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ON A MARKSTART RENDEZVOUS SEARCH!

Vic.Baston? and Kensaku Kikuta3

1. Introduction.

Rendezvous search concerns problems in which two or more people are attempting to
meet. Although Schelling had discussed this type of problem in his book {11} in 1960, it
was not until 1995 that rendezvous search was put in a rigorous mathematical framework by
Alpern [1]. In this framework it is natural to ask not only if the players can meet but also
the least time that they can do so; this time is called the rendezvous value of the problem.
Alpern’s paper has created considerable interest and papers relating to it have now been
published. Many of these papers involve two players and, when this happens, the problems
can be divided into two cases, the asymmetric in which the players are distinguishable and so
can adopt different strategies, and the symmetric in which the players are indistinguishable
and forced to use the same strategy.

Very recently Baston and Gal [7] have considered a form of rendezvous search in which a
player can recognize another player’s starting point when he reaches it. They called this new
form markstart rendezvous search to distinguish it from the previous form which they termed
classical rendezvous search. Although both forms have connections with linear search, the
results in (7] suggest that the forms have different characteristics. Generally speaking, in
classical rendezvous search, symmetric problems have so far been considerably more difficult
to solve than asymmetric ones. For instance, Alpern and Gal [4] have proved that, when
two players are placed at a known distance D apart on the line, the asymmetric rendezvous
value is 13D/8 whereas only bounds have been obtained for the corresponding symmetric
value (see [4]). In contrast, the results in [7] suggest that, in markstart rendezvous search,
symmetric problems appear to be more amenable to analysis than asymmetric ones.

The primary purpose of this paper is to prove two results in markstart rendezvous search.
Firstly we show that, if the initial distance of the players on the line is given by the uniform
distribution on [0,1], then the (pure) symmetric markstart rendezvous search value is 9/8.
Not only does this solve a problem left open in [7] but it also gives a better upper bound
than Theorem 4.1 in [7] for the corresponding asymmetric markstart problem. Secondly we
demonstrate that there are markstart optimal strategies which cscillate infinitely but not
around the player’s starting point. This is a new type of optimal behaviour for rendezvous
search problems and it occurs in ones in which the initial distance is given by a distribution
function F which has finite support and for which the probability of being near to min{z :
F(z) =1} is very small.

2. Model."

We investigate the symmetric markstart rendezvous search problem on the line in which
the initial distance between the players is chosen by the uniform distribution on [0,1] and
the players do not have a common notion of positive direction. We discretize the problem by
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considering [0,1] to be comprised of discrete points 0,1/4n,2/4n,...,4n/4n and consider that
player 1 starts at O facing in the positive direction and that player 2 is placed equiprobably at
the points +2/4n, +4/4n, ..., +4n/4n facing equiprobably in the positive and negative directions.
Time is assumed to be discrete and, at each instant of time, the players must move to an
adjacent point. This means that, at any time, player 1 and player 2 are either both at even
points (i.e. of the form 2r/4n) or both at odd points so that the players cannot pass each
other without meeting. It is convenient to think of player 2 comprising of four agents which
are placed at 2r/4n facing in the positive direction, at 2r/4n facing in the negative direction,
—2r/4n facing in the positive direction and —2r/4n facing in the negative direction when 2r/4n
has been chosen via the probability. Such agents will be denoted by a,p, arn, a—p and a_n
respectively. Note that player 1 will meet a,n(r) and a_n(r) before he or the agent finds the
starting point of the other whereas player 1 will meet a,p and a_p only after player 1 finds
the agent’s starting point or the agent finds player 1's starting point. Namely, if player 1
and player 2 are facing in opposite directions then, under a symmetric strategy, they reach
each other’s starting points at the same time and so they must meet before either player
finds the other’s starting point. On the other hand, if player 1 and player 2 are facing in the
same direction then, under a symmetric strategy, they will remain at their initial distance
apart at least until one of them locates the other’s starting point.

