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1 Prehistory

The classical calculus of variations is originated in the work of $\mathrm{E}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{r}_{i}$ Lagarange, Legendre.
and developed by Jacobi and Wierstrass.

We may say that the calculus of variations has born in the year 1969 since the problem
of determining Brachystochrone was generally publicized due to a rather bombbastic adver-
tisement in Acta Eruditorum by Johann Bernouli (1667-1748). As is known the problem
was solved by many persons; Newton, Leibnitz and Johann and Jacob Bernoulli.

Usually the birt, $\mathrm{h}$ year of variational calculus is considered as 1744 since Euler, Leonhard
(1707-1783) published his@famous book Methodus inveniendi lineas curvas maximi minive
proprietate gaudentes (A method of discovering curved lines that enjoy a maximum and
minimum propertyC or the solution of the isoperimetric problem taken in its wide sense).

Naturally , the book contains the famous Euler equation

$\frac{\partial L}{\partial y}-\frac{d}{dx}(\frac{\partial L}{\partial y},)=0$ ,

which is a necessary condition for $y(x)$ minimizing

$J[y]= \int_{x_{0}}^{x_{1}}L(x, y, y’)dx$ ,

where $y(x_{0})=y_{0},$ $y(x_{1})=y_{1},$ $x_{0}<x_{1}$ .
It also contains a collection of 66 problems.
Here we mention the book, published in ninteen century, 1887-1896 Lecons sur la Th\’eorie

ge’ne’rale des surfaces, 1887-1896 , 4 volumes, Paris.
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2Contribution of Hilbert, Hadamard and L\’evy

I. D. Hilbert (1862-1943)

At the international conference of Mathematicians in $1900_{J}$. Hilbert (1862-1943) men-
tioned the Mathematical problems in which the variational calculus is the last one. His
lecture during the period 1899-1901 at Gottingen was on variational calculus and we can
see the influence on his students by thier papers related with variational calculus, for in-
stance see Osgood(1901), Hedrick (1902). The dessertation of Gottingen people such as
Bliss, Hahn, Noble were related on variational calculus.

Hilbert’s paper on variational calculus Zur Variationsrechnung appeared in Math. Ann.
$\mathrm{V}\mathrm{o}\mathrm{l}$ LXI, p351-370 in 1906.

II. J. Hadamard (1865-1963)

At the end of 19th century Hadamard first encountered the calculus of variations when
working on Wave theory, $\mathrm{E}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\}_{i}^{r}$ and Geometrical Problems such as Geodesics.

He discussed the functional operation in 1903 in his paper On the functional operations
Comptes@Rendus@136, 351-354.

In the preface of his book Lecon’s sur le calcul des variations, Paris, published in 1910,
we can see his concept as follows.

The calculus of variation is nothing else than the first chapter of the theory which is
nowadays called the calculns of functionals, and whose development $u$)$ill$ undoubtedly be one
of the first tasks of the future. It is this idea which inspired me above all,, in the course of
lectures I gave this topic at the Coll\’ege de France as well as in the preparation of this work.

Hadamard introduced the term $‘\prime \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$
” to replace $‘\prime \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ of lines”, the eaarlier

terminology of Volterra.
In the paper On the functional, operations, $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{e}\mathrm{s}@\mathrm{R}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}@136_{i}$ 351-354, 1903, he

showed that an arbitrary linear functional $U(f)$ on the space $\mathrm{C}[a, b]$ of continuous functions
$f$ on $[a, b]$ can be represented in the form

$U[f]= \lim_{\lambdaarrow\infty}\int_{a}^{b}F(t, \lambda)f(t)dt$,

where $F$ is independent of $f$ and defined by the functional $U$ on the half strip { $(t, \lambda)$ : $a\leq$

$t\leq b,$ $\lambda>0\}$ preceeded the well-known Riesz representation, obtained in 1909.

The representation of a linear functional $U(\omega)$ on the set of anaiytic functions $\omega(z)\mathrm{o}^{l}\mathrm{f}$ a
line integral was first’obtained by Hadamard as $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}.$; ...

$U[ \omega]=\frac{1}{2\pi i}\int_{C}$

.
$\omega.(\zeta)\varphi(\zeta)d\zeta\prime \mathrm{i}\vee$

,

.

using the indicator of a functional, which is the function
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$\varphi(\zeta)=U[\frac{1}{\zeta-z}]$ .

This can be seen in his book (1910), however the outline is given in the 1903 paper.
(It is generally accepted that Italian Mathematician Fantappie has done in $1920_{i}$ by using

another $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{f}_{c}\mathrm{o}\mathrm{r}.$ )
In this paper he took a closed surface $S$, and the two interior points $A$ and $B$ , then

$\delta g_{A}^{B}=\frac{1}{4\pi}\int\int_{S}\lambda\frac{dg_{A}^{M}}{dn}\frac{dg_{B}^{M}}{dn}dS_{M}$ .

$\lambda$ is normal distance.

III. Paul L\’evy (1886-1971)

We can see the influence of Hadamard on L\’evy in his desertation (1911), where the
generalization of Hadamard equation and integrability was discussed.

