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Spiral waves in complex-oscillatory or excitable media contain synchronization defect lines which
separate domains of different oscillation phases. The phase changes by multiples of $2\pi$ across these
defect lines and they arise from the need to reconcile the rotation period of a one-armed spiral wave
with the oscillation period of the local dynamics. Synchronization defect lines are analysed and
classified. Spatially distributed systems of this type may also exhibit line defect turbulence due to
the nucleation, growth and destruction of defect lines. The transitions to line defect turbulence are
non-equilibrium phase transitions characterized by power law behavior of order parameters.

I. INTRODUCTION

Along with simple period-l dynamics, almost all
known oscillatory reactions also display complex-
periodic, aperiodic or chaotic behavior. [1] A complex-
periodic oscillation is characterized by many peaks per
full period if viewed as a time series of a single concen-
tration variable and, in a suitably chosen concentration
phase space, it corresponds to an orbit which loops sev-
eral times before it closes onto itself. Period doubled os-
cillations have period $T_{n}\approx 2^{n}T_{0}$ , where $T_{0}$ is the period
of the orbit which spawned the period-doubling cascade,
and have $2^{n}$ loops in a phase space representation of the
orbit. We consider situations where the local dynamics in
a spatially-extended system exhibits such period-doubled
temporal patterns.

Complex or chaotic oscillations are quite common and
expected to be generic for systems with more than two
local scalar fields although little is known about the spa-
tiotemporal dynamics of media with such local oscilla-
tions. We show that in most circumstances the basic
spatial patterns still exist and, in particular, spiral waves
are easily observed; however, new features appear giving
rise to qualitative changes in the overall synchronization
of the medium.

In Section II we describe synchronization defect lines,
which have been observed in numerical simulations [2-7]
and experiments $[8,9]$ . The study of synchronization de-
fect lines is continued in Section III gives a classifica-
tion of defect lines and outlines a complete solution to
the classification problem for period-doubled media with
$\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}- 2^{n}$ local dynamics. The role of defect lines in
the transition from complex-periodic to chaotic dynam-
ics is considered in Sec. IV. The conclusions are given in
Sec. V.

II. SYNCHRONIZATION DEFECT LINES

We examine systems described by a reaction-diffusion
equation with a local reaction rate term, $\mathrm{R}(\mathrm{c}(\mathrm{r}, t))$ . As
a specific example of a reaction-diffusion system with
complex local dynamics we take $\mathrm{R}(\mathrm{c})$ to be given by
the R\"ossler model [10] with $R_{x}=-c_{y}-c_{z}$ , $R_{y}=$

$c_{x}+Ac_{y},$ $R_{z}=c_{x}c_{z}-Cc_{z}+B$ . This system $\mathrm{w}\mathrm{a}\mathrm{s}\tilde{\dot{\mathrm{x}}}1-$

vestigated for $C$ in the interval [2., 6.] with the other ,
$\mathrm{p}*$

rameters fixed at $A=B=0.2$ . We observed that&e
spatially-distributed system undergoes $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}-\mathrm{d}\mathrm{o}\mathrm{u}\mathrm{b}\Phi$

bifurcations. Simulations designed to characterize $\mathrm{f}\mathrm{f}\mathrm{i}^{}\mathrm{e}$

period-doubling transitions were performed on a di&
shaped domain $(R=256, D=1.6)$ with a single $\mathrm{s}\mathrm{p}\dot{\mathrm{n}}\mathrm{f}\mathrm{f}\mathrm{i}\sim$

wave in the center. $[2,4]$ The spiral wave concentration
profile in the period-l regime was taken as the initial $0\mathrm{f}\mathrm{f}\mathrm{l}1-$

dition and the parameter $C$ was gradually incrementil.
This system undergoes a first period-doubling bifurea-
tion at $C=C_{1}^{*}\approx 3.03$ . Within the period-2 domain, $\Re \mathrm{l}\epsilon$

spiral wave acquires a global structure that differs fnnm
that in a simple periodic medium. Figure 1 shows the
$c_{z}(\mathrm{r}, t_{0})$ concentration field at a single time instant $t_{0}$ .

