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1 Introduction
This study is devoted to the analysis of some front propagation phenomena for a class of
advection-diffusion-reaction equations in a general class of periodic domains with underlying
periodic diffusion and velocity fields. In the case where the coefficients of the eq.uation are
invariant in some given direction and the domain itself is invariant in that direction, then one
can speak about travelling fronts which move in that direction with constant speed and whose
profiles do not change as time runs. In periodic domains or media, the notion of travelling
fronts has to be replaced by the notion of pulsating (or periodic) travelling fronts: a pulsating
travelling front propagates in some direction with some unknown effective speed but its profile
changes periodically as time runs. Pulsating travelling fronts appear in various physical models
and can propagate in several classes of periodic domains such as straight or oscillating infinite
cylinders, the whole space, or domains with periodic holes, etc. Various existence, uniqueness
and monotonicity results are given for two types of reaction terms. For a combustion-type
nonlinearity, the pulsating travelling fronts exist, their speed is unique and the fronts are
increasing in the time variable and unique up to translation in time. For another class of
nonlinearity arising either in combustion or biological models, the set of possible speeds is a
semi-infinite interval, closed and bounded from below, and for each speed, a time-increasing
pulsating travelling front exists. The results can all be stated in a same general class of periodic
media and domains (see section 6), and, as well as more general ones, they are proved in two
papers [7] and [8] written with H. Berestycki and with H. Berestycki and N. Nadirashvili.

2 Travelling fronts and pulsating travelling fronts in
straight infinite cylinders

Let us first deal with the case of a straight infinite cylinder

$\Omega=\{(x, y), x\in R, y\in\omega\}$
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where $\omega$ is a smooth bounded and connected subset of $R^{N-1}$ and let us consider the classical
solutions $u(t, x, y)$ of the following advection-diffusion-reaction equation

$\frac{\partial u}{\partial t}-\triangle u+q(x, y)\cdot\nabla_{x,y}u=f(u)$ , $t\in R,$ $(x, y)\in\overline{\Omega}$ (2.1)

together with Neumann boundary conditions on $\partial\Omega$

$\partial_{\nu}u=0$ , $(t, x, y)\in R\mathrm{x}\partial\Omega$ (2.2)

where $\nu=\iota/(x, y)=\nu(y)$ is the outward unit normal to $\partial\Omega$ and $\partial_{\nu}u=\frac{\partial u}{\partial\nu}$ . These Neumann
boundary condition mean that there is no flux of $u$ across the wall of the cylinder.

The underlying velocity field $q(x, y)=(q_{1}(x, y),$ $\cdots,$ $q_{N}(x, y))$ is given in $\overline{\Omega}$ , bounded in
$C^{1}(\overline{\Omega})$ and one assumes that

$\{$

$\mathrm{d}\mathrm{i}\mathrm{v}q$ $=$ $0$ in $\overline{\Omega}$

$\forall(x, y)\in\overline{\Omega}$ , $q(x+L, y)$ $=$ $q(x, y)$

$\int_{(0,L)\cross\omega}q_{1}(x, y)dxdy$ $=$ $0$

$q\cdot\nu$ $=$ $0$ on $\partial\Omega$

(2.3)

where the period $L$ of $q$ with respect to the variable $x$ is some given positive number. This field
$q$ is divergence-free (which corresponds to the incompressibility assumption for the underlying
medium) and may represent some turbulent fluctuations with respect to a mean field.

Such semilinear parabolic equations can arise in the modelling of thermodiffusive premixed
flame propagation with a unit Lewis number and a simple chemistry, and $u$ then represents
an adimensionalized temperature (see $e.g$ . [9], [52], [58]. These equations can also come from
biolog.ical models of population dynamics where $u$ stands for the relative concentration of
some substance [1], [20]. One of our goals is to analyze the influence of periodic advection,
and of other periodic phenomena, on the propagation of fronts (flames in combustion theory).
Related questions in combustion theory have been treated in [2], [16], [57]. In dimension $N\geq 2$ ,
equation (2.1) can then arise in turbulent combustion models to describe the propagation of a
premixed flame in an array of vortical cells. Generally speaking, equation (2.1) is a transport
equation for a passive quantity $u$ in a periodic excitable medium.

Two main types of nonlinearities $f$ are considered here. Namely, the given function $f$ is
assumed to be Lipschitz-continuous in $[0,1]$ and to be of one of the following types : either

$\{$

$\exists\theta\in(0,1),$ $f(s)=0$ for all $s\in[0, \theta],$ $f(s)>0$ for all $s\in(\theta, 1),$ $f(1)=0$
$\exists\mu\in(0,1-\theta))$ $f$ is nonincreasing on $[1-\mu, 1]$ , (2.4)

or $\{$

$f>0$ on $(0,1)$ , $f(0)=f(1)=0$
$\exists\mu>0$ , $f$ is nonincreasing on $[1-\mu, 1]$

$\exists\delta>0$ , $f\in C^{1,\delta}([0,1])$ .
(2.5)

