TWINING CHARACTER FORMULA FOR DEMAZURE MODULES

筑波大学·数学系 内藤 聡 (SATOSHI NAITO)
INSTITUTE OF MATHEMATICS,
UNIVERSITY OF TSUKUBA

0. Introduction.

Let \mathfrak{g} be a finite-dimensional complex semi-simple Lie algebra with Cartan subalgebra \mathfrak{h} and Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$. Let $\Delta \subset \mathfrak{h}^*$ be the set of roots of \mathfrak{g} relative to \mathfrak{h} . We choose the set of positive roots Δ_+ such that the roots of \mathfrak{b} are $-\Delta_+$. Let $\{\alpha_i \mid i \in I\}$ be the set of simple roots in Δ_+ , $\{h_i \mid i \in I\}$ the set of simple coroots in \mathfrak{h} , $A = (a_{ij})_{i,j \in I}$ the Cartan matrix with $a_{ij} = \alpha_j(h_i)$, and $W = \langle r_i \mid i \in I \rangle \subset GL(\mathfrak{h}^*)$ the Weyl group. We take and fix a Chevalley basis $\{e_{\alpha}, f_{\alpha} \mid \alpha \in \Delta_+\} \cup \{h_i \mid i \in I\}$ of \mathfrak{g} , and let $\mathfrak{h}_{\mathbb{Z}} = \sum_{i \in I} \mathbb{Z}h_i$.

A bijection ω (of order N) of the index set I such that $a_{\omega(i),\omega(j)} = a_{ij}$ for all $i, j \in I$ induces a unique automorphism ω , called a (Dynkin) diagram automorphism, of the Lie algebra \mathfrak{g} such that $\omega(e_{\alpha_i}) = e_{\alpha_{\omega(i)}}$, $\omega(f_{\alpha_i}) = f_{\alpha_{\omega(i)}}$, and $\omega(h_i) = h_{\omega(i)}$ for $i \in I$. We denote by $\langle \omega \rangle$ the cyclic subgroup (of order N) of Aut(\mathfrak{g}) generated by the diagram automorphism ω . The restriction of ω to \mathfrak{h} induces a transposed map $\omega^* \colon \mathfrak{h}^* \to \mathfrak{h}^*$, which stabilizes the integral weight lattice $\mathfrak{h}_{\mathbb{Z}}^* = \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z} \text{ for all } i \in I\} \simeq \operatorname{Hom}(\mathfrak{h}_{\mathbb{Z}}, \mathbb{Z})$. We set $\mathfrak{g}^0 = \{x \in \mathfrak{g} \mid \omega(x) = x\}$, $\mathfrak{h}^0 = \{h \in \mathfrak{h} \mid \omega(h) = h\}$, $W^\omega = \{w \in W \mid \omega^* w = w\omega^*\}$, $(\mathfrak{h}^*)^0 = \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\} \simeq (\mathfrak{h}^0)^*$, and $(\mathfrak{h}_{\mathbb{Z}}^*)^0 = \{\lambda \in \mathfrak{h}_{\mathbb{Z}}^* \mid \omega^*(\lambda) = \lambda\}$.

Let $\widehat{\mathfrak{g}}$ be the orbit Lie algebra, which is the dual complex semi-simple Lie algebra of the fixed point (semi-simple) subalgebra \mathfrak{g}^0 of \mathfrak{g} , i.e., a complex semi-simple Lie algebra with the opposite Dynkin diagram to that of \mathfrak{g}^0 . Let $\widehat{\mathfrak{h}}$ be the Cartan subalgebra of $\widehat{\mathfrak{g}}$, $\widehat{\mathfrak{b}} \supset \widehat{\mathfrak{h}}$ the Borel subalgebra, and $\widehat{\Delta}_+ \subset \widehat{\mathfrak{h}}^*$ the set of positive roots chosen so that the roots of $\widehat{\mathfrak{b}}$ are $-\widehat{\Delta}_+$. Let $\{\widehat{\alpha}_i \mid i \in \widehat{I}\}$ be the set of simple roots in $\widehat{\Delta}_+$ and $\widehat{W} = \langle \widehat{r}_i \mid i \in \widehat{I} \rangle \subset GL(\widehat{\mathfrak{h}}^*)$ the Weyl group, where the index set \widehat{I} is a set of representatives of the ω -orbits in I. It is known that there exist an isomorphism of groups $\Theta: \widehat{W} \to W^\omega$ and a \mathbb{C} -linear isomorphism $P_\omega: \mathfrak{h}^0 \to \widehat{\mathfrak{h}}$ such that if $P_\omega^*: \widehat{\mathfrak{h}}^* \widetilde{\to} (\mathfrak{h}^0)^* \simeq (\mathfrak{h}^*)^0$ is the transposed map of P_ω , then $\Theta(\widehat{w})|_{(\mathfrak{h}^*)^0} = P_\omega^* \circ \widehat{w} \circ (P_\omega^*)^{-1}$ for all $\widehat{w} \in \widehat{W}$. We set $w_i = \Theta(\widehat{r}_i) \in W^\omega$ for $i \in \widehat{I}$. In particular, $(W^\omega, \{w_i \mid i \in \widehat{I}\})$ forms a Coxeter system.

For dominant $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$, let $L(\lambda)$ be the simple \mathfrak{g} -module of highest weight λ . It admits a unique \mathbb{C} -linear $\langle \omega \rangle$ -action such that $\omega \cdot (xv) = \omega(x)(\omega \cdot v)$ for each $x \in \mathfrak{g}$, $v \in L(\lambda)$ and such that $\omega \cdot v_{\lambda} = v_{\lambda}$, where v_{λ} is a (nonzero) highest weight vector of $L(\lambda)$. So therefore does its dual module $L(\lambda)^* \simeq L(-w_0(\lambda))$ with w_0 the longest element in W. Let $\mathfrak{U}(\mathfrak{b})$ be the universal enveloping algebra of \mathfrak{b} , and for each $w \in W^{\omega}$, let $J_w(\lambda) = \mathfrak{U}(\mathfrak{b})v_{w(\lambda)}^* \subset L(\lambda)^*$ be Joseph's module of highest weight $-w(\lambda)$ in $L(\lambda)^*$, with $v_{w(\lambda)}^*$ a (nonzero) weight vector in $L(\lambda)^*$ of weight $-w(\lambda)$. Since $w \in W^{\omega}$, the weight vector $v_{w(\lambda)}^* \in L(\lambda)^*$ turns out to be fixed by the action of $\langle \omega \rangle$, and hence Joseph's module $J_w(\lambda) \subset L(\lambda)^*$ is $\langle \omega \rangle$ -invariant. In the talk we will prove a formula of Demazure type for the twining character $\mathrm{ch}^{\omega}(J_w(\lambda))$ of $J_w(\lambda)$ defined by

$$\mathrm{ch}^{\omega}(J_w(\lambda)) = \sum_{\mu \in (\mathfrak{h}_{\mathbb{Z}}^*)^0} \mathrm{Tr}(\omega|_{J_w(\lambda)_{\mu}}) \, e(\mu)$$

in the group algebra $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ over \mathbb{C} of $(\mathfrak{h}_{\mathbb{Z}}^*)^0$ with basis $e(\mu)$, $\mu \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$. As a corollary, we will find a striking relation:

$$\mathrm{ch}^{\omega}(J_w(\lambda)) = P_{\omega}^* \Big(\mathrm{ch} \, \widehat{J}_{\widehat{w}}(\widehat{\lambda}) \Big),$$

where $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$, $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}^*$, and $\operatorname{ch} \widehat{J}_{\widehat{w}}(\widehat{\lambda}) \in \mathbb{C}[\widehat{\mathfrak{h}}^*]$ is the ordinary character of Joseph's module $\widehat{J}_{\widehat{w}}(\widehat{\lambda})$ of highest weight $-\widehat{w}(\widehat{\lambda})$ over the orbit Lie algebra $\widehat{\mathfrak{g}}$.