$\mathrm{F}\mathrm{l}\mathrm{G}$ . $1$ . Spiral wave in the $\mathrm{R}_{\ddot{\mathrm{O}}\mathrm{S}\mathrm{S}}1\mathrm{e}\mathrm{r}$ medium with $\mathrm{n}\mathrm{o}-\mathrm{g}\mathrm{n}\mathrm{K}$

boundary conditions and period-2 local dynamics at $C=\mathrm{R}$

Concentration field $c_{z}(\mathrm{r}, t)$ is shown as grey shades. The sffffi
line depicts the $\Omega$ curve. Dynamics on the small arc $\mathrm{s}\mathrm{e}\mathrm{g}\mathrm{I}\varpi \mathrm{g}\mathrm{t}$

that transversally cuts the $\Omega$ curve is described be.l.ow.
The main feature of this spiral wave is the presenmif

a line, labeled $\Omega$ in Fig. 1, which connects the spiral $\mathrm{m}$

core to the boundary. Along this $\mathrm{l}\mathrm{i}\mathrm{A}\mathrm{e}$ the pattern $\mathrm{i}_{\mathrm{S}\backslash }\ovalbox{\tt\small REJECT}$

placed by one wavelength. While the wave $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{a}\mathrm{g}\delta\ \mathrm{a}$

the dislocation line remains stationary. The $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{a}*$

tion time series at any two nearby points on oppoe-$i\mathrm{t}\mathrm{g}$

sides of this line are shifted in time relative to each $0\mathrm{f}\mathrm{f}\mathrm{i}\pi$

by one period of rotation of the spiral. The $\mathrm{p}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{g}\mathrm{e}|\ovalbox{\tt\small REJECT}_{i}\mathrm{R}$

high-amplitude wave maximum through one observation
point is synchronized with the passage of a $1_{\mathrm{o}\mathrm{W}-\mathrm{a}\mathrm{m}}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{g}\Phi$
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maximum through the other and vice versa. We call this
line a synchronization defect line. Two arbitrary states
of the spiral wave evolution cannot be transformed into
each other by simple rotation of the entire concentration
field. After one turn of the spiral the high and low max-
ima interchange and it is only after two spiral revolutions
that the concentration field is restored to its initial value.

Figure 2 shows local orbits calculated at five different
points on the arc shown in Fig. 1 with radius $r_{0}=130$

and monotonically increasing $\theta$ .

$\mathrm{F}\mathrm{l}\mathrm{G}$ . $2$ . Loop exchange in local orbits as the $\Omega$ curve is
crossed. Right column displays the $c_{z}(\theta, t)$ time series corre-
sponding to the orbits in $(c_{x}, c_{y}, cz)\mathrm{P}^{\mathrm{h}}\mathrm{a}s\mathrm{e}$ space shown in the
$1.\mathrm{e}..\mathrm{f}.\mathrm{t},\mathrm{C}\mathrm{O}\backslash \sim 1..\mathrm{u}\mathrm{m}\mathrm{n}\backslash \cdot.,$ . $:_{\mathrm{I}}\cdot$ . . $\backslash \cdot$

As one $t\mathrm{l}\mathrm{r}\mathrm{a}\mathrm{V}\dot{\mathrm{e}}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{s}$ the arc, the larger, outer loop of the
local orbit constantly shrinks while the smaller, inner
loop.ggrro.ws. At $\theta=\theta_{\Omega}$ , both loops merge and then
pass $\mathrm{e}\mathrm{a}\mathrm{C}\mathrm{h}^{}$ other $\mathrm{e}\mathrm{x}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{I}^{\backslash }$ their positions in phase space.
As one sees from Fig. 2, at the $\mathrm{e}\lambda \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}$ point $\theta=\theta_{\Omega}$

not only are the $c_{z}\mathrm{m}\mathrm{a}\mathrm{x}\dot{\mathrm{i}}\mathrm{m}\mathrm{u}\mathrm{m}$ values of two loops $\mathrm{e}.\mathrm{q}\mathrm{u}\mathrm{a}\underline{\mathrm{l}}$

