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1 Introduction
Since the Energy Star Project by $\mathrm{U}.\mathrm{S}$ . government, the power management for computer systems has
received considerable attention all over the world. As a computer consists of a number of electric
components and devices, the problems of power management to reduce the energy consumption have to
be discussed in terms of each component unit such as IC chip [1], microprocessor [2], CPU, disk drive,
display and so on. Also, since the measurement technique to estimate the electrical power consumed
in each component has been developed recently $[3, 4]$ , some interesting attempts have been made to
reduce the electrical power in the real computer operation $[5, 6]$ . In general, the power management
should be carried out at each level of the hierarchical computer design process; circuit level, layout level,
logic level, behavioral level, architectural level, etc. In particular, the system level power management
techniques have emerged as one of the most applicable design methodologies in practice, because they
do not assume the development of new low-power devices. For the details on the system level power
management techniques, see $[7, 8]$ .

The dynamic power management, as it is generically known, can provide a control scheme that
dynamically reconfigures an electric system to provide the requested services and performance levels
with a minimum number of active components or a minimum load on such components $[7, 8]$ . The
design methods will be useful for the operating system and the control system of peripheral devices.
Especially, the dynamic power management plays an important role to achieve energy efficiency in the
operating system, since the application software programs are monitored and controlled by it. It is,
however, known that typical operating systems like UNIX, $\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{d}_{0}\mathrm{w}\mathrm{s}\mathrm{o}\mathrm{s}$ and $\mathrm{M}\mathrm{a}\cos$ were not designed
originally with energy efficiency in mind.

The most simple way to establish the power reduction in the current operating systems is to add
the ability to selectively shutdown the peripherals which are not currently being used. In fact, this
method called the shutdown approach or the shutdown policy has been applied to the power saving in
the hard disk [9] as well as VLSI circuits system [7, 10, 11]. The typical example for the dynamic power
management is the mobile computing with limited capacity of battery [12, 13, 14]. Unlike a desktop
personal computer, the electrical power in a mobile computer must be carefully rationed among all of
the components and peripherals. For such systems, the shutdown approach will be useful to reduce the
electrical power consumed in the operating period.

In this paper, we present a stochastic model for computer systems $\mathrm{w}\iota_{1}\mathrm{i}_{\mathrm{C}\mathrm{h}}$ employ the shutdown
approach. We consider two models proposed in Okamura et al. $[15, 16]$ and develop a unified approach to
integrate these models theoretically. Based on the general arrival assumption on tasks, we formulate the
expected electrical power consumption per unit time in steady state and propose a unified approximate
method by applying the so-called diffusion approximation.

2 Dynamic Power Management
Consider a stochastic model for the dynamic power management [17]. In the typical dynamic power
management, internal states of the underlying computer system are classified into three states (see
Fig. 1).

Busy: The busy state means that the system is active, $i.e.$ , the system is processing tasks requested.
From the viewpoints of operating system, the busy state can be regarded as the state where the
operating system serves the tasks requested by users.

Idle: In the idle state, the system waits for receiving an additional request. In the $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\sigma 0$ system, it
means that the system is processing the light tasks on memory.

数理解析研究所講究録
1194巻 2001年 233-240 233



Busy

$\sqrt{\nearrow}$
$\backslash$

Idle Sleep

Figure 1: Configuration of the dynamic power management.

Table 1: An example of delayed times at a CPU device.

Inactive (Sleep): The inactive state is usually called the sleep state. In personal computers, the inactiVe
state is referred as sleep state or hibernation state

The electrical power consumption per unit time in each state; busy, idle or sleep state, depends on
the processing performance. On the other hand, it is usually reported that the delayed time occurs at
the transition of state. Table 1 presents an example of delayed times at a CPU device [17]. From the
physical principles of electricity, it can be observed that the system may waste higher electrical power
instantaneously at the transition time from low-power states to high-power states. This instantaneous
electrical power is generally called the wake up power. The nature of higher wake up power makes the
optimal power-saving design difficult.

Based on these characterizations for power consumptions, we construct a stochastic dynamic power
management model for computer systems. $\mathrm{T}.0$ simplify the mathematical treatments, we make three
assumptions in the stochastic shutdown model.

Assumption $\mathrm{A}$ : The electrical power consumption per unit time in both the busy state and the idle
state is equivalent.

Assumption $\mathrm{B}$ : If the system transfers from a high-power state to a low-power state, it does not take
delayed times, $i.e.$ , the state transition can be completed in a moment.