Although our problem can be stated purely algebraically as above, it seems very difficult (at least for me) to solve it only by algebraic methods. Hence we resort to (algebro-) geometric methods. For that purpose, we introduce more notation. Let G be a connected, simply connected semi-simple linear algebraic group over $\mathbb C$ with maximal torus T and Borel subgroup $B \supset T$ such that $\operatorname{Lie}(G) = \mathfrak g$, $\operatorname{Lie}(T) = \mathfrak h$, and $\operatorname{Lie}(B) = \mathfrak b$. Then the character group $\Lambda = \operatorname{Hom}(T, GL_1)$ of T may be identified with $\mathfrak h_{\mathbb Z}^*$ by taking the differential at the identity element, i.e., by the map $\lambda \mapsto \mathrm{d}\lambda$. For each $i \in I$ and $\lambda \in \Lambda$, we will write $\langle \lambda, \alpha_i^\vee \rangle = (\mathrm{d}\lambda)(h_i)$, where $\alpha_i^\vee \in \operatorname{Hom}(GL_1, T)$ is the coroot of $\alpha_i \in \Lambda$. There exists an automorphism of G whose differential at the identity element coincides with the diagram automorphism ω of $\mathfrak g$ above. By abuse of notation, we will denote by ω this automorphism of G and by $\langle \omega \rangle$ the cyclic subgroup (of order N) of $\operatorname{Aut}(G)$ generated by ω . We will also denote the induced action of $\omega \in \langle \omega \rangle$ on Λ by the same letter ω , and set $\Lambda^\omega = \{\lambda \in \Lambda \mid \omega \cdot \lambda = \lambda\}$, $\Lambda^\omega_+ = \{\lambda \in \Lambda^\omega \mid \langle \lambda, \alpha_i^\vee \rangle \geq 0 \quad \text{for all } i \in I\}$.

By a $G \rtimes \langle \omega \rangle$ -module M, we will mean a finite-dimensional rational G-module that admits a \mathbb{C} -linear $\langle \omega \rangle$ -action such that $\omega \cdot (g \, m) = \omega(g)(\omega \cdot m)$ for each $g \in G$ and $m \in M$. Regarding the semi-direct product $G \rtimes \langle \omega \rangle$ of G and $\langle \omega \rangle$ as a linear algebraic group, this is the same as a rational $G \rtimes \langle \omega \rangle$ -module. Likewise for $B \rtimes \langle \omega \rangle$ - and $T \rtimes \langle \omega \rangle$ -modules. Let $\mathbb{C}[\Lambda^{\omega}]$ be the group algebra over \mathbb{C} of Λ^{ω} with basis $e(\mu)$, $\mu \in \Lambda^{\omega}$. For a $T \rtimes \langle \omega \rangle$ -module

V, we define the twining character $\operatorname{ch}^{\omega}(V) \in \mathbb{C}[\Lambda^{\omega}]$ of V to be

$$\mathrm{ch}^{\omega}(V) = \sum_{\mu \in \Lambda^{\omega}} \mathrm{Tr}(\omega|_{V_{\mu}}) \, e(\mu),$$

where $V_{\mu} = \{v \in V \mid t v = \mu(t)v \text{ for all } t \in T\}$ is the μ -weight space of V.

Recall that $W \simeq N_G(T)/T$, where $N_G(T)$ is the normalizer of T in G. Fix $w \in W^{\omega}$, and let X(w) be the associated Schubert variety over \mathbb{C} , which is the Zariski closure in the flag variety G/B of the Bruhat cell $B\dot{w}B/B$, where \dot{w} denotes a right coset representative of w in $N_G(T)$ fixed by $\omega \in \operatorname{Aut}(G)$. If M is a $B \rtimes \langle \omega \rangle$ -module, then the B-equivariant $\mathcal{O}_{X(w)}$ -module $\mathcal{L}_{X(w)}(M)$ associated to M carries a structure of " $(B, \langle \omega \rangle)$ -equivariant" $(\dot{=} B \rtimes \langle \omega \rangle$ -equivariant) sheaf, so that its cohomology groups $H^{\bullet}(X(w), \mathcal{L}_{X(w)}(M))$ are $B \rtimes \langle \omega \rangle$ -modules. (For the precise definition of a $(B, \langle \omega \rangle)$ -equivariant sheaf, see our preprint [KN].)

For each $\lambda \in \Lambda^{\omega}$, we let \mathbb{C}_{λ} denote the one-dimensional $B \rtimes \langle \omega \rangle$ -module on which B acts via λ through the quotient $B \to T$ and $\langle \omega \rangle$ trivially. We call $H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))$ for $\lambda \in \Lambda^{\omega}_+$ a Demazure module. Joseph's module $J_w(\lambda)$ admits a structure of $B \rtimes \langle \omega \rangle$ -module, and we have an isomorphism of $B \rtimes \langle \omega \rangle$ -modules

$$J_w(\lambda)^* \simeq H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda})),$$

where $J_w(\lambda)^*$ is the dual $B \rtimes \langle \omega \rangle$ -module of $J_w(\lambda)$.

For $i \in \widehat{I}$, we define the ω -Demazure operator \widehat{D}_i to be a \mathbb{C} -linear endomorphism of $\mathbb{C}[\Lambda^{\omega}]$ such that

$$\widehat{D}_i(e(\mu)) = \frac{e(\mu) - e(-s_i\beta_i)e(w_i(\mu))}{1 - e(-s_i\beta_i)} \quad \text{for } \mu \in \Lambda^{\omega},$$

where $\beta_i = \sum_{k=0}^{N_i-1} \alpha_{\omega^k(i)}$ and $s_i = 2/\sum_{k=0}^{N_i-1} a_{i,\omega^k(i)}$ with N_i the number of elements of the ω -orbit of $i \in I$.

The following is our main result.

THEOREM 0.1. Let M be a finite-dimensional rational $B \rtimes \langle \omega \rangle$ -module, $w \in W^{\omega}$, and let $w = w_{i_1}w_{i_2}\cdots w_{i_n}$ be a reduced expression in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. Then we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\chi_w^{\omega}(M) = \sum_{j \ge 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(M)))$$
$$= \widehat{D}_{i_1} \widehat{D}_{i_2} \cdots \widehat{D}_{i_n} \Big(\operatorname{ch}^{\omega}(M) \Big).$$

In particular, for $\lambda \in \Lambda_+^{\omega}$, we have

$$\operatorname{ch}^{\omega}(H^{0}(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))) = \widehat{D}_{i_{1}}\widehat{D}_{i_{2}}\cdots\widehat{D}_{i_{n}}(e(\lambda)).$$

There is thus revealed a striking relation between twining characters for \mathfrak{g} and ordinary characters for the orbit Lie algebra $\widehat{\mathfrak{g}}$. Let $\widehat{\mathfrak{h}}_{\mathbb{Z}} = \sum_{i \in \widehat{I}} \mathbb{Z} \, \widehat{h}_i$ and $\widehat{\mathfrak{h}}_{\mathbb{Z}}^* = \operatorname{Hom}(\widehat{\mathfrak{h}}_{\mathbb{Z}}, \mathbb{Z}) \subset \widehat{\mathfrak{h}}^*$. For dominant $\widehat{\lambda} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$, let $\widehat{L}(\widehat{\lambda})$ be the simple $\widehat{\mathfrak{g}}$ -module of highest weight $\widehat{\lambda}$, and for each $\widehat{w} \in \widehat{W}$, let $\widehat{J}_{\widehat{w}}(\widehat{\lambda}) = \mathfrak{U}(\widehat{\mathfrak{b}}) \, \widehat{v}_{\widehat{w}(\widehat{\lambda})}^* \subset \widehat{L}(\widehat{\lambda})^*$ be Joseph's module of highest weight $-\widehat{w}(\widehat{\lambda})$, with $\widehat{v}_{\widehat{w}(\widehat{\lambda})}^* \in \widehat{L}(\widehat{\lambda})^*$ a (nonzero) weight vector of weight $-\widehat{w}(\widehat{\lambda})$.

COROLLARY 0.2. Let $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$ be dominant and $w \in W^{\omega}$. We set $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$ and $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$. Then we have in $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$,

$$\mathrm{ch}^{\omega}(J_w(\lambda)) = P_{\omega}^* \left(\mathrm{ch} \, \widehat{J}_{\widehat{w}}(\widehat{\lambda}) \right),$$

where P_{ω}^* on the right-hand side is a \mathbb{C} -algebra isomorphism $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*] \xrightarrow{\sim} \mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ defined by $P_{\omega}^*(e(\widehat{\mu})) = e(P_{\omega}^*(\widehat{\mu}))$ for each basis element $e(\widehat{\mu})$, $\widehat{\mu} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$, of the group algebra $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ over \mathbb{C} of $\widehat{\mathfrak{h}}_{\mathbb{Z}}^*$.