Since the problem is symmetric, the players use the same strategy which we can consider
to be of the form ki F k;B k3F k4B,... which is interpreted as move k, points forward, then
k; points backward, then k; points forward and so on provided the other player’s starting
point has not been located; once a player locates the other player’s starting point he always
continues in the direction he was taking when he found the starting point. In calculating
when player 1 and an agent meet, it is convenient to have an expression for the position of a
player at a particular time under a given strategy s. To obtain this expression we introduce
the following notation. Let s be a given strategy, then, for non-negative integers m, put

m

os(m) = Zm:k,- and 4nds(m) = Z(——l)“’lki
i=1

i=1

with the convention that ¢,(0) =0 = §,(0); note that o,(m) is the time and 6,(m) is the (signed)
distance from his starting point when the player makes his m-th change of direction under
s. Now define g,(t) by

Ang,(t) = 4nds(i) + (=1)*(t — o5(3)) for o,(3) <t < os(i +1).

It is easy to check that, if the players have not met and player 1 has not located player
2's starting point, then, under s, player 1 is at g,(t) at time ¢ Similarly, if the players have
not met and the agent has not located player 1's starting point, then, under s, the agents
a+p(r), asn(r),a—p(r) and a_y(r) will be in the positions

gs(t) +2r/dn, —gs(t) +2r/4n, g.(t) —2r/4n, and — g,(t) —2r/4n

respectively at time ¢.

Thus, under s, the meeting times r,n(r;s) and 7_n(r;s) of player 1 with a,n(r) and a_y(r)
are the least times ¢ such that g,(t) = —gs(t) + 2r/4n and g,(t) = —gs(t) - 2r/4n respectively.
Thus

Ten(r;s) =min{t 1 g,(t) =r/4n} and  r1_n(r;s) = min{t: gs(t) = —r/4n}.
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Let .
Ai(s) ={r:gs(t(r;s)) =2r/an} and A_(s) = {r: gs(i(r;s)) = —2r/4n}
where
t(r;s) = min{t : |g,(t)| = 2r/4n}.

If r € Ay(s), then, under s, player 1 locates the starting point of atrp(r) and a_p(r) locates
the starting point of player 1; in this case the player or agent locating the starting point
continues moving forward. If r € A_(s), then, under s, player 1 locates the starting point
of a_p(r) and a4p(r) locates the starting point of player 1; in this case the player or agent
locating the starting point continues moving backwards. '

It is easy to check that, under s, the meeting times 7, p(r;s) and r_p(r; s) of player 1 with
a+p(r) and a_p(r) respectively satisfy r,p(r;s) = 7_p(r;s) = 7p(r;s) say and that

Tp(ris) =min{t > i(r;s) : t — {(r;s) =4dng,(t)} i re A, (s)

and
7p(r;s) = min{t > t(r;s) : t — i(r;s) = —dng,(t)} i re A_(s).

The expected meeting time E(s) of the players under s is then given by

2n

E(s) =Y (ren(r) + 1—n(r) + 27p(r)) /8n.

r=1
Remark 2.1 Let s be a strategy and 0 < r < 2n.
(i) If r € AL (s), then g,(rp(r;s)) > 0 and 7p(r;s) € [0s(22 = 1) +1,04(22)] for some .
(i) If r € A_(s), then g4(rp(r;s)) <0 and rp(r;s) € [0s(22) + 1,052z + 1)] for some .

Proof. Immediate from the definitions on noting that g, is decreasing in [o5(22~1),05(22)] and
gs 18 increasing in [05(2z),04(22 + 1)].

Remark 2.2 Let s be a strategy and 0 < r < 2n.
(i) IfreAi(s)and r < 216522 — 1) < ko, then 7p(r;s) < 0,2z — 1) +2n65(2z — 1).
(ii) If r € A_(s) and r < —2n6,(22) < kz.41, then 7p(r; s) < 05(22) — 2n8,(22)

Proof. We will prove only (i) because (ii) follows similarly. Suppcse r € A..(s) and r < 2ns, (2z—
1) < ko, then g,(0) =0 < 2r < 4ng,(0,(22 — 1)) gives i(r;s) < 05(2z — 1) because g,(t+1) — 9s(t) €
{1,-1}. Put fi(t) =t —&(r;s) — 4ng,(t) then fo(¥(r;s)) = —2r <0 and fi(0s(22 - 1) + 2n5(22 - 1)) >
2nd5(22-1) —gs(0s(22—1) +2nd,(22~1)) > 0 because ky, > 2n6,(22—1). Now f,(t+1)—f,(t) € {0,2, -2}
S0 fs(t) is even for t > #(r;s). Hence there is a t* satisfying #(r;s) < t* < 0,22 = 1) + 2n6,(22 — 1)
such that f,(t*) = 0. Thus rp(r;s) <t* and the result follows.