Assumption $\mathrm{C}$ : The wake up power is not wasted when the system transfers from the idle state to
the busy state. The wake up power is wasted uniformly during the delayed time while the system
transfers from the sleep state to the busy state.

Assumption A indicates that the following relationship has to hold in terms of power consumption;

(Busy) $=$ (Idle) $>$ (Sleep).

One of the most important factors in the design for shutdown schedules is the trade-off between the
amount of electrical power savcd by shutdown and wasted by waking up from the sleep state. Since
Assumption A is related with the electrical power consumptions in both busy state and idle state, it
does not affect the trade-off relationship as well as the design of shutdown schedule. Assumption $\mathrm{B}$ is
related with the delayed time when the system transfers from high-power states to low-power states. In
Benini and De Micheli [17], it is pointed out that the delayed times to transfer from high-power states
to low-power states are much smaller than the other delayed times. Furthermore, unlike the wake up
power, the instantaneous electrical power consumption caused by transitions from high-power states
to low-power states can be negligible. Under this fact, the effect of Assumption $\mathrm{B}$ for the shutdown
scheduling seems to be sufficiently small. Assumption $\mathrm{C}$ concerns the wake up power. It is known that
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the behavior of wake up power in practice has the bursty. Also, as the delayed time is shorter, the more
often and higher wake up power will be needed, namely, the wake up power is inversely proportional to
the delayed time. Hence, it can be seen that

(Wake up power wasted per unit time) $\cross$ (Delayed time)

is approximately constant, that is to say, the amount of the wake up power wasted during the delayed
time can be estimated by the mean wake up power wasted per unit time during the delayed time,
regardless of the electrical characteristics and the behavior during the delayed time.

For the stochastic model above, the following shutdown schedule is performed to save the electrical
power consumption.

Shutdown policy: If the system has spent a certain constant time period in waiting for a request, the
system can transfer from the idle state to the sleep state automatically. When the system is in the
sleep state, the system wakes up and goes to the busy state if an additional request occurs. The
sojourn time length in the idle state is said the shutdown timing or the shutdown schedule.

The problem is to derive the optimal shutdown schedule which maximizes the effect of electrical power
saving.

Okamura et al. $[15, 16]$ have considered the stochastic shutdown models under the additional assump-
tions;

Assumption $\mathrm{D}[15]$ : If other requests arrive at the system in the busy period, they can be canceled
immediately.

Assumption $\mathrm{D}’[16]$ : If other requests arrive at the system in the busy, they can be stored in the
buffer and can be processed under the First-Come First-Service (FCFS) discipline.

Assumption $\mathrm{E}$ : Requests arrive as a sequence of independently and identically distributed random
variables.

If the system has a finite buffer whose capacity is $K(\geq 1)$ , the assumptions $\mathrm{D}$ and $\mathrm{D}$
’ can be regarded

as special cases such as $K=1$ and $Karrow\infty$ . In other words, the results in Okamura et al. $[15, 16]$ can be
integrated by considering the stochastic shutdown model with a finite buffer. The purpose of this paper
is to establish a common approximation for two shutdown models in $[15, 16]$ .

3 Model Description
In this paper, the following notation is used:

{X $(t);t\geq 0$}: cumulative number of arrival requests at time $t$ (renewal process)

$S_{k}$ : processing time for the k-th task (random variable)

$\tau(>0)$ : delayed time to transfer from the idle state to the busy state

$s+\tau(>0)$ : delayed time to transfer $\mathrm{h}\mathrm{o}\mathrm{m}$ the sleep state to the busy state

$t_{0}$ : shutdown schedule (decision variable; $0\leq t_{0}<\infty$ )

$K(>1)$ : capacity of buffer

$P_{1}(>0)$ : electrical power consumption per unit time in the idle and busy states,

$P_{2}(>0)$ : wake up power per unit time during the delayed time period $(P_{2}>P_{1})$ .

Suppose that the occurrence of requests follows a renewal process with an inter-arrival time distri-
bution $F(t)$ , which has mean; $1/\lambda(>0)$ and variance; $\sigma_{a}^{2}(>0)$ . Let $S_{k}$ denote the processing time for
the k-th task required, and $S_{k}$ for $k=1,2,$ $\cdots$ are the non-negative i.i.d. (independently and identically
distributed) random variables having an absolutely continuous probability distribution function $G(t)$

with finite mean $1/\mu(>0)$ and variance $\sigma_{s}^{2}(>0)$ . When a request occurs in the sleep state, the system
wakes up and goes to $\mathrm{t}_{/}\mathrm{h}\mathrm{e}$ busy state after elapsing the delayed time $s+\mathcal{T}$ . If the buffer is not full, other
requests are stored in the buffer and are processed under the FCFS discipline. Otherwise, $i.e.$ , if the
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number of requests