$(,\delta_{1}c_{z}(\theta_{\Omega})\underline{\mathrm{R}}0)‘$ , but the entire loops.coincide in phase
space.. and the local oscillation is effectively $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{o}\mathrm{d}-1}..\cdot$

$\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{d}\mathrm{e}\mathrm{f}..\mathrm{e}\mathrm{C}\mathrm{t}$ lines have been observed exper-
$\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}!\backslash \mathrm{l}’ \mathrm{y}$ in a spatially heterogeneous BZ reaction sys-
tem consisting of: thin (0.7 mm) layer of a $\mathrm{M}\mathrm{n}_{7}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{Z}\mathrm{e}\mathrm{d}$

BZ $\mathrm{r}\mathrm{e}\mathrm{a}^{4}\mathrm{C}_{I}\acute{\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}..\mathrm{m}\mathrm{i}\mathrm{x}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ with a moIlolayer of the surfactant-

derivative of the ruthenium-bipiridil complex on its top
[8]. Synchronization defect lines have also been observed
in another set of experiments on the BZ reaction under
different conditions by Park and Lee [9].

A. Period-4 synchronization defects

As $n$ for a period $2^{n}$ orbit increases one expects the
diversity of defects will grow since the total phase shift
associated with defect lines increases. As the parameter
$C$ is increased a second period-doubling is observed at
$C_{2}^{*}=4.075$ . The transition to period-4 dynamics results
in the doubling of the spiral wavelength, while the wave
preserves its one-armed geometry. Therefore, the instan-
taneous concentration profile of the spiral wave normal
to its front exhibits four different maxima corresponding
to four different loops of the local orbit. The loops may
be numbered according to their position in phase space
starting from innermost loop. Then, up to cyclic permu-
tations, the wave maxima follow each other in the order
$4arrow 1arrow 3arrow 2$. This is the order in which the loops are
visited during one full period of the dynamics. After one
spiral rotation the bands exchange according to the per-
mutation $(_{342^{4}}^{123}1)$ defined by the order of loop succession.
Naturally, it takes four spiral rotations for the pattern to
return to itself.

Two types of defect line exist which we denote $\Omega_{1}$ and
$\Omega_{2}$ . As in the case of the prototypical $\Omega$ curve, a cer-
tain value of the phase shift, expressed in fractions of the
full-period phase increment $8\pi$ , is associated with cross-
ings of the $\Omega_{1}$ and $\Omega_{2}$ curves. Similar to the $\Omega$ curve,
crossing of $\Omega_{2}$ leads to a half-period shift which amounts
to a $4\pi$ phase translation. The specific nature of the
half-period time shift is such that it is not possible to de-
termine which oscillation is advanced, since a translation
by $T_{4}/2$ forward is equivalent to a shift by $T_{4}/2$ back-
ward. This is not the case for the crossing of the $\Omega_{1}$ line
where the oscillation acquires a quarter-period $+2\pi$ or
minus quarter-period phase shift $-2\pi\equiv 6\pi$ , depending
on the direction of crossing.

As in the period-2 medium, the phase discontinuity on
the $\Omega_{1}$ and $\Omega_{2}$ curves results from loop exchanges. It
is convenient to denote the loop exchanges by permuta-
tions which specify for every loop with number $\ell$ of the
oscillation pattern on one side of the defect, the loop with
number $m$ which is executed by the local dynamics on the
other side of the defect at the same time instant. Thus,
for the crossings of the $\Omega_{1}$ curve in opposite directions,
different loop exchange permutations are assigned: $(_{342^{4}}^{123}1)$

for $\mathrm{t}\mathrm{h}\mathrm{e}+2\pi$ shift and $(_{431^{4}}^{123}2)\mathrm{f}\mathrm{o}\mathrm{r}-2\pi$ . .

