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ABSTRACT. This is a revised version of [11]. The purpose of this
paper is to give a large class of impartial 2-player games which are
“completely solvable” in the sense that they have good formulas or
good algorithms for the Sprague-Grundy numbers. Nim and Sat$(\succ$

Welter game are included here as very special cases. The notion
of minuscule elements of Weyl groups, due to D. Peterson, and the
classification of them, due to P. A. Proctor, are essential in our
construction.

1. BASICS ON GAMES

The reference for this section is Conway [2].

1.1. Game graphs
We consider complete information games played by two players. More
precisely, we consider only those games which can be represented by
a graph $g$ as follows. A finite directed graph $g$ with the following
properties is called a game graph:

1. The graph $g$ has no cycle, i.e. there is no sequence $v_{1},v_{2},$ $\ldots,v_{n}$

.
of

vertices such that $v_{i}arrow v_{i+1}$ and that $v_{n}=v_{1}$ unless $n=1$ .
2. There exista a (necessarily unique) vertex $v_{g}$ of $g$ such that, for

any vertex $v$ of $g$ , there exists a sequence $v_{1},$ $v_{2},$
$\ldots,$

$v_{n}$ of vertices
such that $v_{i}arrow v_{i+1}$ and that $v_{1}=v_{g},v_{n}=v$ .

Given such a graph $g$ , two players can play a game as follows. Place
a $‘(\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}$

” at the beginning position $v_{g}$ . The first player moves the stone
to any vertex $v$ connected to $v_{g}$ by an edge directed toward $v$ . Simi-
larly, the second moves the stone to any vertex $w$ connected to $v$ by
an edge directed toward $w$ , and so on. The player first unable to move
is the loser. The game considered in the present paper is isomorphic
to this game corresponding to a game graph $g$ . We shall identify the
game itself and the game graph representing it. It is not difficult to see
that one of the players, the first one or the second one, has a winning
strategy.
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Remark. We can define more general games by considering colors.
We assume each edge of the game graph $g$ is colored by one of the two
colors, red or blue, say. Before beginning the game two players choose
their colors; if one of them chooses red, say,then the other must take
the rest, blue. Red (resp. blue) player can play only red (resp. blue)
moves. In [2] games with colors are called partizan and games without
color impartial. Since all the games considered in this paper are im-
partial, we donot discuss $\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{P}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{Z}\mathrm{a}\mathrm{n};$

,
games any more and refer the

interested readers to [2].

1.2. Sums of games
Let $a$ and $b$ be game graphs. Then the sum $a+b$ of $a$ and $b$ is a new
game graph defined as follows. The set of vertices of $a+b$ is the set
of pairs $(x, y)$ of vertices $x$ of $a$ and vertices $y$ of $b$ . Two vertices $(x, y)$

and $(x”,y)$ of $a+b$ are connected by an edge directed toward $(x’,y’)$

if and only if either $xarrow x’$ and $y=y’$ , or $x=x’$ and $yarrow y’$ . As a
game $a+b$ can also be defined as follows. The first player of the game
$a+b$ chooses either $a$ or $b$ and plays a first move in the chosen game.
The second player also chooses $a$ or $b$ and plays a second or first move
in the chosen game according as the second chooses the same game as
the first or not.... At the end, one of the player will be unable to play
anymore neither in $a$ nor in $b$ , which means that the player is the loser.

1.3. Energy of games
Let $g$ be the game graph of a game. Let $\mathrm{N}_{0}$ be the set of non-negative
integers. For each vertex $v\in g$ we attach its energy $E(v)\in \mathrm{N}_{0}$ as
follows. Let $S_{v}=\{w_{1}.w_{2}, \ldots,w_{k}\}$ be the set of successors of $v$ in $g$ . We
define:

$E(v)=[\mathrm{N}_{0-}\mathrm{f}^{E}(w_{i});w_{i}\in sv\}]$ .
In particular, $E(v)=0$ if $v$ is an ending position of $g$ , i.e. if no edge
goes outside from $v$ . The energy $E(g)$ of a game $g$ is defined by:

