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On metrizable spaces in dimension theory
John Kulesza

Department of Mathematics George Mason University

Abstract

We present a small variation of Mrowka’s recent technique for producing metrizable
spaces with non-coinciding dimensions. This variation has several uses. First, it is
easier to verify many of the important properties of spaces constructed this way.
Secondly, it is more general, allowing for each complete separable metric space X,
a zero-dimensional and metrizable space space M (X) with, consistently, the same
covering dimension as X. As an application, we consistently produce, for each
n € N, a zero-dimensional metrizable space X, satisfying n = dim X, = dim
(Xn)*.
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The first example of a metrizable space for which the inductive dimen-
sions disagreed was given by Roy in [R]. Subsequently, there were several
other such examples ([M1], [K3], [K4], [O]), but none exhibited a spread be-
tween dim and ind which is greater than one.

However recently, in [M2], Mrowka gives a remarkable example of a
metrizable space which he calls vy and in [M3] he shows it is consistent
that dim vp2 = 2 while ind vud = 0. In [K5] it is shown that dim vuy = n.
Thus, at least consistently, the spread between dim and ind can be arbitrarily
large.



Readers of these papers have commented that it is difficult to understand
vuo and verify its properties. In this note we present a slight variation of
Mrowka’s example which is somewhat easier to understand and more gen-
eral. Given a complete and separable metric space X, we produce a zero-
dimensional metric space M (X) which satisfies dim M (X) = dim X. The
example is presented in a way which makes certain properties, including
metrizability and zero-dimensionality, more transparent. Mrowka’s space is,
essentially, M (I) where I is the unit interval. As an application, we show
that, for each n € N, there is a zero-dimensional metric space X,, such that
dim X,, = dim X¥ = n for all K € N. This gives a nonseparable analogue
for some results concerning separable spaces.

The basic set theoretic assumption we use, S(c), is due to Mrowka (in
[M2]), and is shown consistent in [D]. We note that S(c) is a large cardinal
assumption. ‘

S(c): The space AN, where A is a discrete space of cardinality ¢, cannot
be written as a countable union of closed sets each of which is countable on
all lines parallel to some axis.

For basics not defined here, the reader is referred to [E1] and [E2].

1 The construction of M(X).

The construction proceeds in steps. We will define a factor space, a subspace
of the factor space, and finally the example, M (X), which will be a subspace
in the product of countably many factor spaces.

Fix X, a complete and separable metric space, and K a closed subset of
X. The fa,ctor space, M (X, K) will have X x C as its point set, where C
denotes the usual Cantor Set. For (z,c) € K x C basic neighborhoods are
usual product neighborhoods O x J where p € O, O is open in X, ¢ € J and
J is open in C. For(z,c) € X\K X C basic neighborhoods are like product
neighborhoods if C' is assumed discrete; so a basic neighborhood at (a: c) is
O x {c} where z € O with O open in X\K

Trivially, M (X, K) is regular. We check that it is metrizable, by showing
it has a o-discrete base and applying the Nagata-Bing-Smirnov Metrization
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Theorem. Let {V; : i € N} be the discrete collections forming a o-discrete
base for X, and let {J; : ¢ € N} be a countable base for C. For i,j € N, let
Vij={vx{c}:ve Vi,osNnK=0andce C}U{vx J;:ve V;,,uNK # 0}.
It is easy to see that M (X, K) is regular and that {V;; : 4,5 € N} is a
o-discrete collection whose union forms a base for M (X, K).

It is easy to check that M (X, K) is completely metrizable if X is.

For B C C, let M(X, K, B) denote the subset (K x B) U (X\K x C\B)
of M(X,K). In what follows, B will be an n-Bernstein set (introduced in
[M4]) for all n € N.