1. Preliminaries.

1.1. **Diagram automorphisms.** Let \mathfrak{g} be a finite-dimensional complex semi-simple Lie algebra with Cartan subalgebra \mathfrak{h} and Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$. Let $\Delta \subset \mathfrak{h}^*$ be the set of roots of \mathfrak{g} relative to \mathfrak{h} . We choose the set of positive roots Δ_+ such that the roots of \mathfrak{b} are $-\Delta_+$. Let $\{\alpha_i \mid i \in I\}$ be the set of simple roots in Δ_+ , $\{h_i \mid i \in I\}$ the set of simple coroots in \mathfrak{h} , $A = (a_{ij})_{i,j \in I}$ the Cartan matrix with $a_{ij} = \alpha_j(h_i)$, and $W = \langle r_i \mid i \in I \rangle \subset GL(\mathfrak{h}^*)$ the Weyl group. We take and fix a Chevalley basis $\{e_\alpha, f_\alpha \mid \alpha \in \Delta_+\} \cup \{h_i \mid i \in I\}$ of \mathfrak{g} , and let $\mathfrak{h}_{\mathbb{Z}} = \sum_{i \in I} \mathbb{Z}h_i$.

We fix a bijection $\omega: I \to I$ of the index set I such that

$$a_{\omega(i),\omega(j)} = a_{ij}$$
 for all $i, j \in I$.

Let N be the order of ω , and N_i the number of elements of the ω -orbit of $i \in I$. This ω can be extended in a unique way to an automorphism (also denoted by ω) of order N of the Lie algebra \mathfrak{g} in such a way that

$$\begin{cases} \omega(e_{\alpha_i}) = e_{\alpha_{\omega(i)}}, & i \in I, \\ \omega(f_{\alpha_i}) = f_{\alpha_{\omega(i)}}, & i \in I, \\ \omega(h_i) = h_{\omega(i)}, & i \in I. \end{cases}$$

Note that the restriction of ω to the Cartan subalgebra \mathfrak{h} induces a transposed map $\omega^* \colon \mathfrak{h}^* \to \mathfrak{h}^*$ such that $\omega^*(\lambda)(h) = \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*$, $h \in \mathfrak{h}$. We set

$$(\mathfrak{h}^*)^0 = \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\} \quad \text{and} \quad (\mathfrak{h}_{\mathbb{Z}}^*)^0 = \{\lambda \in \mathfrak{h}_{\mathbb{Z}}^* \mid \omega^*(\lambda) = \lambda\},$$

where $\mathfrak{h}_{\mathbb{Z}}^* = \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z} \text{ for all } i \in I\} \simeq \operatorname{Hom}(\mathfrak{h}_{\mathbb{Z}}, \mathbb{Z})$. Note that the Weyl vector $\rho = (1/2) \cdot \sum_{\alpha \in \Delta_+} \alpha$ is in $(\mathfrak{h}_{\mathbb{Z}}^*)^0$.

1.2. **Orbit Lie algebras.** We choose and fix a set \widehat{I} of representatives of the ω -orbits in I, and set $\widehat{A} = (\widehat{a}_{ij})_{i,i\in\widehat{I}}$, where \widehat{a}_{ij} is given by

$$\widehat{a}_{ij} = s_j \times \sum_{k=0}^{N_j - 1} a_{i,\omega^k(j)} \quad \text{for } i, j \in \widehat{I} \quad \text{with} \quad s_j = \frac{2}{\sum_{k=0}^{N_j - 1} a_{j,\omega^k(j)}} \quad \text{for } j \in \widehat{I}.$$

Set for each $i \in \widehat{I}$, $I_i = \{\omega^k(i) \mid 0 \le k \le N_i - 1\} \subset I$. We know that for each $i \in \widehat{I}$,

$$\sum_{k \in I_i} a_{ik} = 1 \text{ or } 2.$$

Moreover, there are only two possibilities:

- (a) if $\sum_{k \in I_i} a_{ik} = 1$, then N_i is even and the subgraph of the Dynkin diagram corresponding to the subset $I_i \subset I$ is of type $A_2 \times \cdots \times A_2$ (where A_2 appears $N_i/2$ times);
- (b) if $\sum_{k \in I_i} a_{ik} = 2$, then the subgraph of the Dynkin diagram corresponding to the subset $I_i \subset I$ is totally disconnected and of type $A_1 \times \cdots \times A_1$ (where A_1 appears N_i times).

The orbit Lie algebra associated to the diagram automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$ is defined to be the complex semi-simple Lie algebra $\widehat{\mathfrak{g}}$ associated to the Cartan matrix $\widehat{A} = (\widehat{a}_{ij})_{i,j\in\widehat{I}}$ with the Cartan subalgebra $\widehat{\mathfrak{h}}$, the Borel subalgebra $\widehat{\mathfrak{b}} \supset \widehat{\mathfrak{h}}$, the set of positive roots $\widehat{\Delta}_+ \subset \widehat{\mathfrak{h}}^*$ chosen so that the roots of $\widehat{\mathfrak{b}}$ are $-\widehat{\Delta}_+$, the set of simple roots $\{\widehat{\alpha}_i \mid i \in \widehat{I}\} \subset \widehat{\mathfrak{h}}^*$, the set of simple coroots $\{\widehat{h}_i \mid i \in \widehat{I}\} \subset \widehat{\mathfrak{h}}$, and the Weyl group $\widehat{W} = \langle \widehat{r}_i \mid i \in \widehat{I} \rangle \subset GL(\widehat{\mathfrak{h}}^*)$.

Remark 1.2.1. We can easily deduce that the orbit Lie algebra $\widehat{\mathfrak{g}}$ is the dual complex semi-simple Lie algebra of the fixed point (semi-simple) subalgebra $\mathfrak{g}^0 = \{x \in \mathfrak{g} \mid \omega(x) = x\}$ of \mathfrak{g} , i.e., a complex semi-simple Lie algebra which has the opposite Dynkin diagram to that of \mathfrak{g}^0 .

We set $\mathfrak{h}^0 = \{h \in \mathfrak{h} \mid \omega(h) = h\}$. Then there exists a linear isomorphism $P_{\omega} \colon \mathfrak{h}^0 \to \widehat{\mathfrak{h}}$ given by

$$P_{\omega}\left(\sum_{k\in I_i}h_k\right)=N_i\,\widehat{h}_i\quad ext{for each }i\in\widehat{I}.$$

This map $P_{\omega} \colon \mathfrak{h}^0 \tilde{\to} \widehat{\mathfrak{h}}$ induces a transposed map $P_{\omega}^* \colon \widehat{\mathfrak{h}}^* \tilde{\to} (\mathfrak{h}^0)^* \simeq (\mathfrak{h}^*)^0$ such that

$$P_{\omega}^*(\widehat{\lambda})(h) = \widehat{\lambda}(P_{\omega}(h)) \text{ for } \widehat{\lambda} \in \widehat{\mathfrak{h}}^*, h \in \mathfrak{h}^0.$$

Note that, if $\widehat{\mathfrak{h}}_{\mathbb{Z}} = \sum_{i \in \widehat{I}} \mathbb{Z} \widehat{h}_i$ and $\widehat{\mathfrak{h}}_{\mathbb{Z}}^* = \operatorname{Hom}(\widehat{\mathfrak{h}}_{\mathbb{Z}}, \mathbb{Z}) \subset \widehat{\mathfrak{h}}^*$, then $P_{\omega}^*(\widehat{\mathfrak{h}}_{\mathbb{Z}}^*) = (\mathfrak{h}_{\mathbb{Z}}^*)^0$.