Case (2.4) is usually referred to as the combustion nonlinearity with positive ignition temper-
ature $\theta[36]$ . Case (2.5) can be viewed as a combustion nonlinearity with ignition temperature
equal to $0[36]$ , or can also be thought of as the production rate of a population in biological
models [1], [22], [38], in which case the quantity $u$ represents the density of a population.
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One is interested in some particular solutions of (2.1-2.2), namely the pulsating travelling
fronts, which propagate in a given direction, say to the left, with an unknown effective speed
$c\neq 0$ , in the sense that

$u(t+ \frac{L}{c},$ $x,$ $y)=u(t, x+L, y)$ for all $t\in B\S,$ $(x, y)\in\overline{\Omega}$. (2.6)

Such fronts are assumed to have prescribed limiting conditions as $xarrow\pm\infty$ :

$\forall t\in R$ , $u(t, -\infty, y)=0$ , $u(t, +\infty, y)=1$ uniformly with respect to $y$ . (2.7)

Such pulsating fronts (which correspond to flames with pulsating shapes in combustion
theory) are of particular interest since, in periodic media, they can describe the behavior at
large time of the solutions of the related Cauchy problem with front-like initial conditions.
However, the question of the stability of the pulsating solutions is not addressed here.

The first analyses of the propagation phenomena for advection-diffusion-reaction equations
like (2.1) have dealt with the case of planar travelling fronts, for one-dimensional equations
$u_{t}=u_{xx}+f(u)$ with a zero velocity field $q=0$ . Such travelling fronts $u(t, x)$ move with
constant speed and their shape does not change as time runs : they satisfy (2.6) for any
$L\in R$ and can be written as $u(t, x)=\phi(x+ct)$ . Travelling fronts are then particular types of
pulsating traveling fronts. Since the pioneering paper of Kolmogorov, Petrovsky and Piskunov
[38] in 1937 for nonlinearities of the type (2.5), there have been many papers on the questions
of existence, uniqueness or stability properties of planar travelling fronts for various kinds
of reaction terms $f(u)$ , more general than (2.4) or (2.5), arising in combustion or biological
models (see $e.g$ . Aronson and Weinberger [1], Fife and $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{e}\mathrm{o}\mathrm{d}[21]$ , Kanel’ [36]). In the
case (2.4), there exists a unique speed $c$ (which is positive) and a unique-up to translation
-front $u$ . In the case (2.5), travelling fronts with speed $c$ exist if and only if $c\geq c^{*}$ for some
(positive) minimal speed $c^{*}$ and, for any given $c\geq c^{*}$ , the fronts with speed $c$ are unique up to
translation. Many papers have also been devoted to the study of planar travelling fronts for
systems of one-dimensional diffusion-reaction equations [5], [12], [14], [19], [42], [51].

For the one-dimensional equation $u_{t}=u_{xx}+f(x, u)$ with no advection and with a function
$f$ similar to (2.5), Hudson and Zinner [35] have got the existence of a semi-infinite line $[c^{*}, +\infty)$

of possible speeds of pulsating travelling fronts, as well as the formula (7.2) below for $c^{*}$ .
These existence and uniqueness results have almost entirely been generalized in the multi-

dimensional case of straight infinite cylinders $\Omega=R\cross\omega$ with shear flows $q=$ $(\alpha(y), 0, \cdots , 0)$ ,
by Berestycki, Larrouturou, Lions [10] and Berestycki, Nirenberg [13]. In the case of shear
flows, the velocity field $q$ is $L$-periodic in $x$ for all $L$ and the equation (2.1) is invariant by
translation in the variable $x$ . In this framework, travelling fronts are solutions of the type
$u(t, x, y)=\phi(x+ct, y)$ (the problem for travelling fronts is then reduced to a semilinear ellip-
tic equation for the function $\phi$). The known results for these travelling fronts are the following:
if $f$ is of type (2.4), there exists a unique speed $c$ and a unique travelling front $\phi(x+ct, y)(\phi$

is increasing in $s=x+ct$ and unique up to translation in $s$ ) whereas if $f$ is of type (2.5), there
exists a speed $c^{*}$ such that travelling fronts $\phi(x+ct, y)$ exist if and only if $c\geq c^{*}$ and, for each
given $c\geq c^{*}$ , the front $\phi$ is increasing and unique up to translation in $s$ if $f’(0)>0$ . The cases
of monotone shear flows along the main direction of the cylinder, and of almost parallel flows
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with more general reaction terms have been considered in [27], [28]. Lastly, similar existence
or uniqueness results with Dirichlet conditions on $\partial\Omega$ have been obtained in [24] and [50].

Many works have been devoted to the behavior at large time, and especially to the con-
vergence to travelling fronts, of solutions of Cauchy problems for equations like (2.1) under a
large class of initial conditions. These works have been initiated by Kolmogorov, Petrovsky
and Piskunov [38] in the one-dimensional case with no advection (see also [1], [15], [21], [49])
and followed by the study of the stability of travelling waves in infinite cylinders with shear
flows (see [11], [40], [46], [47]). So far, few works have dealt with the question of the stability
of pulsating travelling fronts in periodic media like the real line or the whole space [39], [53].