For completeness, we include the following. A subset B of a complete
metric space M is Bernstein provided that BN K # @ and (M\B)N K #
whenever K is a perfect subset of M. A subset S of [[;c; X; is oblique if
whenever ¢ and 7 are in S, o(i) # 7(¢) for all ¢ € I. The Bernstein set
B c C is n-Bernstein provided B™ intersects each oblique perfect subset of
C"™. It is not difficult construct, by transfinite induction, a subset of C' which
is n-Bernstein for all n, but not all Bernstein sets are n-Bernstein.

Remark. Until now the construction has been rather general, but could
in fact have been even more general. For example, any metric space could
have been used in place of C' (with a small change in the proof of metrizabil-

ity).

Now we get more specific. Let dim X = n; then there is a countable base,
{b; : i € N} for X such that, letting d; denote the boundary of b;, no point
is in more than n elements of {d; : i € n}.

The example M(X)is a subspace of the countable product ILi;ey M (X, d;, B).

For 0 € Iien M (X, d;), we write o = (01,09, 03,...) where 0; = (24,;,¢y;) is
an element of M (X, d;), and we say that o is X-constant if z,, = ., for all
i,7 € N. Then M(X) = {0 € MiepsM(X,d;, B) : 0 is X-constant}. For an
X-constant o, T, will denote the fixed X-coordinate of o.

Remark. The construction can be carried out in the event that dim
X is infinite, with the modification that it is not assumed that there is a
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restriction on the number of d;’s a point may lie on. That condition only is
used to guarantee that dim M (X) < n.

M(X) is metrizable. Since it is contained in a countable product of
metrizable spaces, it is obvious that M (X) is metrizable.

M(X) is zero-dimensional. To see that M(X) is zero-dimensional,
consider the following: Fix j € N and sy, 5, ..., s; where, for i < j,s; is
either a one element set from C\B or else is a clopen set in C, and sjis a
one element set in € C\B. Then (IL;i¢;(b; x s;) x I;»; M (X, d;, B)) N M(X)
is a clopen set in M (X), and the collection of all such sets forms a basis for
M (X). Such a set is clopen because if o were to be on its boundary, then Ty
would have to be in kj, but then o; = (z,,s;) (actually not s; but the one
point in s;), and there are no such points in M (X, d;, B).

The following definitions and comments are useful in each of the next

two parts. For Y C M(X), let IIxY = {z,: 0 € Y}. For F € [N]|<¥, let
={reX:zecdifandonlyifi € F}, and let Tr = {0 € M(X) :

x,, € Sr}. Note that Sr and Tr are empty if |F| > n, due to the conditions
we imposed on the base. It is easy to see that Tr is homeomorphic to a a
subset of the product of S with |F| copies of B (with the Cantor set topol-
ogy) and w copies of C\ B (with the discrete topology); since each of these is
strongly zero-dimensional, dim Tr = 0. It is clear that Upe[ni<w Tr = M(X).

To help clarify the above, Let L(C) denote the space with point set C
which is discrete at points of C\ B and has usual neighborhoods at points of
B. If Z is an X-constant set in Il;eyM (X, d;, B), then h: Z — X x L(C)V
defined by h(o) = (z,,¢o,,Coy,--.) is easily seen to be a homeomorphism,
and the C coordinates of a point of Tr are associated with a point of B
precisely on those coordinates j where 7 € F.

dim M(X) < dim X. Each T is closed in U|J| \p) L1, so dim Ujpj= Tr =
0. As M(X) = Uo<k<n Ujpj=k Tr, M(X) is a union of n + 1 sets of dim = 0,
hence, dim M(X) < n. '

dim M(X) > dim X. We need to use the following theorem, which can
be found in [K5], where it is Theorem 3.1.
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Theorem 1.1 Suppose k € N, T is a complete and separable zero-dimensional

metric space, and F is a closed subset of (C\B)" x C* x T, where each copy
of C\B is assumed to have the discrete topology, which does not intersect
(C\B)N x B*¥ x T. Then there are closed sets {K; :i € N} of (C\B)" x C*
each of which is countable on all lines parallel to some azis, and such that
the projection of F to (C\B)" x CF is contained in U{K;}.