We now define the subgroup W^{ω} of W by

$$W^{\omega} = \{ w \in W \mid \omega^* w = w \omega^* \}.$$

It is known that there exists an isomorphism of groups $\Theta: \widehat{W} \to W^{\omega}$ from the Weyl group \widehat{W} of the orbit Lie algebra $\widehat{\mathfrak{g}}$ onto the group W^{ω} such that the following diagram commutes for each $\widehat{w} \in \widehat{W}$:

$$\widehat{\mathfrak{h}}^* \xrightarrow{P_{\omega}^*} (\mathfrak{h}^*)^0 \\
\widehat{w} \downarrow \qquad \qquad \downarrow_{\Theta(\widehat{w})|_{(\mathfrak{h}^*)^0}} \\
\widehat{\mathfrak{h}}^* \xrightarrow{P_{\omega}^*} (\mathfrak{h}^*)^0.$$

For each $i \in \widehat{I}$, set $w_i = \Theta(\widehat{r}_i) \in W^{\omega}$. Explicitly,

$$w_i = \begin{cases} \prod_{k=0}^{N_i/2-1} \left(r_{\omega^k(i)} \, r_{\omega^{k+N_i/2}(i)} \, r_{\omega^k(i)} \right) & \text{if } \sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 1, \\ \prod_{k=0}^{N_i-1} r_{\omega^k(i)} & \text{if } \sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 2. \end{cases}$$

Hence each w_i is the longest element of the subgroup W_{I_i} of the Weyl group W generated by the r_k 's for $k \in I_i$. Furthermore, $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$ forms a Coxeter system as $(\widehat{W}, \{\widehat{r}_i \mid i \in \widehat{I}\})$ is. We will denote the length function of the Coxeter system $(W, \{r_i \mid i \in I\})$ (resp. $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$) by $\ell \colon W \to \mathbb{Z}_{\geq 0}$ (resp. $\widehat{\ell} \colon W^{\omega} \to \mathbb{Z}_{\geq 0}$).

Remark 1.2.2. Note that the longest element $w_0 \in W$ belongs to W^{ω} . In fact, we can easily show that the isomorphism $\Theta \colon \widehat{W} \xrightarrow{\sim} W^{\omega}$ maps the longest element $\widehat{w}_0 \in \widehat{W}$ to the longest element $w_0 \in W$.

1.3. The ω -Demazure operators. Recall the ordinary Demazure operator D_i for $i \in I$ on the group ring $\mathbb{Z}[\mathfrak{h}_{\mathbb{Z}}^*] = \coprod_{\lambda \in \mathfrak{h}_{\mathbb{Z}}^*} \mathbb{Z} e(\lambda)$:

$$D_i : e(\lambda) \mapsto \frac{e(\lambda) - e(-\alpha_i)e(r_i(\lambda))}{1 - e(-\alpha_i)}.$$

Let $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ be the group algebra over \mathbb{C} of $\widehat{\mathfrak{h}}_{\mathbb{Z}}^*$ with basis $e(\widehat{\lambda})$, $\widehat{\lambda} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$. Define likewise the Demazure operator $D_{\widehat{r}_i}$, $i \in \widehat{I}$, on $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ to be the \mathbb{C} -linear endomorphism of $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ given by

$$D_{\widehat{r}_i}(e(\widehat{\lambda})) = \frac{e(\widehat{\lambda}) - e(-\widehat{\alpha}_i)e(\widehat{r}_i(\widehat{\lambda}))}{1 - e(-\widehat{\alpha}_i)}.$$

Then transfer $D_{\widehat{r}_i}$ via P_{ω}^* onto the group algebra $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ to define the ω -Demazure operator

$$\widehat{D}_i = P_{\omega}^* \circ D_{\widehat{r}_i} \circ (P_{\omega}^*)^{-1} \quad \text{for } i \in \widehat{I}.$$

Thus we can easily check the following.

LEMMA 1.3.1. Let $i \in \widehat{I}$. For each $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$, we have

$$\widehat{D}_i(e(\lambda)) = \frac{e(\lambda) - e(-s_i\beta_i)e(w_i(\lambda))}{1 - e(-s_i\beta_i)},$$

and moreover

$$\widehat{D}_{i}(e(\lambda)) = \begin{cases} e(\lambda) + e(\lambda - s_{i}\beta_{i}) + \dots + e(w_{i}(\lambda)) & \text{if } \lambda(h_{i}) \in \mathbb{Z}_{\geq 0}, \\ 0 & \text{if } \lambda(h_{i}) = -1, \\ -\left(e(\lambda + s_{i}\beta_{i}) + e(\lambda + 2s_{i}\beta_{i}) + \dots + e(w_{i}(\lambda + s_{i}\beta_{i}))\right) & \text{if } \lambda(h_{i}) \in \mathbb{Z}_{\leq -2}. \end{cases}$$

Remark 1.3.2. Let $w = w_{i_1} w_{i_2} \cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$, i.e., $\widehat{\ell}(w) = n$. We set $\widehat{D}_w = \widehat{D}_{i_1} \widehat{D}_{i_2} \cdots \widehat{D}_{i_n} \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0])$, which does not depend on the choice of the reduced expression of $w \in W^{\omega}$.

1.4. **Twining characters.** Let G be a connected, simply connected semi-simple linear algebraic group over \mathbb{C} with maximal torus T and Borel subgroup $B \supset T$ such that $\text{Lie}(G) = \mathfrak{g}$, $\text{Lie}(T) = \mathfrak{h}$, and $\text{Lie}(B) = \mathfrak{b}$. Then the character group $\Lambda = \text{Hom}(T, GL_1)$ of T may be identified with $\mathfrak{h}_{\mathbb{Z}}^*$ by taking the differential at the identity element, i.e., by the map $\lambda \mapsto d\lambda$. For each $i \in I$ and $\lambda \in \Lambda$, we will write $\langle \lambda, \alpha_i^{\vee} \rangle = (d\lambda)(h_i)$, where $\alpha_i^{\vee} \in \text{Hom}(GL_1, T)$ is the coroot of $\alpha_i \in \Lambda$. Let $\Lambda_+ = \{\lambda \in \Lambda \mid \langle \lambda, \alpha_i^{\vee} \rangle \geq 0 \text{ for all } i \in I\}$ be the set of dominant weights of Λ .

There exists an automorphism of G whose differential at the identity element coincides with the diagram automorphism ω of \mathfrak{g} . By abuse of notation, we will denote still by ω this automorphism of G and by $\langle \omega \rangle$ the cyclic subgroup (of order N) of $\operatorname{Aut}(G)$ generated by the ω . Whenever there can be ambiguity, we will write $\mathrm{d}\omega$ for the automorphism of \mathfrak{g} . Recall also that the Weyl group $W \subset GL(\mathfrak{h}^*)$ may be identified with $N_G(T)/T$, $N_G(T)$ the normalizer of T in G. Each $w \in W^\omega$ lifts to an element of $N_G(T)$ fixed by

 $\omega \in \operatorname{Aut}(G)$, which will be denoted by \dot{w} . We will also denote the induced action of ω on Λ by the same letter ω , and set $\Lambda^{\omega} = \{\lambda \in \Lambda \mid \omega \cdot \lambda = \lambda\}$, $\Lambda^{\omega}_{+} = \Lambda^{\omega} \cap \Lambda_{+}$. Note that, under the identification $\Lambda \simeq \mathfrak{h}^*_{\mathbb{Z}} \subset \mathfrak{h}^*$, this action of ω on Λ coincides with the restriction of $((d\omega)^{-1})^* = ((d\omega)^*)^{-1}$ to $\mathfrak{h}^*_{\mathbb{Z}}$.

By a $G \rtimes \langle \omega \rangle$ -module M, we will always mean a finite-dimensional rational G-module that admits a \mathbb{C} -linear $\langle \omega \rangle$ -action such that

$$\omega \cdot (q m) = \omega(q)(\omega \cdot m)$$
 for all $q \in G$, $m \in M$.

Regarding the semi-direct product $G \rtimes \langle \omega \rangle$ of G and $\langle \omega \rangle$ as a linear algebraic group, this is the same as a finite-dimensional rational $G \rtimes \langle \omega \rangle$ -module. Likewise for $B \rtimes \langle \omega \rangle$ - and $T \rtimes \langle \omega \rangle$ -modules. Let $\mathbb{C}[\Lambda^{\omega}]$ be the group algebra over \mathbb{C} of Λ^{ω} with basis $e(\lambda)$, $\lambda \in \Lambda^{\omega}$. Let M be a $T \rtimes \langle \omega \rangle$ -module, and let

$$M = \coprod_{\lambda \in \Lambda} M_{\lambda} \quad ext{with} \quad M_{\lambda} = \{ m \in M \mid t \, m = \lambda(t) m \quad ext{for all} \ \ t \in T \}$$

be the weight space decomposition with respect to T. Now we define the twining character $\operatorname{ch}^{\omega}(M)$ of M to be

$$\mathrm{ch}^\omega(M) = \sum_{\lambda \in \Lambda^\omega} \mathrm{Tr}(\omega|_{M_\lambda}) \, e(\lambda) \in \mathbb{C}[\Lambda^\omega].$$

Remark 1.4.1. It easily follows that for each $t \in T$,

$$\operatorname{Tr}((t,\omega)\;;\;M) = \sum_{\lambda \in \Lambda^{\omega}} \operatorname{Tr}(\omega|_{M_{\lambda}})\; \lambda(t) \in \mathbb{C}$$

since $\omega \cdot M_{\lambda} = M_{\omega(\lambda)}$ for $\lambda \in \Lambda$.