The above results for shear flows can be for the most part generalized for pulsating travelling
fronts in straight infinite cylinders with periodic advection $q$ :

Theorem 2.1 [7] Let $q$ be a velocity field satisfying (2.3).
1) If $f$ satisfies (2.4), there exists a unique solution $(c, u)$ of $(\mathit{2}.\mathit{1})-(\mathit{2}.\mathit{2})$ and $(\mathit{2}.\mathit{6})-(\mathit{2}.7),$ $u$

being increasing in $t$ and unique up to translation in $t$ . Moreover, $0<u<1$ and $c>0$ .
2) If $f$ satisfies (2.5), there exists a positive real number $c^{*}$ such that: if $c<c^{*}$ , there is no

solution $(c, u)$ of $(\mathit{2}.\mathit{1})-(\mathit{2}.\mathit{2})$ and $(\mathit{2}.\mathit{6})-(\mathit{2}.7)$; if $c\geq c^{*}$ , there exists a solution $(c, u)$ , such that
$0<u<1$ and $u$ is increasing in $t$ ; if $f’(0)>0$ and $c\geq c^{*}$ , then any solution $u$ of $(\mathit{2}.\mathit{1})-(\mathit{2}.\mathit{2})$

and $(\mathit{2}.\mathit{6})-(\mathit{2}.7)$ is increasing in $t$ .

Remark 2.2 If $f$ satisfies (2.5) and the additional assumption $f’(0)>0$ , one conjectures
that, for each speed $c\geq c^{*}$ , the solutions $u$ are unique up to translation in $t$ .

Remark 2.3 The function $u$ may not be increasing in the variable $x$ . This indeed can be
observed in some remarquable experiments carried out by P. Ronney and collaborators [45] on
$\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}|\mathrm{T}\mathrm{a}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{r}$ -Couette cells in the framework of autocatalytic chemical waves.

3 Cylinder type domains with periodic boundaries
The periodicity of the velocity field can actually derive directly from the periodicity of the
domain. That is the case when, instead of a straight infinite cylinder, one considers an infinite
cylinder $\Omega$ with a smooth and oscillating boundary :

$\Omega=\{(x, y)\in R^{N}, x\in R, y\in\omega(x)\}$ (3.1)

where the function $x\vdash\Rightarrow\omega(x)$ is periodic with period $L>0$ . Straight infinite cylinders
correspond to the case where $\omega=constant$ . Let now $q$ be a $C^{1}(\overline{\Omega})-$ velocity field satisfying

$\{$

$\mathrm{d}\mathrm{i}\mathrm{v}q$ $=$ $0$ in $\Omega$

$\forall(x, y)\in\overline{\Omega}$, $q(x+L, y)$ $=$ $q(x, y)$

$\int_{\{x\in(0,L),y\in\omega(x)\}}q_{1}(x, y)dxdy$ $=$ $0$

$q\cdot\nu$ $=$ $0$ on $\partial\Omega$ .

(3.2)

In the case where $f$ is of the “bistable” type and where $q=0$ , some conditions for the
existence or non-existence of pulsating travelling fronts have been given by Matano [41].

In the cases where $f$ is of the types (2.4) or (2.5), the same result as Theorem 2.1 holds :

Theorem 3.1 [7] Under the assumptions $(\mathit{3}.\mathit{1})-(\mathit{3}.\mathit{2})$ , parts 1) and 2) of Theorem 2.1 hold.
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4 Fronts in the whole space with periodic flows

A natural question about pulsating travelling fronts concerns the case where the domain $\Omega$ is
the whole space $R^{N}$ . Let us consider the advection-diffusion-reaction equation

$\frac{\partial u}{\partial t}-\triangle u+q(x)\cdot\nabla_{x}u=f(u)$ , $t\in R,$ $x\in R^{N}$ . (4.1)

If the velocity field $q$ in (4.1) is equal to a constant vector $q_{0}$ , then planar travelling fronts
of the type $u(t, x)=\phi(x\cdot e+ct)$ , propagating in a given direction $-e\in S^{N-1}$ , exist in both
cases (2.4) or (2.5), and the set of possible speeds is equal to $\mathrm{t}\mathrm{h}\mathrm{e}$ set of planar speeds for the
equation with $q\equiv 0$ , translated with the shift $q_{0}\cdot e$ .

Similarly, if $q$ is a shear flow $q=\alpha(x)e$ where $e\cdot\nabla\alpha=0$ and $\alpha$ is periodic with respect to
the variables orthogonal to $e$ , travelling fronts of the type $u(t, x)=\phi(x\cdot e+ct, x\cdot e_{2}, \cdots, x\cdot e_{N})$ ,
where $e$ has been completed into an orthonormal basis $(e, e_{2}, \cdots, e_{N})$ of $R^{N}$ , also exist. In that
last case, planar travelling fronts of the type $u(x, t)=\phi_{0}(x\cdot e’+c_{0}t)$ exist for any direction
$e’\in S^{N-1}$ such that $e’\perp e$ , where the couple $(c_{0}, \phi_{0})$ does not depend on $q$ and is the unique
solution of $\phi_{0}’’-c_{0}\phi_{0}’+f(\phi_{0})=0$ with $\phi_{0}(-\infty)=0,$ $\phi_{0}(+\infty)=1$ . Furthermore, it can
easily be checked in that case that, provided that $q=\alpha(x)e$ is not constant, there exists no
travelling front in a direction $e’$ other than $\pm e$ or the directions perpendicular to $e$ . This
example shows that, even for shear flows, the notion of travelling fronts is not sufficient to
describe the propagation of fronts in most of the directions of $S^{N-1}$ .