$E(g)=E(v_{g})$ .
In general, for $v\in g$ , the energy $E(v)$ of $v$ is the energy of the game
which is “generated” by $v$ , i.e. the “sub”game of $g$ whose beginning
position is $v$ . The importance of the notion of energy in impartial (i.e.
uncolored) games will become apparent by the following:

Theorem 1. (R. P. Sprague, P. M. Grundy, see [2])
(i) The second player has a winning strategy in the game $g$ , if and

only if
$E(\mathit{9})=0$ .
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(ii) Let $a$ and $b$ be game graphs. Then

$E(a+b)=E(a)\oplus E(b)$ ,

$where_{\mathrm{z}}$ for $m,$ $n\in \mathrm{N}_{0},$ $m\oplus n\in \mathrm{N}_{0}$ (called “
$n\dot{\iota}m$ sum” of $m$ and

$n)$ is defined by the following rules: .

$m\oplus m=0)$

$2^{k}\oplus m=2^{k}+m$ , if $m<2^{k}$ ,
$m\oplus 0=m$ ,
$m\oplus n=n\oplus m$ (commutativity),

$(l\oplus m)\oplus n=l\oplus(m\oplus n)$ (associativity).

If one wants to calculate the energy $E(g)$ of a game $g$ directly from
the definition of $E(g)$ , then one needs the whole graph $g$ . Hence, $\mathrm{i}\mathrm{n}\downarrow$

most cases, the actual calculation is hopeless. Thus examples of games
which have good formulas for their energy are very precious. In litera-
tures [2], energy of a game $g$ is called the Sprague-Grundy number or
Grundy numbers of $g$ . We have used the word “energy” deliberately
to stress its importance.

2. SOME EXAMPLES OF GAMES

Here we collect some examples of games.

2.1. Nim ([2])
This is a very well-known game. For a non-negative integer $k$ , let $L_{k}$

be a totally ordered set with $k$ elements. Then

$L= \bigcup_{i}L_{k_{i}}$ (finite disjoint union)

is a partially ordered set. A component $L_{k_{j}}$ of $L$ is called a string. The
first player $\mathrm{c}’ \mathrm{h}_{\mathrm{o}\mathrm{O}\mathrm{S}}\mathrm{e}$ a string $L_{k_{j}}$ and reduce it to $L_{h_{j}}$ $(0\leq h_{j}<k_{j})$ .
The second player also choose a (non-empty) string ($L_{k_{i}}(i\neq j)$ or $L_{h_{j}}$ )
and reduce it to a strictly shorter string, and so on. In other words, if
$L_{k}$ denotes the (trivial) game with just one string $L_{k}$ , then this game
is the sum

$L_{k_{1}}+L_{k_{2}}+\ldots$

of games $L_{k_{i}}$ in the sense explained in 1.2. It is easy to see that

$E(L_{k})=k$ .

Hence, by Theorem 1, the energy of the game $L$ is given by

$E(L)=k_{1^{\oplus}}k_{2^{\oplus}}\ldots$ .
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2.2. Sato-Welter game $([2][8][10])$

In $1950’ \mathrm{s}$ , M. Sato [8] and $\mathrm{C}.\mathrm{P}$ . Welter [10] independently built a beau-
tiful theory for the following game.
We have finitely many particles. Each particle is placed in one of the
energy levels labelled by $\{0,1,2,3, \ldots\}$ . We assume a ‘physical law’ as-
serting that different particles can never be in the same energy lebel.
Each player, in its turn, chooses a particle and reduces its energy to a
strictly smaller level. Of course, if an energy level is already occupied
by a particle, then no other particle can move into that energy level.
If a player finds, in its turn, that it can move no particle any more
(this is equivalent to say that the energy levels $0,1,2,$

$\ldots,$ $n-1$ , with
$n=\mathrm{t}\mathrm{h}\mathrm{e}$ number of particles, are already occupied), then that player is
the loser.
For our purpose, it is essential to $\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{e}$ that. Sato-Welter game can
also be played on Young diagrams.
Let $Y$ be a Young diagram. This means $Y$ is a finite subset of $\mathrm{N}\cross \mathrm{N}$

such that
$Y= \bigcup_{i1}^{l}\{=(i,j);1\leq j\leq n_{i}\}$ ,

with
$n_{1}\geq n_{2}\geq...$ $\geq n_{l}\geq 0$ .