1.5. An important example. Let $\lambda \in \Lambda_+^{\omega}$ and $L(\lambda)$ the simple rational G-module of highest weight λ . We can make $L(\lambda)$ into a $G \rtimes \langle \omega \rangle$ -module as follows. Let v_{λ} be a (nonzero) highest weight vector of $L(\lambda)$. If $\mathfrak{U}(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g} , there is an isomorphism of $\mathfrak{U}(\mathfrak{g})$ -modules

$$\mathfrak{U}(\mathfrak{g})/\mathfrak{I}(\lambda) \simeq L(\lambda) \quad \text{via } x \mapsto x \, v_{\lambda},$$

where $\mathfrak{J}(\lambda)$ is the left ideal of $\mathfrak{U}(\mathfrak{g})$ given by

$$\mathfrak{J}(\lambda) = \sum_{i \in I} \Big(\mathfrak{U}(\mathfrak{g}) e_i + \mathfrak{U}(\mathfrak{g}) (h_i - \langle \lambda, \alpha_i^{\vee} \rangle) + \mathfrak{U}(\mathfrak{g}) f_i^{\langle \lambda, \alpha_i^{\vee} \rangle + 1} \Big).$$

Since $\lambda \in \Lambda^{\omega}$, the left ideal $\mathfrak{J}(\lambda)$ of $\mathfrak{U}(\mathfrak{g})$ is ω -invariant, i.e., $d\omega$ -invariant, and hence $L(\lambda)$ admits a structure of $\langle \omega \rangle$ -module such that

$$\omega \cdot (x v_{\lambda}) = ((d\omega)(x))v_{\lambda} \text{ for all } x \in \mathfrak{U}(\mathfrak{g}).$$

Therefore, the $L(\lambda)$ admits a structure of $G \rtimes \langle \omega \rangle$ -module such that $\omega \cdot v_{\lambda} = v_{\lambda}$. Note that a $G \rtimes \langle \omega \rangle$ -module structure on $L(\lambda)$ such that $\omega \cdot v_{\lambda} = v_{\lambda}$ is unique since $L(\lambda)$ is a cyclic G-module generated by v_{λ} .

On the other hand, for each $i \in \widehat{I}$, we have $(P_{\omega}^*)^{-1}(\lambda)(\widehat{h}_i) = \lambda(h_i)$. Hence $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}^*$ is dominant integral. If $\widehat{L}(\widehat{\lambda})$ is the simple $\widehat{\mathfrak{g}}$ -module of highest weight $\widehat{\lambda}$, we know that

(1.5.1)
$$\operatorname{ch}^{\omega}(L(\lambda)) = P_{\omega}^{*} \left(\operatorname{ch} \widehat{L}(\widehat{\lambda})\right),$$

where P_{ω}^* on the right-hand side is a \mathbb{C} -algebra isomorphism $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*] \overset{\sim}{\to} \mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ defined by

$$P_{\omega}^*(e(\widehat{\mu})) = e(P_{\omega}^*(\widehat{\mu})) \quad \text{for } \widehat{\mu} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*.$$

Assume now that $J = I_i = \{\omega^k(i) \mid 0 \le k \le N_i - 1\} \subset I$, $i \in \widehat{I}$, and let P_J be the standard parabolic subgroup of G associated to J. Let $\nu \in \Lambda^{\omega}$ with $\langle \nu, \alpha_i^{\vee} \rangle \ge 0$ (hence $\langle \nu, \alpha_j^{\vee} \rangle \ge 0$ for all $j \in J$). If $L_J(\nu)$ is the simple rational P_J -module of highest weight ν , then it remains simple as a rational module over the Levi factor L_J of P_J with the unipotent radical U_J of P_J acting trivially. We can make $L_J(\nu)$ into a $P_J \rtimes \langle \omega \rangle$ -module in the same way as $L(\lambda)$ above.

The following lemma is a first (but important) step towards our main result (Theorem 0.1).

LEMMA 1.5.1. With the notation and assumption as above, we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\operatorname{ch}^{\omega}(L_J(\nu)) = \widehat{D}_i(e(\nu)).$$

2. Proof of the main result.

Since the proof of our main result is so simple and clear modulo some algebrogeometric arguments, we give a "detailed outline" of it in this section. Fix $w \in W^{\omega}$ and let X(w) be the associated Schubert variety over \mathbb{C} , i.e., the Zariski closure of the Bruhat cell $B\dot{w}B/B$ in the flag variety G/B. For a $B \rtimes \langle \omega \rangle$ -module M, the ω -Euler characteristic $\chi_w^{\omega}(M)$ is defined to be

$$\chi_w^{\omega}(M) = \sum_{j \ge 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(M))) \in \mathbb{C}[\Lambda^{\omega}].$$

Here recall that, since M is a $B \rtimes \langle \omega \rangle$ -module, the $\mathcal{O}_{X(w)}$ -module $\mathcal{L}_{X(w)}(M)$ associated to M is a $(B, \langle \omega \rangle)$ -equivariant $(\doteqdot B \rtimes \langle \omega \rangle$ -equivariant) sheaf, and hence the cohomology groups $H^j(X(w), \mathcal{L}_{X(w)}(M)), j \geq 0$, are $B \rtimes \langle \omega \rangle$ -modules.

Let $w = w_{i_1} \cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$, i.e., $\widehat{\ell}(w) = n$. Note that we have $\ell(w) = \ell(w_{i_1}) + \cdots + \ell(w_{i_n})$. We want to show that

$$\chi_w^{\omega}(M) = \widehat{D}_{i_1} \cdots \widehat{D}_{i_n}(\operatorname{ch}^{\omega}(M)),$$

where \widehat{D}_j for $j=i_1,\ldots,i_n$ is the ω -Demazure operator defined in §1.3. In particular, we will obtain a twining character formula of the Demazure module $H^0(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))$ for $\lambda \in \Lambda_+^{\omega}$, where \mathbb{C}_{λ} is the one-dimensional $B \rtimes \langle \omega \rangle$ -module on which B acts by the weight λ through the quotient $B \to T$ and $\langle \omega \rangle$ trivially.

2.1. Formula for the ω -Euler characteristics. Set $\widehat{D}_w = \widehat{D}_{i_1} \cdots \widehat{D}_{i_n}$. Then we are to show

(2.1.1)
$$\chi_w^{\omega}(M) = \widehat{D}_w(\operatorname{ch}^{\omega}(M)).$$

Let us first make some reductions. Since both sides of (2.1.1) are additive in M, we may assume that M is one-dimensional of weight $\mu \in \Lambda^{\omega}$ on which ω is acting by a scalar ζ^k for a primitive N-th root of unity ζ in \mathbb{C} and $k \in \mathbb{Z}$. We will denote such M by $\mathbb{C}_{\mu,k}$. Thus we are reduced to showing that

$$\chi_w^{\omega}(\mathbb{C}_{\mu,k}) = \widehat{D}_w(\operatorname{ch}^{\omega}(\mathbb{C}_{\mu,k})),$$

where $\operatorname{ch}^{\omega}(\mathbb{C}_{\mu,k}) = \zeta^k e(\mu)$.

Put for simplicity $z_j = w_{i_j}$, $1 \leq j \leq n$. We have an isomorphism of $B \rtimes \langle \omega \rangle$ -modules

$$(2.1.2) H^{\bullet}(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\mu,k})) \simeq H^{\bullet}(X(z_1, \ldots, z_n), \mathcal{L}_{X(z_1, \ldots, z_n)}(\mathbb{C}_{\mu,k})),$$

and for each s with $1 \le s \le n-1$, a $B \rtimes \langle \omega \rangle$ -equivariant spectral sequence

$$(2.1.3) \quad H^{i}(X(z_{s}), \mathcal{L}(H^{j}(X(z_{s+1}, \ldots, z_{n}), \mathcal{L}(\mathbb{C}_{\mu,k})))) \Rightarrow H^{i+j}(X(z_{s}, \ldots, z_{n}), \mathcal{L}(\mathbb{C}_{\mu,k})).$$

Here $X(z_s, \ldots, z_t)$ for $1 \leq s \leq t \leq n$ is the so-called Bott-Samelson variety, and $\mathcal{L}_{X(z_s,\ldots,z_t)}(\mathbb{C}_{\mu,k})$ is the sheaf of $\mathcal{O}_{X(z_s,\ldots,z_t)}$ -modules associated to the $B \rtimes \langle \omega \rangle$ -module $\mathbb{C}_{\mu,k}$. Note that, since $z_s,\ldots,z_t \in W^\omega$ and their right coset representatives $\dot{z}_s,\ldots,\dot{z}_t \in N_G(T)$ are fixed by $\omega \in \operatorname{Aut}(G)$, the Bott-Samelson variety $X(z_s,\ldots,z_t)$ is an $\langle \omega \rangle$ -invariant subvariety of $(G/B)^{t-s+1}$. (The proofs of (2.1.2) and (2.1.3) are not so difficult, but rather long. For details, see our preprint [KN].)