$q$

III. CLASSIFICATION OF DEFECT LINES

One can represent the loop exchanges for a partic-
ular type of defect line symbolically by a $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}^{:_{\mathrm{i}}}\mathrm{o}\mathrm{n}$
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which, for loop $m_{i},$ $i=1,$ $\ldots n$ , of a period-n orbit spec-
ifies another loop $m_{j},$ $j=1,$ $\ldots n,$ $j\neq i$ into which it
transforms under the exchange. Since the phase jump
on the $\Omega$ curves is always an integer multiple of $2\pi$ , to
characterize the jump one needs only a coarse-grained
description of the orbit with $2\pi$ being the minimum de-
tectable quantum of the phase change. At $t=t_{0}$ let
the $\mathrm{p}\mathrm{h}.\mathrm{a}$se point of the period-n orbit be somewhere on
the $m_{1^{-}}\mathrm{t}\mathrm{h}$ loop, at $t=t_{0}+T_{n}/n$ on the $m_{2}$ -th loop,
and so on (where $m_{l}\in[1,$ $n],$ $l\in[1,$ $n],$ $m\neq l$ ) until
at $t=t_{0}+T_{n}$ the phase point returns to the $m_{1^{-}}\mathrm{t}\mathrm{h}$ loop
and the pattern $(m_{1}, m_{2}, \ldots , m_{n})$ repeats. The symbolic
string $s=$ $(m_{1}, \ldots , m_{n})$ constructed in this way captures
the most significant gross features of the oscillation pat-
tern. An oscillation shifted by $2\pi$ forward relative to $s$ is
given by the string $(m_{2}, \ldots , m_{n}, m_{1})$ while the oscillation
shifted by $2\pi$ backward reads $(m_{n}, m_{1}, \ldots, m_{n-1})$ . Any
phase translation $\mathrm{b}\mathrm{y}\pm 2\pi k$ is represented by one of the $n$

cyclic permutations of the symbolic string $s$ . To find how
the crossing of particular line defect affects the phase of
the local oscillation one needs to act with the correspond-
ing exchange permutation on a trial symbolic string and
compare the result to the initial state. Consider as an
example the $\Omega_{2}$ curve described by the exchange permu-
tation $(_{214}^{12}34)3$ . Acting with it on the trial state (4132) one
finds

$(_{214}^{1234}3)(4132)=$ (3241),

which corresponds to $4\pi$ phase shift of the initial state.
This result does not depend on the choice of the trial
state. Action of the exchange permutation on any of the
four different period-4 strings results in another string
translated by $4\pi$ relative to the initial string. In the gen-
eral case of period-n dynamics, the exchange permuta-
tions correspond to operators which map the set of all
possible symbolic strings onto itself. These operators
form a group.

To classify all synchronization line defects existing in
the period-n medium and find the associated phase shift
values, one needs to identify all possible types of loop
exchange allowed by the topology of the orbit and select
those that correspond to nontrivial phase translations.
One needs a means to characterize a period-n orbit topo-
logically.

A general open braid [11] $b_{n}$ is a $\mathrm{t}\mathrm{o}\mathrm{p}_{0}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}.1$ object
which consists of $n$ oriented threads forming a tangle as
they run from one end to the other. Each $\mathrm{c}..\mathrm{r}$ossing of the
$\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}_{\mathrm{S}}i$ and $i+1$ is assigned an elementa..r$\mathrm{y}$ braid

One may consider possible loop exchanges for the
period-2 period-doubled orbits and show how these ex-
changes influence the corresponding patterns of oscilla-
tion. A period-2 orbit is represented by. the simplest non-
trivial braid $\overline{B_{2}}=\overline{\sigma_{1}}$ shown in Fig. 3. Consider the
first Markov move $\mathcal{M}_{1}^{(1)}$ which propagates the elemen-
tary. braid $\sigma_{1}$ by

$2\pi \mathrm{a}\mathrm{r}\mathrm{o}_{l}\mathrm{u}.\mathrm{n}\mathrm{d}..\cdot \mathrm{t}\mathrm{h}\mathrm{e}.\mathrm{b}\mathrm{r}.\mathrm{a}\mathrm{i}’:\mathrm{d}.\overline{B2}\mathrm{i}\mathrm{n}\sim..\mathrm{a}..\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}.\mathrm{c}\prime \mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

oppo,site to the flow.

FIG. 3. Propagation of $\sigma_{1}$ around the $\overline{B_{2}}$ braid.results in
the exchange of loops.