Let now $q$ be a divergence-free velocity field $q$ , of class $C^{1}(R^{N}),$ $L$-periodic with respect to
the space variables, in the sense that there exists an $N$-uple $(L_{i})\in(R_{+}^{*})^{N}$ such that

$\{$

$\mathrm{d}\mathrm{i}\mathrm{v}q$ $=$ $0$ in $R^{N}$

$\forall k\in\prod_{i=1}^{N}L_{i}\mathbb{Z}$, $\forall x\in R^{N}$ , $q(x+k)$ $=$ $q(x)$

.
$\int_{\Pi_{i=1}^{N}(0,L_{i})}q(x)dx$ $=$ $0$ .

(4.2)

Under the above assumptions, pulsating travelling fronts for (4.1) are the solutions $u(t, x)$

which propagate in a given direction, say $-e\in S^{N-1}$ , with an effective speed $c\neq 0$ :

$\{$

$\forall k\in\prod_{i=1}^{N}L_{i}\mathbb{Z}$, $\forall x\in R^{N}$ , $u(t+ \frac{k\cdot e}{c},$ $x)$ $=$ $u(t, x+k)$

$\forall t\in R$ , $u(t, x)$ $arrow$ $0$ , $u(t, x)$ $arrow$ 1,
$x\cdot earrow-\infty$ $x\cdot earrow+\infty$

(4.3)

where the above limits hold locally in $t$ and uniformly in the variables orthogonal to $e$ .
The questions of the existence and uniqueness of pulsating travelling fronts have been solved

by Xin [54], [56] in the case of a combustion nonlinearity $f$ satisfying (2.4), under the additional
assumption $f’(1)<0$ : for each given $e\in S^{N-1}$ , there exists a unique solution $u(t, x)$ of (4.1)
and (4.3), and $u$ is increasing and unique up to translation in $t$ . This result, which actually
holds for more general equations involving space-dependent diffusion terms (see also section
6) has been proved through a continuation method based on some invertibility properties of
linearized operators. This method does not seem to easily extend to the case of a nonlinearity
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$f$ satisfying (2.5), whereas the method used in [7] allows for the following Theorem 4.1, similar
to Theorems 2.1 and 3.1. Before stating this result, let us mention that the homogenization
limit with velocity fields or diffusion matrices involving very small scales has been carried out
by Freidlin [23], Heinze [31] and Xin [56]. Lastly, the question of front propagation in random
media has been considered in [23] and [56].

Let us now turn to the statement of the following existence, monotonicity and uniqueness
result of pulsating travelling fronts for the equation (4.1) :

Theorem 4.1 [7] Let $q$ be a $C^{1}$ velocity field satisfying $(\mathit{4}\cdot \mathit{2})$ and let $e\in S^{N-1}$ be a unit vector.
If $f$ is of the type (2.4), there exists a unique solution $(c, u)=(c(e), u(e))$ of $(\mathit{4}\cdot \mathit{1})$ and $(\mathit{4}\cdot \mathit{3})$ ,
the function $u$ being increasing and unique up to translation in $t$ . If $f$ is of the type (2.5),
there exists $c^{*}=c^{*}(e)>0$ such that no solution $(c, u)$ exists if $c<c^{*}$ , and, for each $c\geq c^{*},$ $a$

time-increasing solution $u$ exists and all solutions $u$ are increasing in $t$ if $f’(0)>0$ .

5 Periodic media with holes
Another class of periodic domains and media is the case where the domains have periodic
holes. For instance, consider first the case of the whole space with periodic holes; namely, let
$\Omega$ be a domain with a smooth boundary and such that

$\exists(L_{i})_{1\leq i\leq N}\in(R_{+}^{*})^{N}$ , $\forall k\in\prod_{i=1}^{N}L_{i}\mathbb{Z}$, $\Omega+k=\Omega$ . (5.1)

Let $\nu=\nu(x)$ be the outward unit normal to $\Omega$ . Let $q$ be a $C^{1}(\overline{\Omega})$ velocity field such that

$\{$

$\mathrm{d}\mathrm{i}\mathrm{v}q$ $=$ $0$ in $\Omega$

$\forall k\in\prod_{i=1}^{N}L_{i}\mathbb{Z}$, $\forall x\in\overline{\Omega}$, $q(x+k)$ $=$ $q(x)$

$\int_{\Pi_{i=1}^{N}(0,L_{i})}\mathrm{n}\Omega q(x)dx$ $=$ $0$

$q\cdot\nu$ $=$ $0$ on $\partial\Omega$ .