Remark 2.1.1. There are several equivalent (or inequivalent) definitions of a Bott-Samelson variety, but in the talk, we stick to that of [Ja]:

$$X(y_1, ..., y_n) = \{(g_1 B, ..., g_n B) \in (G/B)^n \mid g_{i-1}^{-1} g_i \in \overline{B\dot{y}_i B} \text{ for all } i\}$$

for $y_1, \ldots, y_n \in W$. If J_i for $1 \leq i \leq n$ is a subset of I and z_{J_i} is the longest element of the subgroup $W_{J_i} = \langle r_k \mid k \in J_i \rangle$ of the Weyl group W, then the Bott-Samelson variety

 $X(z_{J_1},\ldots,z_{J_n})$ is smooth. Moreover, if we assume that $\ell(z_{J_1}\cdots z_{J_n})=\ell(z_{J_1})+\cdots+\ell(z_{J_n})$, then the restriction ϕ of the *n*-th projection $\pi_n:(G/B)^n\to G/B$ to the Bott-Samelson variety $X(z_{J_1},\ldots,z_{J_n})\subset (G/B)^n$ gives a Demazure-Hansen desingularization

$$\phi: X(z_{J_1}, \ldots, z_{J_n}) \to X(z_{J_1}, \ldots, z_{J_n})$$

of the Schubert variety $X(z_{J_1} \cdots z_{J_n})$. Note that the ϕ induces an isomorphism of suitable open and dense subvarieties.

Now it follows that

$$\chi_{w}^{\omega}(\mathbb{C}_{\mu,k}) = \sum_{j\geq 0} (-1)^{j} \operatorname{ch}^{\omega}(H^{j}(X(z_{1},\ldots,z_{n}),\mathcal{L}_{X(z_{1},\ldots,z_{n})}(\mathbb{C}_{\mu,k}))) \quad \text{by } (2.1.2)$$

$$= \sum_{j\geq 0} (-1)^{j} \left(\sum_{i\geq 0} (-1)^{i} \operatorname{ch}^{\omega}(H^{i}(X(z_{1}),\mathcal{L}(H^{j}(X(z_{2},\ldots,z_{n}),\mathcal{L}(\mathbb{C}_{\mu,k}))))) \right) \quad \text{by } (2.1.3)$$

$$= \sum_{j\geq 0} (-1)^{j} \chi_{z_{1}}^{\omega}(H^{j}(X(z_{2},\ldots,z_{n}),\mathcal{L}_{X(z_{2},\ldots,z_{n})}(\mathbb{C}_{\mu,k}))).$$

By induction on n, we may assume that $w=w_i$ for some $i\in \widehat{I}$ in proving (2.1.1). So put $J=I_i$ and let $P=P_J$ be the standard parabolic subgroup of G associated to J. We are to show

(2.1.4)
$$\chi_m^{\omega}(\mathbb{C}_{\mu,k}) = \widehat{D}_i(\zeta^k e(\mu)).$$

Assume first that $\langle \mu, \alpha_i^{\vee} \rangle \geq 0$ (and hence that $\langle \mu, \alpha_k^{\vee} \rangle \geq 0$ for all $k \in J$). Let $L_J(\mu)$ be the simple rational P_J -module of highest weight μ admitting an $\langle \omega \rangle$ -action as in §1.5, and let ζ^k be the one-dimensional trivial P_J -module with ω acting by the scalar ζ^k .

LEMMA 2.1.2. Let the notation and assumption be as above. Then we have the following isomorphism of $P_J \rtimes \langle \omega \rangle$ -modules.

$$H^0(P_J/B, \mathcal{L}_{P_J/B}(\mathbb{C}_{\mu,k})) \simeq L_J(\mu) \otimes_{\mathbb{C}} \zeta^k.$$

(This lemma is, in a sense, crucial to the proof of our main result. Although no one doubts the truth of this lemma, its complete proof would be rather long.)

Now we deduce that

$$\chi_{w_i}^{\omega}(\mathbb{C}_{\mu,k}) = \operatorname{ch}^{\omega}(H^0(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{\mu,k})))$$
 by Kempf's vanishing theorem
$$= \operatorname{ch}^{\omega}(L_J(\mu) \otimes_{\mathbb{C}} \zeta^k)$$
 by Lemma 2.1.2
$$= \zeta^k \operatorname{ch}^{\omega}(L_J(\mu))$$

$$= \zeta^k \, \widehat{D}_i(e(\mu))$$
 by Lemma 1.5.1
$$= \widehat{D}_i(\zeta^k e(\mu)).$$

If $\langle \mu, \alpha_i^{\vee} \rangle = -1$ (and hence $\langle \mu, \alpha_k^{\vee} \rangle = -1$ for all $k \in J$), then both sides of (2.1.4) vanish.

Assume finally that $\langle \mu, \alpha_i^{\vee} \rangle \leq -2$ (and hence that $\langle \mu, \alpha_k^{\vee} \rangle \leq -2$ for all $k \in J$). Set $\rho_J = \frac{1}{2} \sum_{\alpha \in \Delta_J^+} \alpha$ with $\Delta_J^+ = \Delta_+ \cap \sum_{k \in J} \mathbb{Z} \alpha_k$ the positive root system of P_J . By direct checking, using the $T \rtimes \langle \omega \rangle$ -module isomorphism $(\text{Lie}(P)/\text{Lie}(B))^* \simeq \bigoplus_{\alpha \in \Delta_J^+} \mathbb{C} f_{\alpha}$, we see that as $B \rtimes \langle \omega \rangle$ -modules,

$$\bigwedge_{\mathbb{C}}^{\ell(w_i)}(\mathrm{Lie}(P)/\mathrm{Lie}(B))^* \simeq \mathbb{C}_{-2\rho_J,0} \otimes_{\mathbb{C}} (-1)^{\ell(w_i)-1},$$

where $\ell(w_i) = \dim_{\mathbb{C}}(P/B)$ and $(-1)^{\ell(w_i)-1}$ is the one-dimensional $B \rtimes \langle \omega \rangle$ -module with B acting trivially and ω by the scalar $(-1)^{\ell(w_i)-1}$. Then the $B \rtimes \langle \omega \rangle$ -equivariant Serre duality reads

(2.1.5)

$$H^{j}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{\mu,k}))^{*} \simeq H^{\ell(w_{i})-j}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{-\mu-2\rho_{J},-k} \otimes_{\mathbb{C}} (-1)^{\ell(w_{i})-1}))$$

$$\simeq \begin{cases} H^{0}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{-\mu-2\rho_{J},-k})) \otimes_{\mathbb{C}} (-1)^{\ell(w_{i})-1} & \text{if } j = \ell(w_{i}), \\ 0 & \text{otherwise (by Kempf)}. \end{cases}$$

(The use above of the $B \rtimes \langle \omega \rangle$ -equivariant Serre duality is the most essential part of the proof of our main result.)