The superscript in parentheses denotes the power $n$

while the subscript numbers the moves consecutively. Al-
though the braid $\overline{B_{2}}$ remains unchanged as a result of
this move, one finds that the two loops have interchanged
their positions. To indicate this the loops $\mathrm{o}\mathrm{f}\overline{B_{2}}$ are drawn
in different line styles in Fig. 3. The left panel shows $\overline{B_{2}}$

before the application of $\mathcal{M}_{1}^{(1)}$ and the right panel after.
In this way the exchange operators and algebraic rela-
tions between them can be established for period-doubled
orbits with higher $n$ .

IV. LINE DEFECT TURBULENCE

Thus far we have considered the description and anal-
ysis of line defects in systems with period-2 and period-4
dynamics in the period doubling cascade. As $C$ is in-
creased one finds a complex scenario..Which $\mathrm{i}\mathrm{n}\check{\mathrm{v}}\mathrm{o}1_{\mathrm{V}}\mathrm{e}\mathrm{s}$ tur-
bulent stages characterized by spontaneous formation,
erratic motion and proliferation of synchronization de-
fect lines. To characterize line-defect turbulence quanti-
tatively one needs a means to both visualize $\dot{\mathrm{t}}\mathrm{h}\mathrm{e}$ dynam-
ics of the $\Omega$ lines and measure their density. To this end
scalar fields were defined [6] in the following way: during
four consecutive rotations of the spiral wave the values of
the $c_{z}(\mathrm{r})$ concentration maxima $A_{i}(\mathrm{r}),$ $i=\overline{1,4}$ were col-
lected at every point in the medium and sorted so that
$A_{1}(\mathrm{r})\leq A_{2}(\mathrm{r})\leq A_{3}(\mathrm{r})\leq A_{4}(\mathrm{r})$ . $\mathrm{T}\mathrm{h}^{\mathrm{R}}\mathrm{e}$ scalar fields are de-
fined as $\xi_{1}(\tau)=A_{4}(\mathrm{r})-A_{1}(\mathrm{r})$ and $\xi_{2}(\mathrm{r})=A_{4}(\mathrm{r})-A_{3}(\mathrm{r})$ .
By construction, $\xi_{1}(\mathrm{r})$ and $\xi_{2}(\mathrm{r})$ take on fixed, non-zero
values at points in the medium with period-4 dynamics
and vanish at points where the loop exchanges occur.
Indeed, $\xi_{1}(\mathrm{r})$ decreases to zero on the $\Omega_{1}$ curves while
$\xi_{2}(\mathrm{r})$ vanishes on both the $\Omega_{1}$ and $\Omega_{2}$ curves. The $\xi_{1}(\mathrm{r})$

and $\xi_{2}(\mathrm{r})$ fields allow one both to determine the lengths
of the $\Omega$ curves and to visualize them. Figure 4, panel
(c), shows the $\xi_{2}(\mathrm{r})$ field at $C=4.3$ for a medium with
periodic boundary conditions supporting a spiral pair.
The corresponding $\cdot$ phase $\varphi(\mathrm{r}, t_{0})$ and $c_{z}(\mathrm{r}, t\{\})$ fields are
shown in panels (a) and (b), respectively. The cores of
spiral waves, seen as black disks, are connected by a com-
mon $\Omega_{1}$ curve which appears as a wide, nearly straight
black line. At this value of $C$ the dynamics in the bulk
of the medium (spiral cores, $\Omega_{1}$ curve, and shock lines
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excluded) is given by a period-4 pattern (see Fig. $5(\mathrm{a})$ ).
The shock lines, where the spiral waves collide, are seen
in panels (c) and (d) as one vertical and two horizontal
strips where the grey shades are inhomogeneous. This
inhomogeneity in the $\xi_{2}(\mathrm{r})$ field indicates that the lo-
cal dynamics on the shock lines is different from that in
the bulk. Indeed, the calculations show that the local
dynamics on the shock lines at $C=4.3$ is given by two-
banded chaos (see Fig. $5(\mathrm{b})$ ). The chaotic dynamics on
the shock lines gives rise to spatially coherent fluctua-
tions of $A_{i}(\mathrm{r})$ fields seen in Fig. $4(\mathrm{c})$ as darkly shaded
“breathing spots”. Sufficiently large fluctuations (like
that indicated by the arrow in the figure) may result in
the creation of “bubbles” –domains delineated by cir-
cular $\Omega_{2}|$ curves (cf. Fig. $4(\mathrm{d})$ ). For $C\leq C_{\Omega_{2}}=$ 4.306,
the bubbles are formed with a size s.maller than a cer-
tain critical value and collapse shortly after birth. As $C$

increases beyond $C_{\Omega_{2}}$ , the bubble nuclei begin to prolif-
erate, forming large domains whose growth is controlled
by collisions with spiral cores or other domains