(5.2)

A pulsating travelling front in a $\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-e\in S^{N-1}$ is a solution $(c, u)$ (with $c\neq 0$ ) of

$\{$

$\frac{\partial u}{\partial t}-\triangle u+q(x)\cdot\nabla_{x}u$ $=$ $f(u)$ , $t\in R,$ $x\in\overline{\Omega}$

$\partial_{\nu}u$ $=$ $0$ , $t\in R,$ $x\in\partial\Omega$

$\forall k\in\prod_{i=1}^{N}L_{i}\mathbb{Z}$, $\forall x\in\overline{\Omega}$, $u(t+ \frac{k\cdot e}{c},$ $x)$ $=$ $u(t, x+k)$

$\forall t\in R$ , $u(t, x)x\cdot earrow-\inftyarrow 0$ , $u(t, x)$
$x\cdot earrow+\inftyarrow$

1,

(5.3)

where the above limits hold locally in $t$ and uniformly in the variables orthogonal to $e$ .
For a nonlinearity $f$ satisfying (2.4), the existence of pulsating travelling fronts has been

proved by Heinze [32] in the limit of asymptotically small holes, by using a perturbation
technique around the homogenized equation.

With the method used in [7], the same result as for the whole space holds :

Theorem 5.1 [7] If (5.1) and (5.2) are satisfied, Theorem 4.1 holds for the solutions of (5.3).

34



6 General periodic domains
The results presented above can all be written in a more general framework which we describe
now. Let $\Omega$ be a connected unbounded open set, with a smooth boundary, and such that

$\{$

$\exists 1\leq d\leq N,$ $\exists L_{1},$
$\cdots,$ $L_{d}>0,$ $\forall k=(k_{i})_{1\leq i\leq d}\in\prod_{i=1}^{d}L_{i}\mathbb{Z}$ , $\Omega+\sum_{i=1}^{d}k_{i}e_{i}=\Omega$

and $\Omega$ is bounded with respect to the variables $x_{d+1},$ $\cdots,$ $x_{N}$ ,
(6.1)

where $(e_{i})_{1\leq i\leq N}$ is the canonical basis of $R^{N}$ . Let us denote by $x=(x_{1}, \cdots , x_{d})$ the first $d$

coordinates and by $y=(x_{d+1}, \cdots, x_{N})$ the last $N-d$ ones. Let $\nu=\nu(x, y)$ be the outward
unit normal to $\Omega$ . Let $C$ be the periodicity cell defined by

$C=\{(x, y)\in\Omega, x\in(0, L_{1})\cross\cdots\cross(0, L_{d})\}$ .

We say that a field $v(x, y)$ defined in $\Omega$ is $L$-periodic with respect to the variable $x$ if $v(x+k, y)=$
$v(x, y)$ for all $k\in L_{1}\mathbb{Z}\cross\cdots\cross L_{d}\mathbb{Z}$ and for all $(x, y)\in\overline{\Omega}$.

Note that that class of domains includes all domains described above : the infinite cylin-
ders with straight or oscillating boundaries, the whole space with or without periodic holes.
Domains of the class (6.1) also include infinite cylinders or slabs with periodic holes.

Let $q=(q_{1}, \cdots, q_{N})$ denote a globally $C^{1}$ vector field defined in $\overline{\Omega}$ and such that

$\{$

$\mathrm{d}\mathrm{i}\mathrm{v}q$ $=$ $0$ in $\overline{\Omega}$

$q$ is $L$-periodic w.r.t. $x$

$\forall 1\leq i\leq d,$ $\int_{C}q_{i}dxdy$ $=$ $0$

$q\cdot\nu$ $=$ $0$ on $\partial\Omega$ .

(6.2)

Furthermore, let $A(x, y)=(A_{ij}(x, y))_{1\leq i,j\leq N}$ be a globally $C^{1}(\overline{\Omega})$ matrix field such that

$\{$

$\exists 0<c_{1}\leq c_{2}$ , $\forall\xi\in R^{N}$ , $\forall(x, y)\in\overline{\Omega}$,
$c_{1}| \xi|^{2}\leq\sum_{1\leq i,j\leq N}A_{ij}(x, y)\xi_{i}\xi_{j}\leq c_{2}|\xi|^{2}$

$A$ is symmetric and $L$-periodic w.r.t. $x$ .
(6.3)

In the sequel, if $z$ and $z’$ are two vectors in $R^{N}$ and $B$ is an $N\cross N$-matrix, then $zBz’$

denotes the number $zBz’:= \sum_{1\leq i,j\leq N}z_{i}B_{ij}z_{j}’$ .
Let $e$ be any given unit vector in $R^{d}$ and let $f$ be of the type (2.4) or (2.5). Let us now

study the questions of the existence and of the qualitative properties of pulsating travelling
fronts $u(t, x, y)$ , moving in direction $-e$ with an effective speed $c\neq 0$ , and solving

$\{$

$\frac{\partial u}{\partial t}-\mathrm{d}\mathrm{i}\mathrm{v}(A\nabla u)+q\cdot\nabla u$ $=$ $f(u)$ , $t\in R,$ $(x, y)\in\overline{\Omega}$

$\nu A\nabla u$ $=$ $0$ , $t\in R,$ $(x, y)\in\partial\Omega$

$\forall k\in\prod_{i=1}^{d}L_{i}\mathbb{Z}$ , $u(t+ \frac{k\cdot e}{c},$ $x,$ $y)$ $=$ $u(t, x+k, y)$ for all $(t, x, y)\in R\cross\overline{\Omega}$

$u(t, x, y)arrow 0$ , $u(t, x, y)$ $arrow$ 1 for each $(t, y)$ ,
$x\cdot earrow-\infty$ $x\cdot earrow+\infty$

(6.4)
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where the above limits hold locally in $t$ and uniformly in $y$ and in the directions of $lR^{d}$ orthog-
onal to $e$ .