Remark 2.1.3. Put X = P/B and $m = \dim_{\mathbb{C}} X$. Let \mathcal{M} be a $(B, \langle \omega \rangle)$ -equivariant \mathcal{O}_{X} -module that is locally free of finite rank over \mathcal{O}_{X} . The $B \rtimes \langle \omega \rangle$ -equivariant Serre duality (see our preprint on Naito's home page) asserts that, as $B \rtimes \langle \omega \rangle$ -modules,

$$H^{i}(X, \mathcal{M}^{\vee} \otimes_{X} \Omega_{X}^{m}) \simeq H^{m-i}(X, \mathcal{M})^{*}$$
 for all $0 \leq i \leq m$,

where $\mathcal{M}^{\vee} = \mathcal{H}om_X(\mathcal{M}, \mathcal{O}_X)$ is the dual sheaf of \mathcal{M} , $\Omega_X^m = \bigwedge_X^m \Omega_X^1$ is the canonical sheaf on X, and $H^{m-i}(X, \mathcal{M})^*$ is the dual $B \rtimes \langle \omega \rangle$ -module of $H^{m-i}(X, \mathcal{M})$. This Serre duality will be a consequence of the triviality of the $B \rtimes \langle \omega \rangle$ -action on the one-dimensional vector space $H^m(X, \Omega_X^m)$. Since the triviality of the B-action on it is known, it remains to show the triviality of the $\langle \omega \rangle$ -action. There are many ways to show it, but the way

we take here is (I think) purely algebro-geometric and elementary: first take a $P \rtimes \langle \omega \rangle$ equivariant closed immersion $i: X \to \mathbb{P} = \mathbb{P}(L(\lambda))$ for sufficiently dominant $\lambda \in \Lambda_+^{\omega}$; then
use the fact that the full automorphism group $PGL(L(\lambda))$ of $\mathbb{P}(L(\lambda))$ acts trivially on the
one-dimensional vector space $H^l(\mathbb{P}, \Omega_{\mathbb{P}}^l)$ with $l = \dim_{\mathbb{C}} \mathbb{P}$, where (though not so trivial)

$$H^l(\mathbb{P}, \Omega^l_{\mathbb{P}}) \simeq H^m(\mathbb{P}, \imath_* \Omega^m_X) \simeq H^m(X, \Omega^m_X)$$

as $P \rtimes \langle \omega \rangle$ -modules.

The proof of the following lemma is easy.

LEMMA 2.1.4. Let J be an ω -invariant subset of I, w_J the longest element of the Weyl group W_J of P_J , and let $\nu \in \Lambda^{\omega}$ be such that $\langle \nu, \alpha_k^{\vee} \rangle \geq 0$ for all $k \in J$. Then we have the following isomorphism of $P_J \rtimes \langle \omega \rangle$ -modules.

$$L_J(\nu)^* \simeq L_J(-w_J(\nu)).$$

The isomorphism (2.1.5) together with Lemmas 2.1.2 and 2.1.4 implies that, as $B \rtimes \langle \omega \rangle$ -modules,

$$(2.1.6) H^{\ell(w_i)}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{\mu,k})) \simeq \left(L_J(-\mu - 2\rho_J)^* \otimes_{\mathbb{C}} \zeta^k\right) \otimes_{\mathbb{C}} (-1)^{\ell(w_i)-1}$$
$$\simeq L_J(w_i(\mu + 2\rho_J)) \otimes_{\mathbb{C}} \zeta^k \otimes_{\mathbb{C}} (-1)^{\ell(w_i)-1}.$$

Then, setting $\widehat{\mu} = (P_{\omega}^*)^{-1}(\mu)$,

$$\chi_{w_{i}}^{\omega}(\mathbb{C}_{\mu,k}) = (-1)^{\ell(w_{i})} \operatorname{ch}^{\omega}(L_{J}(w_{i}(\mu+2\rho_{J})) \otimes_{\mathbb{C}} \zeta^{k} \otimes_{\mathbb{C}} (-1)^{\ell(w_{i})-1}) \quad \text{by (2.1.6)}$$

$$= -\zeta^{k} \operatorname{ch}^{\omega}(L_{J}(w_{i}(\mu+2\rho_{J})))$$

$$= -\zeta^{k} \widehat{D}_{i}(e(w_{i}(\mu+2\rho_{J}))) \quad \text{by Lemma 1.5.1}$$

$$= -\zeta^{k} \left(P_{\omega}^{*} \circ D_{\widehat{r}_{i}} \circ (P_{\omega}^{*})^{-1}\right) (e(w_{i}(\mu+2\rho_{J})))$$

$$= -\zeta^{k} \left(P_{\omega}^{*} \circ D_{\widehat{r}_{i}}\right) (e(\widehat{r}_{i}(\widehat{\mu}+\widehat{\alpha}_{i}))) \quad \text{since } (P_{\omega}^{*})^{-1}(2\rho_{J}) = \widehat{\alpha}_{i}$$

$$= -\zeta^{k} P_{\omega}^{*}(-D_{\widehat{r}_{i}}(e(\widehat{\mu})))$$

$$= \zeta^{k} \left(\widehat{D}_{i} \circ P_{\omega}^{*}\right) (e(\widehat{\mu}))$$

$$= \zeta^{k} \widehat{D}_{i}(e(\mu))$$

$$= \widehat{D}_{i}(\zeta^{k}e(\mu)).$$

Thus in all cases (2.1.4) holds, and we are done.

If $\lambda \in \Lambda_+^{\omega}$, then for any Schubert variety X(w),

$$H^{j}(X(w), \mathcal{L}_{X(w)}(\lambda)) = 0$$
 for all $j \ge 1$

by the Demazure vanishing theorem of Andersen et al. Hence we have proved

THEOREM 2.1.5. Let M be a finite-dimensional rational $B \rtimes \langle \omega \rangle$ -module and $w \in W^{\omega}$. Then we have in $\mathbb{C}[\Lambda_{\omega}]$,

$$\chi_w^{\omega}(M) = \sum_{j \geq 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(M))) = \widehat{D}_w(\operatorname{ch}^{\omega}(M)),$$

where $\widehat{D}_w = \widehat{D}_{i_1} \widehat{D}_{i_2} \cdots \widehat{D}_{i_n}$ for any reduced expression $w = w_{i_1} w_{i_2} \cdots w_{i_n}$ of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. In particular, for $\lambda \in \Lambda^{\omega}_+$, we have

$$\operatorname{ch}^{\omega}(H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))) = \widehat{D}_w(e(\lambda)),$$

where \mathbb{C}_{λ} is the one-dimensional $B \rtimes \langle \omega \rangle$ -module on which B acts by the weight λ through the quotient $B \to T$ and ω trivially.

Theorem 2.1.5 above reveals that there exists a striking relation between the ω -Euler characteristic $\chi_w^\omega(\mathbb{C}_\lambda) \in \mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ for \mathfrak{g} and the ordinary Euler characteristic for the orbit Lie algebra $\widehat{\mathfrak{g}}$. To state the relation, we need some notation. Recall that the orbit Lie algebra $\widehat{\mathfrak{g}}$ is the dual complex semi-simple Lie algebra of the fixed point subalgebra $\mathfrak{g}^0 = \{x \in \mathfrak{g} \mid \omega(x) = x\}$ of \mathfrak{g} . Let \widehat{G} be a connected, simply connected semi-simple linear algebraic group over \mathbb{C} with maximal torus \widehat{T} and Borel subgroup $\widehat{B} \supset \widehat{T}$ such that $\mathrm{Lie}(\widehat{G}) = \widehat{\mathfrak{g}}$, $\mathrm{Lie}(\widehat{T}) = \widehat{\mathfrak{h}}$, and $\mathrm{Lie}(\widehat{B}) = \widehat{\mathfrak{b}}$. For $\widehat{w} \in \widehat{W} \simeq N_{\widehat{G}}(\widehat{T})/\widehat{T}$, we take a right coset representative $\widehat{w} \in N_{\widehat{G}}(\widehat{T})$ of \widehat{w} , and define the Schubert variety $\widehat{X}(\widehat{w})$ over \mathbb{C} by

$$\widehat{X}(\widehat{w}) = \overline{\widehat{B} \widehat{w} \widehat{B} / \widehat{B}} = \overline{\widehat{B} \widehat{w} \widehat{B}} / \widehat{B} \subset \widehat{G} / \widehat{B}.$$

For each $\widehat{\lambda} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$, we denote by $\mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})$ the (locally free) \widehat{B} -equivariant sheaf of $\mathcal{O}_{\widehat{X}(\widehat{w})}$ modules associated to the one-dimensional \widehat{B} -module $\mathbb{C}_{\widehat{\lambda}}$ on which \widehat{B} acts by the weight $\widehat{\lambda}$ through the quotient $\widehat{B} \to \widehat{T}$.