3. Analysis and Results.

In this section we give the main theorem which gives a solution for the pure symmetric
markstart rendezvous search model. The proofs of the lemmas use a contradiction argu-
ment and most follow the same pattern. They assume that there is an optimal strategy
s* satisfying certain conditions and then show that there is another strategy s which is an
improvement on s*. In these proofs we will always assume without stating it that s* is given
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by hiF hoB h3F hyB... and s by ki F koB ksF k4B.... In addition we assume that the form
hiF hyB... is finite with h; > 0 and that M is the least M for which all agents are met by
player 1 on or before time o,.(M). To avoid awkward special conditions in the statements of
some lemmas, we adopt the convention that hy = 10n.

If the players have not met and a player has not located the other player’s starting
point by the time he reaches a point at distance one from his own starting point, O say, he
knows that the other’s starting point lies on the other side of O and so will start to move
back towards O. Thus a player moves a distance at most one from his starting point except
possibly when he has changed direction the full number (M) of times. This is the import of
our first result. '

Lemma 1. Let s* be an optimal strategy, then |6;-(w)| <1 if w < M.

Proof. Suppose s* is optimal with w < M and |4nd,- (w)| = 4n + o where a > 1. We prove only
the case 4né,-(w) = 4n + o because the other case follows similarly. Let 4nd,-(w) = 4n + o, then
we can take w to be odd. Consider the strategy s with k; = h; for i <w -1, ky = hyy — 1 and
kw+1 = 10n +a. Note that, for all r, £(r;s*) # o, (w) and 75(r;s*) # 0s-(w) for g € {P,+N,-N}.
Clearly gs(t) = gs-(t) for t < o (w) — 1 s0 75(r;8) = 75(r; s*) if 75(r; s*) < 05-(w) — 1. Further, since
gs(t) < gs-(t) for t > og(w), 75(r;s) < 75(r;s*) for B € {P,—N} when 74(r;s*) > o5 (w); there are
such r because 7.n(r;s*) < o5 (w) for all » and w < M so E(s) < E(s*) which contradicts the
optimality of s* and the lemma follows. g

Lemma 2. Let s* be an optimal strategy.

(a) (i) If 6,-(22+1) >0, then §,-(2i +1) < §;-(2z+1) for i < z.
(ii) I 65-(22) < 0, then §,-(21) > 8,+(22) for i < =.

(b) If |6,-(3)| > 1/2, then 4nd,-(4) is even.

Proof. The proofs of (a) and (b) use the same modified strategy to obtain a contradiction
and so we will start the proofs of (a) and (b) in (A) and (B) below and complete them in
(C) below. ’

(A) The proof of (ii) is similar to that of (i) so we will only prove (i). Suppose the result
is false then there is an optimal strategy s* with §,-(2z +1) > 0 and a j < z satisfying
05«25+ 1) 2 05-(22+1).

(B) Suppose s* is an optimal strategy for which there is a w such that |6, (w)| > 1/2 and
4nd,.(w) is odd. We prove only the case when w is odd, say 2z + 1, because the other case
follows similarly.

(C) Clearly, in both cases (A) and (B), there is no r such that any of 7, x(r;s*), 7_n(r;s*) and
t(r;s*) are in [0 (22 +1),0,-(22 + 1) + 1]. Furthermore, using Remark 2.1, 7p(r;s*) # 04- (22 + 1)
for any r.