That framework for the propagation of pulsating travelling fronts contains all situations
described in the previous sections. Note that the Laplace operator has been replaced with a
general heterogeneous diffusion operator $\mathrm{d}\mathrm{i}\mathrm{v}(A\nabla u)$ . Such operators have also been considered
in the onedimensional case or in the case of the whole space (see [44], [53], [54], [55], [56]).

In that general framework, the foilowing Theorem, generalizing Theorems 2.1, 3.1, 4.1 and
5.1, holds :

Theorem 6.1 [7] Let $\Omega$ be a domain satisfying (6.1). Let $e$ be a unit vector in $lR^{d}$ . Let $q$ and
$A$ be two globally $C^{1}(\overline{\Omega})$ vector and matrix fields satisfying $(\theta.\mathit{2})$ and (6.3).

1) Let $f$ be a nonlinearity of the ignition temperature type (2.4). There exists a unique so-
lution $(c, u)=(c(e), u(e))$ of (6.4), the function $u$ being increasing and unique up to translation
in $t$ . Moreover, $0<u<1$ and $c(e)>0$ .

2) Let $f$ be a nonlinearity of the type (2.5). There exists $c^{*}(e)>0$ such that problem (6.4)
has no solution $(c, u)$ if $c<c^{*}(e)$ while, for each $c\geq c^{*}(e)$ , it has a solution $(c, u)$ such that $u$

is increasing in $t$ . Moreover, if $f’(\mathrm{O})>0$ , then any solution $u$ of (6.4) is increasing in $t$ .

Remark 6.2 Theorems 2.1, 3.1, 4.1 and 5.1 hold in the general case where the Laplace op-
erator is replaced with a divergence type operator $\mathrm{d}\mathrm{i}\mathrm{v}(A\nabla u)$ together with Neumann type
boundary conditions $\nu A\nabla u=0$ on $\partial\Omega$ .

Remark 6.3 All above theorems work in the case where the nonlinearity $f(u)$ is replaced
with $h(x, y)f(u)$ if $h$ is a continuous, positive function which is $L$-periodic w.r.t. $x$ (see [7]).

At this stage, the question of the uniqueness of the pulsating travelling fronts for each speed
$c\geq c^{*}$ , in the case where $f$ satisfies (2.5), remains open, even under the assumption $f’(0)>0$ .

Another related open problem concerns the case where the function $f$ is of the bistable
type, namely, there exists $\theta\in(0,1)$ such that $f(0)=f(\theta)=f(1),$ $f<0$ on $(0, \theta),$ $f>0$ on
$(\theta, 1)$ and $f$ is nonincreasing in a right neighborhood of $0$ and in a left neighborhood $\mathrm{o}\mathrm{f}1$ . Some
conditions for the existence or nonexistence of pulsating travelling fronts in infinite cylinders
with periodic boundary have been given by Matano [41]. Other existence, nonexistence or
stability results have been obtained by Xin [53], [55] and Papanicolaou and Xin [44] in the case
of the whole space with almost uniform diffusion and advection coefficients, and by Nakamura
[43] for the one-dimensional case with periodic diffusion coefficient.

Lastly, let us mention here that the methods used in [7] to prove the uniqueness and mono-
tonicity properties of the pulsating travelling fronts in the case of a nonlinearity $f$ with positive
ignition temperature (2.4) actually work and lead to the same uniqueness and monotonicity
results in the case of a bistable nonlinearity $f$ .

7 Further results : formulas for the speeds
One of the most important questions related to the front propagation phenomena is the de-
termination of the speed of propagation of the travelling fronts, or of the pulsating travelling
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fronts in the periodic framework. In the theory of combustion for instance, the determination
of the burning velocity of a deflagration flame is a fundamental question.

Many works have been devoted to finding some formulas for the speeds of propagation of
travelling waves for advection-diffusion-reaction equations more general than those arising in
combustion models. The first formula comes back to the paper of Kolmogorov, Petrovsky and
Piskunov [38] and concerns the minimal speed $c^{*}=2\sqrt{f’(0)}$ of planar travelling fronts for the
equation $u_{t}=u_{xx}+f(u)$ with nonlinearities of the “Fisher-KPP” ([22], [38]) type

$f(\mathrm{O})=f(1)=0,$ $f>0,$ $f(s)\leq f’(0)s$ on ] $0,1$ $[$

(7.1)and $\exists\mu>0,$ $f$ is nonincreasing on $[1-\mu, 1]$ .