$\eta_{x}$ : idle period
$\zeta_{X}$ : busy period

$\ovalbox{\tt\small REJECT}$ : shutdown

Figure 2: Possible realization of the shutdown model with a finite buffer.

buffer is full, other requests are canceled. When the tasks stored in the buffer have been completed, the
system transfers to the idle state. If a new request is received before the amount of successive sojourn
time in the idle state becomes $t_{0}$ , then the system has to start processing the task after elapsing the
delayed time $\tau$ . Otherwise, $i.e.$ , if a new request does not arrive before the amount of successive sojourn
time in the idle state becomes $t_{0}$ , the system goes to the sleep state.

Figure 2 illustrates the possible realization of the shutdown model with a finite buffer. Based on
Assumptions A and $\mathrm{C}$ , it is assumed that the electrical power consumption per unit time is $P_{1}$ in the
busy and idle states, and that the electrical power consumption per unit time during the delayed time
period is $P_{2}$ . To $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}6^{\gamma}$ the analysis, the electrical power consumption in the sleep state is assumed to
be zero.

4 Optimal Shutdown Schedule

4.1 $\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}|\mathrm{o}\mathrm{n}$

Consider the expected electrical power consumption per unit time in the steady state as the $\mathrm{p}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}-\mathrm{S}\mathrm{a}\mathrm{V}\mathrm{i}\mathrm{n}\mathrm{t}\supset\sigma$

measure. The formal definition of the expected electrical power consumption per unit time in the steady
state is given by

$V(t \mathrm{o})=\lim_{tarrow\infty}\frac{\mathrm{E}[\mathrm{a}\mathrm{m}\circ \mathrm{u}\mathrm{n}\mathrm{t}_{0}\mathrm{f}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{C}\mathrm{a}\iota_{\mathrm{p}\mathrm{i}}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{n}[0,t)]}{t}.$ . (1)

Define the time period from the end of sleep state to the next one as one cycle. Let $\zeta_{v}^{(K)}$ and $\eta_{v}^{(K)}$ denote
a processing period (a busy period) and an idle period during one cycle, respectively, provided that the
capacity of buffer is $K$ and that the delayed time is $v$ . The probability distribution function of an idle
period is $I^{(K)}(\cdot|v)$ . It can be seen that the probabilities that the system executes shutdown in the first
idle period and in the second or later period become $I^{(K)}(t0|S+\tau)$ and $I^{(K)}(t_{0}|\mathcal{T})$ , respectively. Thus,
the expected number of transitions from the idle state to the busy state is thus given by

$\mathrm{E}[L_{S}(,K)\tau(t\mathrm{o})]=I^{(K)}(t_{0}|s+\tau)/\overline{I}^{(K}(t0)|\tau)$ , (2)
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where $\overline{I}^{(}K$
)

$(\cdot|t)=1-I^{(K)}(\cdot|t)$ . Furthermore, the following relationship between the busy and idle periods
holds;

$\rho_{v}^{(K)}=\frac{\mathrm{E}[\zeta_{v}^{(K)}]}{\mathrm{E}[\eta_{v}](K)[+v+\mathrm{E}\zeta_{v}](\kappa)}$ , (3)

where $\rho_{v}^{(K)}$ is the traffic intensity in the $GI/cI/l/K$ queueing system with a delayed time $v$ . Using the
loss probability $q_{v}^{(K)}(K)$ , the traffic intensity is given by

$\rho_{v}^{(K)}=\{1-q_{v}^{(K}()K)\}\rho$ , (4)

where $\rho=\lambda/\mu$ . On the other hand, from the well-known Miyazawa’s intensity conservation law $[18, 19]$ ,
we have the $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ relationships;

$1-p_{v}^{()}(K)0=\rho\{1-q_{v}^{(}K)(K)\}+\lambda vq_{v}^{(}(K)\mathrm{o})$ (5)

and

$p_{v}^{(K)}(0)=\lambda \mathrm{E}[\eta_{v}^{(}]\kappa)q_{v}^{()}(K0)$, (6)

where $p_{v}^{(K)}(0)$ and $q_{v}^{(K)}(0)$ represent the steady-state probabilities that the buffer is empty at arbitrary
time and at arrival points, respectively. From Equations (3)$-(6)$ , we obtain the expected time length of
one cycle as