Let w' denote the least value of w > z for which there is an r < maz 8- (24 + 1) such that

7p(r:5*) = 05 (2w); if no such w exists we take w = co. Now consider the strategy s given by
ki =h; for i <2z and i > 2w’ + 1, kozy1 = hozy1 — 1, Koy = how'+1 + 1; ifw =2+ 1, kow = how
Whereas, fw >z +1, kzz+2 = h22+2 -1, hi =k; for 2z +3<i<2u and kow' = hoy + 1.
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Note that, if w’ # oo, it follows from Remarks 2.1 and 2.2 that, for any r € A_(s*) with
t(r;s*) < os-(22 + 1), we have 7p(r;s*) < 0.+ (22 + 1) and also that g,.(¢) >0 for 0,-(22+1) <t <
0s-(2w’) so that, in particular, #(r;s*) # o,. (2w’). We have

o5(i) =05+ (1) and 6,(i) =6-(1) for <2z,

0s2z+1)=0,-Q2z+1) -1 and 6,2z+1)=08,-(22+1)—1/4n
0sQu') =0,-2u’) -1 and §;2w’) = 6,-Qu’) — 1/4n

os(1) =05 (1) and G,(i) =6, (3) for i>2uw +1
and, if w’' >z +1,
os(i) =0s-(1) =2 and §,(i) =6,-(3) for 2z+2<i<2w.

It is routine to check that

gs=(t) ift<os@z+1)—1o0r t >0, 2u)
9s(t) =< go-(t +2) if 0,-22+1) <t <o,-Qu') -2
gs+(0s-2u')) = 1/(dn) if t =0, 2w') -1

Hence, for g € {+N,-N},

. Tg(r;s*) -2 if 0'3'(2Z+1) STg(’r';s*) SO's*(2w')—1
olris) < {Tﬂ(r; s*) otherwise -

Clearly 7p(r;s) = 7p(r; s*) if Tp(r;s*) < 05-(22+1) =1 or #(r;s*) > 0,-(2w’). Further, if £(r;s*) <
0s+(22 + 1) < 7p(r; 8*) < 05 (2w'), then 1p(r;s) < 7p(r;s*) — 1, because

Tp(r; %) — 1 —t(r; s) = 7p(r;s™) — 1 — £(r; 8*) = dng,- (7p(r; s*)) — 1

_ [ 4ngs-(tp(r;s*) + 1) = dngs(1p(r;s*) = 1)  if 7p(r;s*) # 04-2w')
~ | 4ngs(tp(r;s*) = 1) if 7p(r;5*) = 05-(2w')

If i(r;s*) < 0,2z + 1) and o, 2w') < 7p(r; s*), then 7p(r;s) < 7p(r; s*) because
7p(r; s%) — t(r; s) = Tp(7; 5*) — I(r; 5%) = dng,- (1p(r; s*)) = dngs(Tp(r;s%)).
Further 7p(r;s) < 7p(r;s*) = 2 if 0, 22 + 1) — 1 < £(r;5*) < 7p(r; 5*) < 05- (2w’) because
Tp(r;s*) — 2 — t(r;s) = 7p(r;s*) — E(r; s*) = dng,- (7p(r; s*)) = 4ng5(7'p(1;; s*) = 2).

If 0,224 1) =1 <¥(r;s*) < 05 2w’) < 7p(r;s*), then 7p(r : 5) < 7p(r;s*) — 1 because
7p(r;8") = 1= &(r;s) = 7p(r;s") + 1 — £(r; s7) = dng,- (1p(r;s*)) +1
= 4ng,- (tp(r;s*) — 1) = dng,(rp(r;s™) - 1)

Note that any meeting time of the players between o,.(2z +1) and o,-(2w’) is strictly
better under s than s* and there is such a meeting for some r. All the other meeting times
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are at least as good under s than under s* so E(s) < E(s*) which is a contradiction and the
lemma follows. g

Our next result tells us that there is an optimal strategy for the players which oscil-
lates around the player’s starting point. Note that this result is not true for probability
distributions in general as Theorem shows.

Notation. We will use S to denote the set of all optimal strategies s* such that d-(2:7) <0
and &,.(2i — 1) > 0 for all s >0 for which the §;. are defined.

Lemma 3. S#0.
Proof. For a strategy s define ¢(s) by

a(s) = [{i:6,(26) >0 or 6,(2i —1) <0}.

Suppose S = 0, then we can choose an optimal strategy s* such that g¢(s*) = min{q(s) :
s is optimal}. Now ¢(s*) > 1 so we can take w to be the maximum value of j satisfying
(—1)7716,-(5) > 0. We will consider only the case in which there is a w is even, say w = 2z,
because the other case follows similarly. Now 2z < M because §,-(2z—1) <1 by Lemma 1 and
he, # 8n; hence 6,-(2z + 1) is well-defined and positive so & (22 + 1) > mazo<ic, ds- (27 + 1) by
Lemma 2 and hy,41 > ha,.