Other formulas of the variational type have been derived for such one-dimensional equations.
Let us for instance mention the formula

$c^{*}= \min_{0\rho:[,1]arrow R,\rho(0)=0,\rho(0)>0,\rho>0}$, in $(0,1]$

$\sup_{u\in(0,1]}(\rho’(u)+\frac{f(u)}{\rho(u)})$

of Hadeler and Rothe [26] for nonlinearities of the type (2.5). The latter implies $2\sqrt{f’(0)}\leq$

$c^{*}\leq 2\sqrt{\sup_{(0,1]}f(u)/u}$ and gives $c^{*}=2\sqrt{f’(0)}$ in the case (7.1). Integral formulations have
been given by Benguria and Depassier [4]. Other variational formulas have been obtained for
systems of one-dimensional equations [42], [48], [51], or for equations with discrete diffusion
[30]. Some formulas have been generalized by Hamel [29], Heinze, Papanicolaou and Stevens
[33] in the multidimensional case with shear flows, and by Hudson and Zinner [34] in the
discrete case. For instance, in the case (2.4), the unique speed $c$ of travelling fronts $\phi(x+ct, y)$

solving (2.1) in a cylinder $\Omega=R\cross\omega$ with a shear flow $q=(\alpha(y), 0, \cdots, 0)$ , is given by

$c= \min_{w\in \mathcal{E}}\sup_{x_{1}(,y)\in\overline{\Omega}}(\frac{\Delta w+f(w)}{\partial_{x}w}-\alpha(y))=\max_{w\in \mathcal{E}}\inf_{(x_{1},y)\in\overline{\Omega}}(\frac{\Delta w+f(w)}{\partial_{x}w}-\alpha(y))$

where $\mathcal{E}=\{w\in W_{loc}^{2,p}(\Omega),$ $\triangle w\in C(\overline{\Omega}),$ $0<w<1,$ $\partial_{x}w>0$ in $\overline{\Omega},$ $\partial_{\nu}w=0$ on $\partial\Omega$ ,
$w(-\infty, \cdot)=0,$ $w(+\infty, \cdot)=1\}$ and $p>N$ (see [29]). In the case (2.5) with $f’(0)>0$ , the
minimal speed $c^{*}$ for travelling fronts is equal to

$c^{*}= \min_{w\in \mathcal{E}}\sup_{x_{1}(,y)\in\overline{\Omega}}(\frac{\triangle w+f(w)}{\partial_{x}w}-\alpha(y))$ .

Explicit formulas for the speeds of propagation of travelling waves have been obtained
in some asymptotic cases, like in the limit of high activation energies (see [12] in the one-
dimensional case, and [6] in the multi-dimensional case). Formal asymptotics in the case of
shear flows with large amplitude have been derived by Audoly, Berestycki and Pomeau in [3].

We also refer to [17], [18] and [37] for some a priori bounds of the speeds of propagation
of the solutions of the Cauchy problem associated to (2.1) with front-like initial conditions.
Namely, Constantin, Kiselev, Oberman and Ryzhik have defined the notion of bulk burning
rate $V(t)=| \omega|^{-1}\int_{R\cross\omega}u_{t}(t, x, y)dxdy$ ( $|\omega|$ is the Lebesgue-measure of $\omega$ ), and, from a subtle
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decomposition of the velocity field $q$ into positive and negative parts, they have obtained some
lower bounds for $V(t)$ (or for the time-average of $V(t)$ ) if $u$ is a solution of the corresponding
Cauchy problem with front-like initial conditions [17], [37]. These bounds have been obtained
both for shear-like percolating or cellular flows and especially lead to some lower bounds for
the effective speed $c$ of any pulsating travelling front solving (2.1-2.2) and (2.6-2.7), since, for
such a solution $u$ , one has $T^{-1} \int_{t_{0}}^{t_{0}+T}V(t)dt=c$ with $T=L/c$, for any $t_{0}\in R$ .

For pulsating travelling fronts in periodic media, the only formula, derived by Hudson
and Zinner [35], concerns the minimal speed of propagation in the one-dimensional case $u_{t}=$

$u_{xx}+f(x, u)$ , where $f$ is 1-periodic in $x,$ $f(x, u)>0$ for $u\in$ ] $0,$ $\overline{u}(x)[,$ $f(x, 0)=f(x, \overline{u}(x))=0$

and $\mu(x)=f_{u}’(x, 0)=\sup_{u\in]0,\overline{u}(x)[}f(x, u)/x$ . Namely, Hudson and Zinner have obtained the
following formula for the minimal speed :

$c^{*}= \min_{r>0}$
$\{\psi=\psi(x)\in C^{2}(R), \min_{\psi>0,\psi}1-\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}\}$

$\max_{x\in[0,1]}\frac{\psi’’+2r\psi’+(r^{2}+\mu(x))\psi}{r\psi}$ . (7.2)

In the paper [8], the question of the determination of the minimal speed of pulsating
travelling waves solving (6.4) in a domain of the class (6.1) is considered under the additional
assumption that the function $f$ satisfies (7.1).

From Theorem 6.1, under the assumptions $(6.1)-(6.3)$ and for each given unit direction $e$

of $lR^{d}$ , there exists a minimal speed $c^{*}(e)$ of the pulsating travelling fronts. Our goal in [8] has
been to find an explicit formula for the minimal speed $c^{*}(e)$ .