(If $n_{i}=0$ , then the i-th row of $Y$ is empty.) The diagram $Y$ can be
viewed as a partially ordered set by

$(i,j)\geq(i’,j’)$ if $i\leq i’$ and $j\leq j’$

In particular, $(1, 1)$ is the unique maximum element of $Y$ if $Y$ is non-
empty. For any $(i,j)\in Y$ , the subset

$H(i,j)=$ { $(k,$ $l)\in Y;k=i$ or $l=j,$ $(k,$ $l)\leq(i,j)$ }
of $Y$ is called the hook of $Y$ at $(i,j)$ , and the number $|H(i,j)|$ of ele-
ments in $H(i,j)$ the hook-length at $(i,j)$ . We now define the $\zeta removal$

of hooks and pushing up’ procedure well-known in the representation
theory of symmetric groups. This gives a procedure to obtain, for a
fixed element $(i,j)$ of a given Young diagram $Y$ , a smaller Young dia-
gram $Y’$ . If the set theoretical difference $Y-H(i,j)$ is again a Young
diagram, then we simply put $Y’=Y-H(i,j)$ . In general, we put
$Y’=$ { $(k,$ $l)\in Y;k<i$ or $l<j$} $\cup\{(k-1, l-1);(k, l)\in Y, (k, l)\leq(i+1,j+1)\}$ .
The difference $H(i,j)_{*}=Y-Y’$ is called the rim-hook of $Y$ at $(i,j)$ .
Note that a rim-hook $I=H(i,j)_{*}$ is an order ideal of $Y$ , i.e. $a\in I$ and
$b<a$ implies $b\in I$ . We now give the Young diagramatic formulation
of Sato-Welter game:
Let $Y$ be a given Young diagram. Each player, in its turn, chooses
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an element $(i,j)$ of $Y$ and removes the corresponding hook $H(i,j)$
and pushes up (or, equivalently, remove the corresponding rim-hook
$H(i,j)_{*})$ . At the end, the $\mathrm{e}\mathrm{m}\mathrm{p}_{l}$ty Young diagram will be left, and the
last player is the winner.

Remark. It seems Sato’s first formulation of the game was in terms
of Young diagrams. (One of his motivation was Nakayama conjecture
in the representation theory of symmetric groups.) This formulation
does not appear in Welter [10] nor in $\mathrm{C}_{\mathrm{o}\mathrm{n}\mathrm{W}\mathrm{a}\mathrm{y}}[2]$ .
Theorem 2. ([8] [10], see also [2])
Let $Y$ be a Young diagram. Then the energy $E(g_{Y})$ of the Sato-Welter
game $g_{Y}$ played on $Y$ is given by:

$E(g_{Y})= \sum_{(i,j)\in Y}\oplus N(|H(i,j)|)$
, (2.1)

where $N($ . $)$ is the Sato-Welter no$7m$ defined by
$N(k)=k\oplus(k-1)$ , $k\in \mathrm{N}$ .

Remark. As Sato [9] remarked, the structure of the above formula
for $E(g_{Y})$ has a striking resemblanse to that of the “hook formula”
for the dimensions of irreducible representations of symmetric groups.
This observation has been crucial for the present work. See Theorem
6 below.

Remark. One can of course play Sato-Welter game on a disjoint
union of a finite number of Young diagrams. (Nim is a very special
case of this.) The energy of such multi-component Sato-Welter game
can be calculated using Theorems 1 and 2.

