locally-finite)-embedding; as
was already commented in the introduction, (z77) is strictly stronger than the
P7-embedding. By Dydak [5], the above condition (i) is said to be that A
is P7(point-finite)-embedded in X and it is proved in [5] that this condition
is also strictly stronger than the P7-embedding (cf. Theorem 3.4 below).

Recall Theorem 1.2 and (2) < (3) of Theorem 2.1. Then, we see that
P7-embedding and P7(locally-finite)-embedding can be stated by extensions
of cozero-set covers as well as extensions of partitions of unity. On the other
hand, for P”(point-finite)-embedding, we have the following theorem and
examples.

Theorem 3.1 (Main). For a space X and a subspace of A, the following
statements are equivalent:

(1) A is P“(point-finite)-embedded in X; ‘

(2) for every point-finite countable cozero-set cover {U, : n € N} of A,
there exists a point-finite countable cozero-set cover {Vy : n € N} of X such
that V, N A = U, for everyn € N.

The following examples show that Theorem 3.1 need not hold on uncountable
cardinal cases.

Example 3.2. Let v be an uncountable cardinal. There exist a space X
and a closed subspace A of X such that every point-finite cozero-set cover
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of A can be extended to a point-finite cozero-set cover of X, but A is not
PY-embedded in X .

Sketch of the construction. We use notations as in [2] and [8]. In particular,
we assume the uncountable set P in [2] as |P| = . Let F, f, and F}, be the
same as in [2]. Let G be the space in [8], namely,

G=F,U{feF:f(q) =0 except for finitely many q € Q}.

Consider the space introduced in the last part of [8, Example 2] and denote
it X, namely, '

X =F, x{0})U(Gx{1/i:ieN})
taking as a base at a point (y, 0) the sets {(y,0)}U(U x {1/ :i > j}), where
U is a neighborhood of y in G and j € N, and other points be isolated. Let
A = F, x {0}.

Example 3.3. There ezist a space X and a closed subspace A of X such that
A is P(point-finite)-embedded in X, but that A has a point-finite cozero-set
cover which can not be extended to a cozero-set cover of X.

Sketch of the construction. Consider the product space Z = L(w;) X (w +
1) x (w2 + 1), where L(w;) is the set w; + 1 taking a base at the point w; as
{[8,w1] : B < w1} and other points be isolated; and w + 1 and w, + 1 have
the usual order topology. Let X = Z — {(wi,w,ws)} and A = L(w;) X (w +
1) x {ws} — {(w1, w,ws)} a subspace of X.

We give an application of Theorem 3.1. Let Rg be the Michael line and
Q be the rationals. Dydak commented in [5] that “we do not know if Q is
P(point-finite)-embedded in Ry” and contstructed his own example of a P-
embedding which is not P(point-finite)-embedding. Answering his question,
we have the following: ‘ '

Theorem 3.4. Q is not P¥(point-finite)-embedded in Re.

Finally we give a result that three extension properties equal under a
condition only for the subspace A.

Theorem 3.5. Let X be a space, A a subspace of X and v an infinite
cardinal. If A is a P-space, then the following statements are equivalent:

(1) A is P"-embedded in X;

(2) A is P"(locally-finite)-embedded in X;

(3) A is P?(point-finite)-embedded in X.
Note that every closed subspace of Rudin’s Dowker space is P(point-finite)-

embedded; it can be proved by combining some results in [5], [6] and [12].
This fact can also be seen by the above theorem directly.: -
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