Consider the strategy s given by k; = h; for ¢ < 22 — 2, ky,—1 = hoy—1 + hoz41 — ho, and
ki = hyyy for i > 22. We have ‘

0,(i) = 0,-(i) and  6,()) =065-(5) for i<22-2

and
0s(3) = 0g- (1 +2) —2ho, and §,(i) =6,-(i+2) for i>22-1.
It is easy to check that gs(t) = gs-(t +2hs;) for ¢t > 0,. (22 — 1) + 2h,,. Because §,-(2z) > 0, none of
Ten(r;8*), T_n(r;s*) and (r;s*) are in [0,-(22 — 1),04-(22 — 1) + 2hy,] for any r and so it follows
that, for all r, ' '
TN (r38) STan(risT),  Ton(ris) S T-n(risT)
and
t(r;s*) <os(22z—-1) or #(r;s*) =052z — 1)+ 2hy,.
Hence _ o=
Hrys) = t(r; s*) if t(r;s*) < 0s-22-1)
YT E(ry8*) — 2Ry, if E(r;s*) > 05 (22 — 1) + 2Ry,
Hence, for any r satisfying #(r;s*) > 05+ (22 — 1) + 2ho,, We have 7p(r;s) < 7p(r;s*) — 2ha,. It is
straightforward to check that, for any r such that £(r;s*) < 0,-(22-1) and g,- (£(r; s*)) = —2r/4n,
we have 7p(r;s*) < 05-(22 — 1) and so 7p(r;s) = Tp(r;s*).
Hence let r* be such that #(r*;s*) < 0 (22 — 1) and gs-(£(r*;s*)) = 2r/4n. If 7p(r*;s*) <
052z = 1), Tp(r*;8) = 7p(r*;s*). We now consider two cases.

(a) Suppose Tp(r*;s*) > 05+ (22 + 1), then o,4(j) < 7p(r*;5*) < os(j + 1) for some odd j > 2z +1
S0 04(j —2) < Tp(r*;8*) — 2hy, < 0s(j — 1) and we have

Tp(r*;s*) —E(r*;8) = Tp(r*; 8*) — H(r*; ) = dngs- (T(r*; s*))
= 4ng;- (1(r*; 8) — 2h3,)
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Thus -
Tp(r"; 8%) + ha. — H(r"; ) = dngs- (7(r*; ") — 2hsz) + ha.

> 4ngs- (T(r*; s) — h2;)

SO Tp(r*;s) < Tp(r*;s*) + has.

(B) Suppose o4-(22—1) < 7p(r*; s*) < 04+ (22 +1). Because gs- (B(r*; 8")) = 2r/4n, we must have
0s-(2z2 - 1) < 7p(r*;s*) < 05-(22) SO
05(22 1) = 0422 — 1) + hoz1 — ha, < Tp(r*;8") + hozyy — hay
< 05-(22) + hozq1 — ha, = 0522 — 1) + hy, < 0,(22)

because, by the maximality of z and Lemma 2,

hoz42 2 4nds- (22 4+ 1) > 4nds« (22 — 1) > ho,.
We therefore have

TP(r*;8%) + hazy1 — har — E(r™;8) = 7p(r*; %) + hayy1 — hoz — E(r*; s%)
= dngs-(7p(r*; %)) + haz41 — ho, :
=4nds- 2z — 1) — (1p(r*;8*) — 05+ (22 = 1)) + hgpq1 — hos
=4nd;(2z —1) — (7p(r*;8*) + hozy1 — b2, — 0,22 — 1))
= 4dngs(tp(r*; ") + haz41 — hay)

Tp(r*;8) < Tp(r*;8*) + hozy1 — ho, 1)
Since 7p(ry) # Tp(r2) for r, # ry, there are at most hy, values of r satisfying rp(r;s*) € (04 (22 —
1) +1,0,-(22)] and so a total of at most 2h,, agents for which (1) holds.