2.3. Playing games on partially ordered sets
Let $P$ be a collection of (isomorphism classes of) finite partially or-
dered sets. Suppose, for any $P\in P$ , and any $p\in P$ , an order ideal
$H(p)_{*}(\neq\emptyset)$ of $P$ , called the rim-hook of $P$ at $p$ , is assigned in such a
way that $P-H(p)\in P$ . Then just as in the case of Sato-Welter game
(Young diagramatic formulation), we can consider a game $g_{P}$ played
on $P$ ; two players alternatively remove rim-hooks.

3. THE PARITY CONDITION

3.1. Nim sum for integers
Let $m\in \mathrm{N}$ . We formally put

$-m=(-1)\oplus(m-1)$ ,
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and assume
$(-1)\oplus(-1)=0$ .

This enables us to extend the nim $\mathrm{s}\mathrm{u}\mathrm{m}\oplus \mathrm{t}\mathrm{o}$ the whole set $\mathrm{Z}$ of integers.
For $m,$ $n\in \mathrm{Z}$ , we put

$(m|n)=m\oplus n\oplus(m\oplus n-1)=N(m\oplus n)=N(m-n)$ .

Theorem 3. Let $a_{1},$ $a_{2},$
$\ldots,$

$a_{n}$ be distinct elements of Z. We define a
$\mathrm{Z}$ -valued function $f$ on $\mathrm{Z}$ by

$f(t)= \sum_{=i1}^{n}\oplus(t|a_{i})$ , $t\in \mathrm{Z}$ .

Then, $f$ cannot be constant.

3.2. Games satisfying the $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{i}\dot{\mathrm{t}}\mathrm{y}$ condition
Let $g$ be a game graph. Let $v_{1},v_{2},$ $\ldots,v_{k}$ be vertices of $g$ directly con-
ncted to the beginning position $v_{g}$ by edges in $g$ . For $n\in \mathrm{N}_{0}$ , we
put

$a_{n}=|\{1\leq i\leq k ; E(v_{i})=n\}|$ .
Then the definition of the energy $E(g)=E(v_{g})$ implies:

$a_{n}\neq 0$ if $n<E(g)$ , and $a_{n}=0$ if $n=E(g)$ .

We say that the game $g$ satisfies the parity condition if

$a_{n}$ is odd if $n<E(g)$ , and $a_{n}$ is even if $n\geq E(g)$ .
By Theorem 3, this condition is equivalent to say that $g$ satisfies the
following parity equality:

$\sum_{i=1}^{k}\oplus(t|E(v_{i}))=t\oplus(t-E(g))$ . (3.1)

If we put $t=E(g)$ in (3.1), then we have

$E(g)= \sum_{i=1}k\oplus(E(g)|E(v_{i}))=\sum_{i=1}k\oplus N(E(g)-E(v_{i}))$ .
(3.2)

Compare (3.2) with (2.1).

4. $P$-GAMES

4.1. Miniscule elements of Weyl groups
Let $W$ be the Weyl group of a Kac-Moody Lie algebra [4] with simply-
laced Dynkin diagram. Let $\lambda$ be a dominant integral weight. Following
D. Peterson (unpublished; but see $[1][6][7]$ ), we say that an element $w$
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of $W$ is $\lambda$-minuscule if there exists a reduced expression $w=s_{i_{1}}\ldots s_{i}s_{i_{1}}2$

( $s_{i}$
-

$\neg$the reflection associated to simple root $\alpha_{i}$ ) of $w$ such that

$s_{i_{j}}(_{S_{i}}j-1\ldots \mathit{8}_{i}1\lambda)=(s_{ii_{1}}-\cdots S\lambda)j1-\alpha_{i}j$

We also say $\lambda$ is minuscule if it is $\lambda$-minuscule for some $\lambda$ . In his study
of Schubert calculus in the Kac-Moody setting, Peterson proved the
following $‘(\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{k}$ formula”:

Theorem 4. (D. Peterson; see [1]) Let $w\in W$ be minuscule. Then
the number of reduced expressions of $w$ is equal to

$l(w)!-1 \alpha>\prod_{w(\alpha)<0}h(0\alpha)-1$

,

where $l(w)$ is the length of $w$ , and $h(\alpha)$ is the height $of\backslash$ the root $\alpha$ .