$T^{(K)}(t \mathrm{o})=\frac{1}{1-\rho_{s+\mathcal{T}}^{(K)}}\{S+\tau+\mathrm{E}[\eta_{s}^{(}+\mathcal{T}]K)\mathrm{I}+\frac{1}{1-\rho_{\tau}^{(K)}}\{\tau+\mathrm{E}[\eta_{\tau}^{(}K)]\}\mathrm{E}[L(K)(S,\tau t_{0})]$

$= \frac{1}{\lambda q_{S+\mathcal{T}}^{(K)}(\mathrm{o})}+\frac{1}{\lambda q_{\mathcal{T}}^{(K)}(0)}\mathrm{E}[L_{S,\mathcal{T}}(K)(t\mathrm{o})]$. (7)

Similarly, the expected power consumed during one cycle is given by

$C^{(K)}(t0)=(P_{2}-P_{1})S+P_{1}\tau^{(}K)(t\mathrm{o})+P1\{\mathrm{E}[\eta_{S}^{(K)_{\wedge}}+\tau 0]-t\mathrm{E}[\eta_{\theta+\tau}](K)$

$+(\mathrm{E}[\eta_{\mathcal{T}}^{(K})\wedge t_{0}]-\mathrm{E}[\eta_{\tau}](K))\mathrm{E}[L_{s}^{()},K\tau(t\mathrm{o})]\}$, (8)

where, in general, $a$ A $b= \min(a, b)$ . We therefore derive the expected power consumption per unit time
in the steady state;

$V^{(K)}(t_{0})=C^{(\kappa)}(t0)/T(K)(t\mathrm{o})$ , (9)

so that the problem is to find the optimal shutdown timing $t_{0}^{*}$ minimizing $V$ (to).

Remark 1: If $K=1$ , then this model is reduced to the renewal model in Okamura et al. [15]. On the
other hand, if $Karrow\infty$ , then this model is consistent with the queueing model in the literature [16].

4.2 Poisson Arrival Case
Let $W^{(K)}(\cdot|v)$ denote a probability distribution function of the time length until the buffer becomes
empty at an arrival point in the steady state provided that the delayed time is $v$ . It can be seen that
the distribution of an idle period is given by

$\overline{I}^{(K)}(_{X}|v)=\frac{\int_{0}^{\infty_{\overline{p}(}\kappa}X+u)dW()(u|v)}{\int_{0}^{\infty}\overline{F}(u)dW(K)(u|v)}$, (10)

where $\overline{F}(\cdot)=1-F(\cdot).$ Since $\overline{F}(X+y)=\overline{F’}(x)\overline{F}(y)$ in the case of Poisson arrival stream, we can derive
the following result for the optimal shutdown schedule.

Theorem 1: Suppose that $\rho_{v}^{(K)}<1$ . If $P_{1}-\lambda(P_{2}-P\iota)s\geq 0$, then the optimal shutdown schedule is
$t_{0}^{*}=0$ . Otherwise, $i.e$ . if $P_{1}-\lambda(P_{2}-P_{1})s<0$ , then $t_{0}^{*}arrow\infty$ .

Figure 3 summarizes Theorem 1. From this figure, it is found that the simple on-off switching policy is
$\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{n}\iota \mathrm{a}1,$ $i.e$ . it is optimal to shutdown the system at the beginning of idle statc or not to do at all. It is
interesting that the capacity of buffer does not affect the shutdown decision in the Poisson arrival case.
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Figure 3: Optimal shutdown schedule.

5 A Unified Approximate Method
In the general arrival case, it is not easy to express the closed form of the stationary distribution
$W^{(K)}(x|v)$ . We thus propose an approximate formulation for $W^{(K)}(x|v)$ based on the diffusion approx-
imation.

Let $\{Y_{v}^{(K)}(t);t\geq 0\}$ denote the time until the buffer becomes empty at arbitrary time $t$ . More
specifically, we suppose that drift parameter; $\mu_{w}$ and diffusion parameter; $\sigma_{w}$ , where

$\mu_{w}=\lambda(1-q_{0}^{()})-\mu K$ , $(<0)$ (11)

and

$\sigma_{w}^{2}=\sigma^{2}a(1-q_{0}^{(}))+K\sigma_{S}^{2}$ , $(>0)$ . (12)

If we treat an ordinary $GI/G/l/K$ queueing system, $i.e.$ , a queueing system without a delayed time, then
it is well known that the queueing process is approximated by a reflected Brownian motion with drift
and diffusion parameters; $\mu_{w}$ and $\sigma_{w}$ . However, it is clean that the approximation based on the reflected
Brownian motion can not be applied since the queueing process with a delayed time has jumps under
a certain condition. We therefore propose an alternative approximation based on a diffusion process
having the following properties;

$\bullet$ The diffusion process can take negative values.. A Poisson arrival occurs with the rate $\lambda.$

.