If there are no r* for which (1) holds, E(s) < E(s*). Hence we may assume that there are
r* for which (1) holds and then 2r* < 4né,-(2z—1) and &(r; s*) > 04 (22— 1) for 2r > 4né,- (2z-1).
But then there are at least [(4n — 4nds-(2z —1))/2] > [(Ros41 — h2;)/2] values of r for which
t(r;s*) > 05- (22— 1) and therefore at least ha.41 — ha. agents for which rp(r;s) < 7p(r; s*) — 2ho,.

Hence E(s) < E(s*) so that s is also optimal. But ¢(s) < ¢(s*) which gives a contradiction
and the lemma follows. g .

Intuitively it is fairly obvious that, if an optimal strategy oscillates about the player’s
starting point, then the cscillations will get bigger and bigger. Our next lemma proves that
this intuition is correct. We omit proofs of Lemmas 4-6. See [8] for those.

Lemma 4. If s* € S, then |6,.(3)| for i =1,...,M is a strictly increasing sequence.
Lemma 5. Let s* € S, then |6,-(s)] > 1/2 implies |, (i + 1)| = 1.
Lemma 6. Let s* € S, then 6,-(1) < 1/2 implies 8,.(2) < —1/2.

Theorem 7. The pure symmetric markstart rendezvous value for the uniform distribution
on [0,1] is (9n+1)/8n and an optimal strategy for the players is to move forward for 1/2, then
backwards for 3/2 and then forwards thereafter.

Proof. By Lemma 3 there is an optimal strategy in ©. We divide the analysis into two cases.
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(i) First assume hy > 2n, then §,-(2) = -1 by Lemma 5 and it is easy to see that M =2 if
h, = 4n and M = 3 otherwise; in the latter case hy = hy +4n and hs = 8n. We have

2n 2n 2n
Un)8n)E(s™) =S r +23 r=1M/(h +r) 42 D Chi+dn+r) +> @hy +7)
r=1 r=|h1/2)+1 r=1

2n
=43 "1 +2h(6n—[h/2]) +8n@n— |h1/2)).

r=1

Whether hqis odd or even, the expression is a negative quadratic in h; and so has a
minimum at one of the extreme points of the range for h;. Since h; € [2n,4n], we have
32n2E(s*) = 4n(2n + 1) + 16n® + min{4n(5n) — 8n?,8n(4n) — 16n%}
= 36n2 + 4n,

the minimum being achieved when h; = 2n.

(ii) Now assume h; < 2n, then 6,-(2) < —1/2 by Lemma 6 and then —4nds-(2) = h2 — hs
is even by Lemma 2(b) and 4&,-(3) = 1 by Lemma 5. Hence M =3 if 6,-(2) = -1 and M =4
otherwise; in the latter case, hs = hy — hy + 4n and hy =8n. We have

“hy 2n Lh1/2]
@n)Bn)E(s) = r + > Rha—hi+7) +2 ) (hi+7)
r=1 h1+1 r=1
(ha—h1)/2 2n
+2 Y (hth+r)+2 Y @hat+dn+tr) +Y @h1+T)
r=[h1/2)+1 r=1+(ha—h1)/2 r=1

2n

=431 +@2hy — h)(2n — k1) + 2h1((h2 — h1)/2)

r=1

o+ 2h2(2n - Lh1/2_| +2n — (hz - h1)/2) + 8n(2n - (h2 - hl)/2) + 2h12n.

The expression is a negative quadratic in h; and so has its minimum at one of the extreme
points of the range of h,. By Lemma 6 h; — hy > 2n so, because h; < 2n, the extremes are
hy + 2n and h; + 4n. Routine calculations show that the minimizing point is the former if h,;
satisfies hy + |h1/2] < n and the latter otherwise.

For the first case substituting h; = hy + 2n into E(s*) gives

(4n)(8n)E(s") = 36n? + 4n + 10nhy — k% — 2(hy + 2n)| h1/2] > 36n° + 4n + 2h1(4n — hy)
> n36n2 +4n

in the range under consideration.
For the second case substituting hy, = hy +4n into E(s*) gives

(4n)(8n)E(s*) = 40n® + 4n — h} — 2(hy + 4n)|h1/2] + 6nh,
> 40n2 + 4n — 2h? + 2nh; = 40n® + 4n + 2hy(n — hy)
> 36n% +4n

in the range under consideration and the result follows. m
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