If $W$ is of type $\mathrm{A}$ , then this gives an unusual way of stating the famous
hook formula for the number of standard tableaux for a given Young
diagram. See the last paragraph of 3.2 below. It is announced $[6][7]$

that a $q$-analogue of the above theorem will appear in a forthcoming
paper of Peterson and R. A. Proctor. See also [3].

4.2. Classification of minuscule elements of Weyl groups
The results in this subsection is due to R. A. Proctor $[6][7]$ .

Theorem 5. (R. A. Proctor) The classification of minuscule $element_{S}f$
’in Weyl groups are equivalent to the classification of $ttd$-complete posets.

A $d$-complete poset can be explicitly $desc\dot{n}bed,$, as a disjoint union of
tlslant sums ’; of $tlirreducib\iota_{e}d$-complete posets.

See [6] and [7] for unexplained terminologies. In short, a d-complete
poset is a finite partially ordered set $P$ which satisfy, among other tech-
nical conditions, the following:

1. If $x,$ $y,w\in P$ satisfy both $xarrow w$ (i.e. $x>w$ and no element of
$P$ lies between $x$ and $w$ ) and $y-w$ , then there exists a unique
$v\in P$ satisfying both $v-x$ and $varrow y$ .

2. Assume, for $v,w\in P$ with $v>w$ , the interval $[w,v]=\{a\in$
$P;w\leq a\leq v\}$ looks like:

$v-x$
$\uparrow$ $\uparrow$

$y^{-w}k^{-\ldots-}w_{2}arrow w_{1}=w$
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for some $k\geq 1$ . Then there exists a unique sequemce $v_{1}>v_{2}>$

$...>v_{k}=v$ of elements of $P$ such that the interval $[w_{1}, v_{1}]$ looks
like:

$v_{1}-v_{2}arrow\ldotsarrow v_{k}arrow X$

$\uparrow$ $\uparrow$

$yarrow w_{k}arrow\ldotsarrow w_{2}-w_{1}=w$ . $(4.1)$

The partially ordered set (4.1) is called a double-tailed diamond. Rooted
trees, Young diagrams, shifted Young diagrams (see [5]) and double-
tailed diamonds are classical examples of $d$-complete posets. A non-
classical example (which includes diamonds as special cases) is given
in 3.4 below. See [7] for a lot of more exotic examples.
In the classification of $d$-complete posets $P$ , we can assume $P$ is con-
nected with respect to the relation –. Then there exists a unique
subset $T$ of $P$ called the “top tree” of $P$ (see [7] for the definition),
which should be considered as a simply-laced Dynkin diagram endowed
with an $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{a}\sim$ structure of rooted tree. In the case $P$ is a rooted tree, its
top tree coincides with $P$ itself. In the case of a double-tailed diamond
(4.1), the top tree is:

$v_{1}arrow v_{2}-\ldots-v_{k}-x$ ,
$\uparrow$

$y$

which is a Dynkin diagram of type D. In the case of a Young diagram:
$v_{m}arrow v_{m+1}arrow\ldots$ $\ldotsarrow v_{n}$

$\uparrow$ $\uparrow$ $\uparrow$ :
$v_{m-1}arrow a$ – $b$ ....