Now, M (X) is a subset of the completely metrizable space II;,cy M (X, d;).
By the Lavtentieff theorem, every completion of M (X) must contain a subset
homeomorphic to a G subset of IT;cy M (X, d;) which contains M (X). With
that in mind, we show that for an F, set H = U;cy H; in [ien M (X, d;)
which does not intersect M (X), the complement of H must contain a copy
of M(X). Since every metric space admits a completion which preserves dim,
it follows that dim M(X) > dim X.

Fix a closed set H in IL;cyM(X,d;) which does not intersect M(X).
For each F € [N]<¥, let W = {0 € Ili;enM(X,d;) : 0 is X-constant and
T, € Sr}. Now, Tr C Wr and H N T = 0. Letting | F' |= k, as T can be
viewed as (C'\B)N x B* x Sp, and Wy can be viewed as containing the prod-
uct (C\B)" x C*¥ x Sp which contains T in the natural way. The theorem
can then be applied to find the closed sets {Kj; : ¢ € N} with properties as
stated in the theorem, relative to the closed set H. Note that the intersection
of K; with (C\B)" x (C\B)* is also closed and countable on all lines parallel
to some axis.

This procedure can be carried out over all pairs in {H; : j € N} x
[N]<, to get that the projection of H to (C\B)" (view as the (C\B)" from
the second coordinate factors of II;cy M (X, d;)) is contained in a countable
union of closed sets (viewing each factor as discrete, since the topology on
C is weaker than the discrete topology), each of which is countable on all
lines parallel to some axis. By S(c), this is not all of (C\B)". Fixing
(r1,79,73,...) € (C\B)" but not in the projection of H, then for the set
L ={o € ijenM(X,d;) : oy = m; for all i € N}, LN H = § and the
projection p : L — X given by p(0) = z, is a homeomorphism, so the
complement of H contains a copy of X.
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2 An Application.

For each n € N, there is a zero-dimensional metrizable space X, such that
dim X, =dim X* = n for all K € N. The author thanks Professor Y. Hattori
for a discussion leading to this result.

Fix n € N. From [K4], there is a complete and separable metric space
Y, satisfying n = dim Y, = dim Y. Then M(Y,) will be the example.

We need the following simple lemma:

Lemma 2.1 For any k € N, and closed sets {di,d2,ds,...,dy} in Y, dim
(M (Y,,d1) x M(Ya,d2) X ... X M(Yy,dy)] < n.

Proof. For simplicity, assume the d;’s are all the same set D. Choose
closed sets {F; : = € N} such that Y,\D = U;cy F;. For each j € N
let E; = F; x C; then Ej is closed in M(Y,, D), and in M(Y,, D) is the
product of E; with a discrete space. Also D x C is closed in M(Y,, D),
and M(Y,,D) = (D x C)UE; UEyU.... Thus M(Y,, D) is a countable
union of closed sets, each of which is the product of a closed set in Y, with
a strongly zero-dimensional metric space. It follows that M(Y,, D)* is a
countable union of closed sets each of which is a product of k sets chosen
from {D x C, E1, Es, ...}. Each such set is easily seen to be a product of 2k
sets, with k£ of them subsets of Y,, and the other k strongly zero-dimensional.
Since dimY,*¥ = n, these sets all have dim < n.

Now M(Y,) C HienM (Yn, k;) (with k;’s as in the previous section), and
so it is easy to see that dim M (Y,)* is bounded by the dim of finite products
of sets taken from {M(Y,,d;) : : € N}. Applying the lemma, this gives dim
M(Y,)” < n. We are done since we already know from the previous section
that n < dim M(Y,) < dim M(Y,)“. '

Remark. With a great deal more work, it can also be shown that zero-
dimensional metrizable spaces with covering dimension following the allow-
able sequences from [K2] can be obtained. However the entire argument
needs reworking since the separable spaces in that paper are not complete.
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