$\bullet$ The diffusion process has a jump to the delayed time $v$ with the rate $\lambda$ if the process takes a
negative value (see fig. 4).

Figure 4: Configuration of the diffusion process with jumps.
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Define the time period from the occurrence time of a jump to the next one as one cycle. Let $N$

denote the number of arrivals during one cycle, and $N_{x}$ the number of arrivals while the process is above
the level $x$ during one cycle. Further we define the difference between the processes at the n-th arrival
and at the $(n+1)- \mathrm{s}\mathrm{t}$ arrival during one cycle as $\tilde{Y}_{v}^{(K)}$ . The probability density function of $\tilde{\mathrm{Y}}_{v}^{(K)}$ can be
derived by

$f(x)= \frac{1}{\xi}\exp\{\frac{\mu_{w}}{\sigma_{w}^{2}}X\}\exp\{-\frac{\xi}{\sigma_{w}^{2}}|X|\})$ (13)

where $\xi=\sqrt{\mu_{w}^{22}+2\lambda\sigma_{w}}$ . Using the probability density function $f(x)$ , the expected number of arrivals
during one cycle, provided that the delayed time is $v$ , is given by

$\mathrm{E}[N|v]=1+\frac{\lambda v}{|\mu_{w}|}+\frac{(\lambda/|\mu_{w}|)\int^{\infty}\mathrm{o}f(uu)du+\int^{\infty_{f(}}\mathrm{o}u)du}{1-\int_{0}^{\infty_{f}}(u)du}$ . (14)

Let $g_{x}(v)$ denote the probability that the diffusion process is $x$ at the first passage time to the level $x$ or
the level $0$ . The probability $g_{x}(v)$ can be derived $\mathrm{h}\mathrm{o}\mathrm{m}$ the property of the Brownian motion as follows.

$g_{x}(v)=\{$
$\frac{1-\phi(v)}{1-\phi(x)}$ for $0\leq v\leq x$ ,
1 for $x<v$ ,

(15)

where $\phi(v)=\exp\{-(2\mu wv)/\sigma_{w}^{2}\}$ . By using $g_{x}(v)$ , the expected number of arrivals while the process is
above the level $x$ during one cycle is also given by

$\mathrm{E}[N_{x}|v]=\frac{\lambda(v-x)}{|\mu_{w}|}U(v-X)+g_{x}(v)\{\int_{0}^{\infty}(1+\mathrm{E}[N_{x}|x+y])f(y)dy+\int_{-x}^{0}\mathrm{E}[N_{x}|x+y]f(y)dy\}$

$+(1-g_{x}(v)) \{\int^{\infty}x(1+\mathrm{E}[N_{x}|y])f(y)dy+\int_{0}^{x}\mathrm{E}[N_{x}|y]f(y)dy\}$ , (16)

where $U(\cdot)$ is a step function, that is,

$U(x)=\{$
$0$ for $x<0$ ,
1 for $x\geq 0$ . (17)

Let $\psi^{(K)}(x|v)$ denote the stationary distribution of the diffusion process with jumps at arrival points.
The approximate forms of $q_{v}^{(K)}(0)$ and $W^{(K)}(x|v)$ are

$q_{v}^{(K)}(0) \approx^{\psi^{(}}\kappa)(0|v)=\frac{1}{\mathrm{E}[N|v]}$ (18)

and

$\overline{W}^{(K)}(X|v)\approx\frac{\overline{\psi}^{(K)}(_{X}|v)}{\overline{\psi}^{(K)}(0|v)}=\frac{\mathrm{E}[N_{x}|v]}{\mathrm{E}[N|v]-1}$ , (19)

respectively. Therefore, if $K=1$ , then the approximate formulations can be obtained by Equations (18),
(19) and $q_{v}^{(1)}(1)=1-q_{v}^{(1}()0)$ . Similarly, if $Karrow\infty$ , then the approximate formulations can be obtained
by Equations (18), (19) and $q_{v}^{(\infty)}(\infty)=0$ .

6 Concluding Remarks
In this paper, we have considered the stochastic shutdown model with a finite buffer. Taking a finite
buffer into consideration, we have integrated two models in Okamura et al. $[15, 16]$ . Furthermore, based
on the stochastic shutdown model with a finite buffer, we have proposed a unified approximation method.
In the future research, we will investigate the accuracy of approximation method proposed in this paper.
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