$\uparrow$ $\uparrow$ :
: .. .. .. (4.2)
$\uparrow$

$v_{2}$

$\uparrow$

$v_{1}$

the top tree is:

$v_{1}arrow v_{2}arrow\ldotsarrow v_{m-1}arrow v_{m}arrow v_{m+1}arrow\ldotsarrow v_{n}$ ,

which is a Dynkin diagram of type A. Let $W=W(T)$ be the Weyl
group of the Kac-Moody Lie algebra with Dynkin diagram $T$ , and
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$S$ the set of simple reflections of W. Then elements of $T$ are in 1-1
correspondence with elements of $S$ . This extends uniquely to a corre-
spondence

$\Psi$ : $Parrow S$

with the following property: If $v_{1}>w_{1}(\in P)$ are such that the interval
$[w_{1}, v_{1}]$ looks like (4.1) for some $k\geq 1$ , then, for any $i,$ $\Psi(v_{i})=\Psi(w_{i})$ .
(So, e.g. in (4.2), we have $\Psi(a)=\Psi(vm),$ $\Psi(b)=\Psi(vm+1).$ ) Note that,
for any $s\in S,$ $\Psi^{-1}(s)$ is a totally ordered subset of $P$ .
We now fix a total order on $P$ compatible with the original partial order.
In the case of a double-tailed diamond (4.1), the number of ways fixing
such a total order is 2. In the case of a Young diagram, the number
of ways is equal to the number of corresponding standard tableaux,
or to the dimension of the corresponding irreducible representation of
symmetric groups. We now pick elements $s_{i_{1}},$ $s_{i_{2}},$ $\ldots$ of $S$ corresponding
to elements $p_{1},p_{2},$ $\ldots$ of $P$ in the order fixed above, and take the product

$w=S_{i_{1}}\ldots Si_{2}S_{i}1$ ’ (4.3)

where $l=|P|$ . Then $w$ is a minuscule element of $W$ independent of
the choice of the total order on $P$ , and (4.3) is a reduced expression of
$w$ . See Theorem 4 and Theorem 5.

4.3. Definitions of hooks and P-games
Let $P$ be a $d$-complete poset. We are going to introduce a game $g_{P}$

(which we call the $P$ -game) played on $P$ . For that purpose, it is enough
to define, for each $p\in P$ , the corresponding ‘rim-hook’ $H(p)_{*}\subset P$ in
such a way that $H(p)_{*}$ is an order ideal of P. (Then the difference
$P-H(p)_{*}$ is again a $d$-complete poset.) See 2.3.
We can assume $P$ is connected. Let $T$ be the top tree, and $\Sigma=$

$\Sigma(T)$ and $W=W(T)$ the corresponding root system and Weyl group.
Let

$w=s_{i_{\mathrm{t}}}\ldots s_{\dot{x}_{2}}s_{i_{1}}$ ,

be the element of $W$ corresponding to $P$ as in (4.3). Let $p\in P$ . If $p$ is
the $j$ $(=j(p))$ -th element of $P$ with respect to the fixed total order of
$P$ , then we put

$\alpha^{(p)}=-s_{i\iota i_{l1}}S-\cdots \mathit{8}_{i_{j}}(\alpha i_{j})(\in\Sigma)$ .

Since this is a positive root, we can write

$\alpha^{(p)}=\sum_{i\alpha\in S}ci)(p\alpha_{i}$ , $c_{i}^{(p)}\in \mathrm{N}_{0}$ .

103



NORIAKI KAWANAKA

Let

$M^{(p)}=\{j(p)\leq m\leq l;s_{i_{m}}s_{i_{m+1}}\ldots s_{i_{1}}(\alpha^{(p)})<S_{i}\ldots si\iota(m+1\alpha^{(})p)\}$ .

We put
$H(p)=\{p_{m};m\in M^{(p)}\}$

and call it the hook of $P$ at $p$ . Let $\Psi$ : $Parrow S$ be as in 3.2. For each
$p$ and $i$ such that $c_{i}^{(p)}\neq 0$ , let $q_{i_{1}}$ be the minimal element of the totally
ordered set $\Psi^{-1}(\alpha_{i})$ , and $I(p;i)_{*}=[q_{i_{1}}, q_{i_{c}}]=\{q_{i_{1}}, q_{i}2’\ldots, q_{i}c\}(c=c_{i}^{()})p$

be the lowest interval of $c_{i}^{(p)}$ elements in $\Psi^{-1}(\alpha_{i})$ . (Let $I(p;i)=\emptyset$ if
$c_{i}^{(p)}=0.)$ We put