We have obtained the following equivalent variational formulas for $c^{*}(e)$ :

$c^{*}(e)= \min\{c, \exists\lambda>0, \mu_{c}(\lambda)=f’(0)\}$ (7.3)

where $\mu_{c}(\lambda)$ is the principal eigenvalue of the elliptic operator $-L_{c,\lambda}\psi=-\mathrm{d}\mathrm{i}\mathrm{v}(A\nabla\psi)$ -

$\lambda(\mathrm{d}\mathrm{i}\mathrm{v}(A\tilde{e}\psi)+\tilde{e}A\nabla\psi)+q\cdot\nabla\psi+(\lambda q\cdot\tilde{e}+\lambda c-\lambda^{2}\tilde{e}A\tilde{e})\psi$ on the set $E$ of $L$-periodic with
respect to $x$ functions $\psi(x, y)$ such that $\nu A(\tilde{e}\lambda\psi+\nabla\psi)=0$ on $\partial\Omega$ . Here, $\tilde{e}$ denotes the vector
$\tilde{e}=(e_{1}, \cdots, e_{d}, 0, \cdots, 0)$ . Thus, under the KPP assumption (7.1), the minimal speed $c^{*}(e)$ can
be explicitely given in terms of $e$ , the domain $\Omega$ , the coefficients $q$ and $A$ and of $f’(0)$ . In the
general case where $f$ satisfies (2.5) and $f’(\mathrm{O})>0$ , the minimal speed $c^{*}(e)$ is always greater
than or equal to the right hand side of (7.3). Note also that the formula (7.3) is similar to that
of Berestycki and Nirenberg [13] for travelling waves in infinite cylinders with shear flows.

As observed in [56], the above formula (7.3) is equivalent to the following one :

$c^{*}(e)= \min_{\lambda>0}\frac{-k(\lambda)}{\lambda}$ (7.4)

where $k(\lambda)$ is the principal eigenvalue of the operator $-L_{\lambda}\psi=-\mathrm{d}\mathrm{i}\mathrm{v}(A\nabla\psi)-\lambda(\mathrm{d}\mathrm{i}\mathrm{v}(A\overline{e}\psi)+$

$\tilde{e}A\nabla\psi)+q\cdot\nabla\psi+(\lambda q\cdot\tilde{e}-\lambda^{2}\tilde{e}A\tilde{e}-f’(\mathrm{O}))\psi$ on the same set $E$ of functions $\psi$ as above.
Note that the formula (7.4) is similar to that of G\"artner and Freidlin [25] for the asymptotic
speed of propagation of solutions of Cauchy problem in $R^{N}$ with compactly supported initial
conditions and periodic diffusion coefficients (see [8] for a further study of the asymptotic
speeds of propagation). Note also that when $\Omega=lR^{N},$ $A=I$ and $q=0$ , this formula (7.4)
gives the KPP formula $c^{*}(e)=2\sqrt{f’(0)}$ for the minimal speed of planar fronts.

38



Lastly, the following formula also holds

$c^{*}(e)= \min_{\lambda>0}\min_{\psi\in F}(x,y)\in\overline{\Omega}\max\frac{L_{\lambda}\psi}{\lambda\psi}$ (7.5)

where $F=$ { $\psi\in E,$ $\psi\in C^{2}(\overline{\Omega}),$ $\psi>0$ in $\overline{\Omega}$}. This formula is obtained from (7.4) and from
some characterizations of principal eigenvalues of elliptic operators. This formula (7.5) for the
minimal speed of multidimensional pulsating fronts generalizes the formula (7.2) of Hudson and
Zinner [35] for the minimal speed of pulsating travelling fronts in the case of one-dimensional
equations of the type $u_{t}=u_{xx}+f(x, u)$ .

8 Short sketch of the proofs
The monotonicity and uniqueness results stated in part 1) of Theorem 6.1, in the case where the
function $f$ satisfies (2.4), are based on a sliding method in another set of variables $(s, x, y)=$
$(x\cdot\tilde{e}+ct, x, y)$ , for which the equation is elliptic degenerate, and on the parabolic maximum
principle in the original variables $(t, x, y)$ (remember that for travelling fronts with constant
speed $c$ , the equation of the profile of the front is elliptic in some variables, say $(x+ct, y)$ in the
case of an infinite straight cylinder). The existence of a solution $(c, u)$ in part 1) of Theorem 6.1
is obtained as a limit of solutions of regularized elliptic equations in approximated bounded
domains. The main difficulty is to deal with the degeneracy of the equations and to prove
that the solution obtained at the limit is not trivial. One especially proves some Bernstein-
type gradient estimates and one uses some exponentially decaying upper solutions in some
semi-infinite domains.

In the case where the function $f$ satisfies (2.5), the existence of a solution for the minimal
speed $c^{*}(e)$ is obtained as a limit of solutions for nonlinearities $f_{\theta}$ of the type (2.4) and ap-
proximating $f$ (with small ignition temperatures $\theta$ ). The existence of solutions for any speed
$c\geq c^{*}(e)$ is obtained through a method using sub- and super-solutions, and the non-existence
of solutions with speeds $c<c^{*}(e)$ follows from a sliding method and from a comparison with
suitable sub-solutions.
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