$\mathrm{F}\mathrm{l}\mathrm{G}$ . $4$ . Representation of defect lines by the $\xi_{2}(\mathrm{r})$ field
for the medium with two spiral waves at $C=4.30(\mathrm{c})$ and
$C=4.32(\mathrm{d})$ . Panels (a) and (b) show, respectively, the
$\varphi(\mathrm{r}, t_{0})$ and $c_{z}$ ( $\mathrm{r},$ to) fields calculated for the medium in panel
(c).

$\mathrm{F}\mathrm{l}\mathrm{G}$ . $5$ . Time series of the $c_{z}$ concentration maxima: $\mathrm{a},\mathrm{b}$ )
$C=4.30,$ $\mathrm{c},\mathrm{d})C=4.42$ and $\mathrm{e},\mathrm{f}$) $C=4.7$. Left panels show
the local dynamics at a point in the bulk, while the right pan-
els show the dynamics on the shock lines. Time is in units of
thousands of spiral revolutions. In panels (c) and (e), respec-
tively, the crossing of the $c_{z}$ maxima reflect the passages of an
$\Omega_{2}$ or $\Omega_{1}$ line through the observation point in the medium.

The transition to line-defect turbulence changes the
character of the local dynamics observed in the bulk of
the medium. As the $\Omega_{2}$ lines propagate through the
medium the associated loop exchanges result in an ef-
fective band-merging in the orbits of local trajectories so
that they take the form of two-banded chaotic trajecto-
ries (cf. Fig. $5(\mathrm{c})$ ). As $C$ increases past $C\approx 4.5$ the
local dynamics fails to exhibit a period-4 pattern in the
intervals separating line defect passages and shows thick
four-banded orbits whose bands grow in width with in-
creasing $C$ . The width of chaotic bands varies from point
to point and while in some locations one observes their
merging, in others there might be a distinct gap between
them. The local dynamics on the shock lines also pro-
gresses towards less-structured chaos. At $C=4.42$ (cf.
Fig. $5(\mathrm{d}))$ it already exhibits one-banded chaos.

Rom these observations it follows that the evolution
of the size and shape of a domain is controlled by the
balance of two competing factors: propagation of defect
lines along the phase gradient directed to the spiral wave
cores which results in line growth, and the tendency of
diffusion to eliminate curvature and reduce the length of
defect lines.

V. CONCLUSIONS

In this talk an overview of synchronization defect lines
in two-dimensional complex-periodic and chaotic media
was presented. Stable spiral waves in such systems are

102



one-armed and, therefore, characterized by a topological
charge $n_{t}=\pm 1$ . In one turn of such a spiral wave the
local complex-periodic dynamics executes only a fraction
of the full oscillation period and the concentration field
does not return to its initial state. For example, in the
period-2 medium it takes two rotations of the spiral for
the concentration field to be restored. This conflict be-
tween the spiral rotation period and the period of the
local oscillation is reconciled by the presence of a syn-
chronization defect line connecting the wave core to the
boundary or to another spiral wave core with opposite
topological charge.

Synchronization defects also play an important role in
the transition to chaos. In this transition, media sup-
porting spiral waves exhibit line-defect turbulence char-
acterized by proliferation, erratic motion and collision of
defect lines. In this regime the dynamics of defects is
controlled by two factors: growth along the phase gradi-
ent and the tendency of diffusion to reduce their length
and curvature. The balance of these factors gives rise to a
statistically stationary density of defect lines which varies
with the parameters. A power-law form of this variation
indicates that the transitions to line-defect turbulence
can be considered as non-equilibrium phase transitions.
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