$H(p)_{*}= \bigcup_{\alpha\in s^{I}}(ip;i)_{*}$

and call it the rim-hook of $P$ at $p$ . Similarly, we define $I(p;i)^{*}$ to be
the highest interval of $c_{i}^{(p)}$ elements in $\Psi^{-1}(\alpha_{i})$ . We put

$H(p)^{*}= \bigcup_{\alpha}\in SIi(p;i)^{*}$

Then $H(p)^{*}\mathrm{i}_{\mathrm{S}}$ a $d$-complete poset.

Remark. If $P$ is a Yo\’ung diagram or a shifted $\mathrm{Y}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{g}i$ diagram, then
the above definition of hooks coincide with the known one. See [5],
5.1.4, Ex.21 for the graphical definition of hooks of a shifted Young
diagram. (This exercise gave the motivation for the present work.)

4.4. Main Theorem

Let $P$ be a (connected or disconnected) $d$-complete poset, and con-
sider a $P$-game $g_{P}$ . We have the following generalization of Theorem
2:

Theorem 6. The game $g_{P}$ satisfies the parity condition. $M_{\mathit{0}re\mathit{0}v}er_{f}$

its energy $E(g_{P})$ satisfies:

$E(g_{P})= \sum_{p\in P}\oplus N(E(g_{H}(p)*))$ .

The proof will appear elsewhere. If $P$ is a Young diagram, then we al-
ways have $N(E(\mathit{9}H(p)^{*}))=N(|H(p)|)$ (although, in general, $E(\mathit{9}H(p)*)\neq$

$|H(p)|)$ . Hence Theorem 2 is a special case of Theorem 6.

Example. Let $P$ be a $d$-complete poset of the following form (called
“Inset” in [7] $)$ .
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$v_{1}-v_{2}arrow...$ $arrow v_{k}arrow xarrow\bulletarrow...\bullet$ $arrow\bulletarrow\bullet$

$\uparrow$ $\uparrow$ $\uparrow$

$yarrow\bulletarrow\bulletarrow\ldots$

$\uparrow$ $\uparrow$

$\bulletarrow\bulletarrow\ldots$

: :
$\bulletarrow\ldots$

$\uparrow$

$\bullet$

More precisely, $P$ is the union of a Dynkin diagram of type $\mathrm{D}$

$v_{1}arrow v_{2}arrow\ldotsarrow v_{k}arrow x$ ,
$\uparrow$

$y$

and a Young diagram

$Y= \bigcup_{i=1}^{k+1}\{(i,j);1\leq j\leq n_{i}\}$ , $n_{1}\geq\ldots\geq n_{k+1}\geq 0$

with an identification $x=(1,1)$ if $n_{1}\geq 1$ , and an extra relation
$yarrow(2,1)$ if $n_{2}\geq 1$ . The top tree of $P$ is :

$v_{1}-v_{2}arrow\ldots-v_{k}-x-\bulletarrow\ldots\bulletarrow\bulletarrow\bullet$

$\uparrow$

$y$

which is, in general, not a Dynkin diagram of finite type.
By Theorem 6, we get

$E(_{\mathit{9}}P)=E(g_{Y}) \oplus\sum_{m1\leq\leq k+1}\oplus N(1+E(g_{Y}m))$
,

where, for $1\leq m\leq k+1,$ $Y_{m}$ is the Young diagram given by:

$Y_{m}= \bigcup_{i=1}^{k}\{(i,j);1\leq j\leq n_{i}^{()}m\}$ ,

where
$n_{1}^{(m)}=n_{1}+1,$

$n^{(m}2=(m))n2+1,$ $\ldots,$

$n_{m-}^{(m)}1=n_{m-1}+1$ ,

$n_{m}^{(m)}=n_{m+1},$ $n1n=2,$ $\ldots,$$n^{()}m+m+km=n_{k}+1$ .
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