Now we are ready to state the following

COROLLARY 2.1.6. Let $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$ and $w \in W^{\omega}$. We set $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$ and $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$. Then we have in the algebra $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$,

$$\chi_w^{\omega}(\mathbb{C}_{\lambda}) = \sum_{j \geq 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda})))$$
$$= P_{\omega}^* \left(\sum_{j \geq 0} (-1)^j \operatorname{ch} H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})) \right),$$

where $\operatorname{ch} H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})) \in \mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ for $j \in \mathbb{Z}_{\geq 0}$ is the ordinary character of the j-th cohomology group $H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}}))$ of $\widehat{X}(\widehat{w})$.

(This immediately follows from Theorem 2.1.5 and the ordinary Demazure character formula for the orbit Lie algebra $\widehat{\mathfrak{g}}$.)

2.2. **Joseph's modules.** Let us finally return to Joseph's module $J_w(\lambda)$, with $w \in W^{\omega}$ and $\lambda \in \Lambda_+^{\omega}$. Thus let v_{λ}^* be a (nonzero) lowest weight vector of the dual module $L(\lambda)^*$ (which is the dual element of a (nonzero) highest weight vector v_{λ} of $L(\lambda)$), and let $\dot{w} \in N_G(T)^{\omega}$ representing $w \in W^{\omega}$. Since v_{λ}^* is fixed by ω , so is $\dot{w} v_{\lambda}^*$. Joseph's module $J_w(\lambda)$ of highest weight $-w(\lambda)$ in $L(\lambda)^*$ is defined to be

$$J_w(\lambda) = \mathfrak{U}(\mathfrak{b}) (\dot{w} \, v_{\lambda}^*) \subset L(\lambda)^*$$

where $\mathfrak{U}(\mathfrak{b})$ is the universal enveloping algebra of $\mathfrak{b} = \text{Lie}(B)$. Note that, since $\omega \cdot (\dot{w} \, v_{\lambda}^*) = \dot{w} \, v_{\lambda}^*$, Joseph's module $J_w(\lambda)$ is a $B \rtimes \langle \omega \rangle$ -submodule of $L(\lambda)^*$. Moreover, since $\dot{w}_0 \, v_{\lambda}^*$ is a (nonzero) highest weight vector of $L(\lambda)^*$ fixed by ω , there is an isomorphism of $G \rtimes \langle \omega \rangle$ -modules

$$(2.2.1) L(\lambda)^* \simeq L(-w_0(\lambda)),$$

which enables us to regard $J_w(\lambda)$ as a $B \rtimes \langle \omega \rangle$ -submodule of $L(-w_0(\lambda))$. Then we obtain a short exact sequence of $B \rtimes \langle \omega \rangle$ -modules

$$0 \leftarrow J_w(\lambda)^* \leftarrow L(-w_0(\lambda))^* \leftarrow J_w(\lambda)^{\perp} \leftarrow 0,$$

with $J_w(\lambda)^{\perp} = \{\phi \in L(-w_0(\lambda))^* \mid \phi(J_w(\lambda)) = 0\}$. On the other hand, Lemma 2.1.2 for the case J = I combined with (2.2.1) yields an isomorphism of $G \rtimes \langle \omega \rangle$ -modules

$$H^0(G/B, \mathcal{L}_{G/B}(\mathbb{C}_{\lambda})) \simeq L(-w_0(\lambda))^*.$$

Since the restriction map

$$H^0(G/B, \mathcal{L}_{G/B}(\mathbb{C}_{\lambda})) \to H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))$$

is known to be a $(B \rtimes \langle \omega \rangle$ -equivariant) surjection, we obtain an isomorphism of $B \rtimes \langle \omega \rangle$ modules

$$J_w(\lambda)^* \simeq H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda})),$$

or equivalently

(2.2.2)
$$J_w(\lambda) \simeq H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))^*.$$

We now define a \mathbb{C} -linear conjugation $\bar{} : \mathbb{C}[\Lambda^{\omega}] \to \mathbb{C}[\Lambda^{\omega}]$ by

$$\overline{\sum_{\mu \in \Lambda^{\omega}} a_{\mu} e(\mu)} = \sum_{\mu \in \Lambda^{\omega}} a_{\mu} e(-\mu) \quad \text{with } a_{\mu} \in \mathbb{C} \text{ for } \mu \in \Lambda^{\omega}.$$

Then we obtain the following theorem from the $B \rtimes \langle \omega \rangle$ -module isomorphism (2.2.2).

THEOREM 2.2.1. Let $\lambda \in \Lambda^{\omega}_+$ and $w \in W^{\omega}$. Then we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = \overline{\operatorname{ch}^{\omega}(H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda})))}.$$

By combining Theorems 2.1.5 and 2.2.1, we obtain the following

COROLLARY 2.2.2. Let $\lambda \in \Lambda^{\omega}_+$ and $w \in W^{\omega}$. Then we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\mathrm{ch}^{\omega}(J_w(\lambda)) = \overline{\widehat{D}_w(e(\lambda))}.$$

Finally, by combining Corollary 2.1.6 and Theorem 2.2.1, we obtain a remarkable relation between the twining character $\operatorname{ch}^{\omega}(J_w(\lambda))$ of Joseph's module $J_w(\lambda)$ for \mathfrak{g} and the ordinary character of Joseph's module for the orbit Lie algebra $\widehat{\mathfrak{g}}$, which is the dual complex semi-simple Lie algebra of \mathfrak{g}^0 . For each $\widehat{w} \in \widehat{W}$, let

$$\widehat{J}_{\widehat{w}}(\widehat{\lambda}) = \mathfrak{U}(\widehat{\mathfrak{b}}) \, (\widehat{w} \, \widehat{v}_{\widehat{\lambda}}^*) \subset \widehat{L}(\widehat{\lambda})^*$$

be Joseph's module of highest weight $-\widehat{w}(\widehat{\lambda})$, with $\widehat{v}_{\widehat{\lambda}}^* \in \widehat{L}(\widehat{\lambda})^*$ a lowest weight vector of $\widehat{L}(\widehat{\lambda})^*$.

COROLLARY 2.2.3. Let $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$ be dominant and $w \in W^{\omega}$. We set $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$ and $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$. Then we have in $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$,

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = P_{\omega}^* \left(\operatorname{ch} \widehat{J}_{\widehat{w}(\widehat{\lambda})}(\widehat{\lambda}) \right).$$

REFERENCES

- [AK] A. Altman and S. Kleiman, *Introduction to Grothendieck Duality Theory*, Lecture Notes in Math. Vol. 146, Springer-Verlag, Berlin, 1970.
- [An] H. H. Andersen, Schubert varieties and Demazure's character formula, Invent. Math. 79 (1985), 611–618.
- [D1] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53–88.
- [D2] , Une nouvelle formule des caractères, Bull. Sci. Math. 98 (1974), 163–172.
- [DG] M. Demazure and P. Gabriel, *Groupes algébriques* I, Masson & Cie and North-Holland, Paris and Amsterdam, 1970.
- [FRS] J. Fuchs, U. Ray, and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras,
 J. Algebra 191 (1997), 518-540.
- [FSS] J. Fuchs, B. Schellekens, and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Commun. Math. Phys. 180 (1996), 39–97.
- [Ha] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Math. Vol. 52, Springer-Verlag, Berlin, 1977.
- [Ja] J. C. Jantzen, Representations of Algebraic Groups, Pure and applied mathematics Vol. 131, Academic Press, Boston, 1987.
- [Jo] A. Joseph, On the Demazure character formula, Ann. Sci. École Norm. Sup. 18 (1985), 389-419.

- [Kan] M. Kaneda, The Frobenius morphism of Schubert schemes, J. Algebra 174 (1995), 473–488.
- [KN] M. Kaneda and S. Naito, A twining character formula for Demazure modules, preprint.
- [Kas] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), 839–858.
- [Ku] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), 395–423.
- [Ma] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159-160 (1988).
- [MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory (3rd enlarged edition), Springer-Verlag, Berlin, 1994.
- [MR] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. 122 (1985), 27-40.
- [N1] S. Naito, Embedding into Kac-Moody algebras and construction of folding subalgebras for generalized Kac-Moody algebras, Japan. J. Math. (New Series) 18 (1992), 155–171.
- [N2] Twining character formula of Kac-Wakimoto type for affine Lie algebras, preprint.
- [N3] _____, Twining characters, Kostant's homology formula, and the Bernstein-Gelfand-Gelfand resolution, preprint.
- [Ra] A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), 283–294.
- [RR] S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), 217–224.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, IBARAKI 305-8571, JAPAN

E-mail address: naito@math.tsukuba.ac.jp