In his paper $‘\prime \mathrm{s}\mathrm{u}\mathrm{r}$ les \’equations aux d\’eriv’ees fonctionelles et leur application a–,a la
phisique, $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}^{i}"$. Rendicont del Circolo Matemaatics di Palermo Vol. 33, p281-312,
1912. he discussed the integrability of Hadamard equation, equillibrium problem of elastic
plate and Dirichlet problem. In the same journal he discussed Green function in the same
volume and general variational equation and analogy of Cauchy problem in volume 37.

Before them three short papers on variational calculus appeared in Comptes Redus.
Later, topics related to variational calculus for Green’s function and Neumann’s function

appeared in Acta math. $42_{i}$ 1919 (65 pages). However, he did not go into details on
functionals of curve or surface.

We note that in Part I and Part II of monograph, published in 1951, he devoted $\mathrm{m}\mathrm{a}\mathrm{n}\}^{r}$

pages to the variation of such functionals. There was a long pause on this subject unti11971,
just before he passed away he mentioned the Hadamard equation in his paper $‘\prime Fonctions$

de lignes et \’equations aux d\’eriv\’ees fonctionelles”. \‘i.

In “Cour de Mechanic” we can find a section dealing with a flexible system where
curves are deforming. There he discussed the solutions to the Euler equation.

A curve $C$ is deformed to a curve $C+\delta C$ ; that may be represented by a $\mathrm{s}\}^{r}\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{m}\{\delta n(s)\}$ of
functions defined on $C$, where $\delta n(s)$ stands for the normal distance from $C$ to $C+\delta C$ . Note
that the choice of functions $\{\delta n(s)\}$ depends on $C$ and $C+\delta C$ . For a visualized expression
of deformation, we can directly see a geometric change from $Carrow C+\delta C$. .

Example 1. Let $L$ be the length of curve $C$ .

$L[C+ \delta C]-L(C)=-\kappa\int_{C}\delta nds+o(\delta C)$
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Example 2. The variation of the integral over a curve is as follows.@

I $=$ $\int_{C}uds$

$\delta I$ $=$ $\int_{C}(\delta uds+u\delta ds)$

$=$ $\int_{C}(\frac{du}{dn}-\kappa u)\delta uds$

In $1_{1}\mathrm{i}\mathrm{s}$ paper $‘$ ’On the variation of the distribution of electricity over a conductor, the
surface $ef$ which is deformed” Bull. Soc. Math. 1918 France 46, Dirichlet extension problem
was discussed.

Let $g_{B}^{A}$ be Green’s function and $\mathrm{f}$ be a (harmonic) field between charged surfaces $S$ and $S’$

such that $f=0$ at $\infty$ . Let $A$ and $B$ be the points between the two surfaces $S$ and $S’,$ $\mathrm{P}$ be
a point on the surface $S$ and $M$ be a boundary point of $S$.

$f(A)= \frac{1}{4\pi}\int\frac{\partial g_{M}^{A}}{\partial n}f(M)ds$

By deforming $S$ and $S’$ , the variation of Green’s function is obtained as

$\delta g_{B}^{A}=-\frac{1}{4\pi}\int_{S\cup S’}\frac{\partial g_{M}^{A}}{\partial n}\frac{\partial g_{B}^{M}}{\partial n}\delta nds$.

In addition, the variations of the total electricity on $S$ and $S’$ are also discussed.

3 Current topic on Variational calculus
We are interested in variation of random fields $\mathrm{X}(\mathrm{C})$ . For the random field L\’evy’s infinites-
imal equation can be generalized as

$\delta X(C)=\Phi(X(C’), C’<C, \mathrm{Y}(s), s\in C, C, \delta C)$

where $C’<C$ means that $C’$ is inside of $C$ , the domain $(C’)$ enclosed by a contour, is a
subset of $(C)$ , and where $\Phi$ is, as before. a nonrandom function and the $\mathrm{s}$}$.\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{m}$

$\mathrm{Y}=\{\mathrm{Y}(s), s\in C;C\in \mathrm{C}\}$

is the innovation.
Here $\mathrm{C}=\{C\}$ has to be taken as a class

$\mathrm{C}=$ { $C;C\in C^{2}$ , diffeomorphic to $S^{1},$ $(C)$ is convex},
$(C)$ : being the domain enclosed by $C$.
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The classical variation theory can be applied by using the $S$ -transform in white noise
theory.

Before we discuss the variation of Gaussian random fields depending on a contour, it is
essential to consider a non-random function $G(C)$ of $C$ in C.

I. Non-random function

First consider a non-random function $G(C)$ defined on $\mathrm{C}_{i}$ where $G^{t}(C)$ is in $R^{1}$ and $\mathrm{C}$ is
defined in the previous section. Take $C+\delta C\in$ $\mathrm{C}$ which is a slight deformation of $C$. We
write $\delta C$ as only a symbolic expression of a contour sitting outside of $C$ determined by

$\delta C=\{\delta n(s);s\in C\}$ (3.1)

in which $s$ is the arc length which represents the parameter of $C,$ $\delta n(s)$ denotes the normal
vector to $C$ to $\mathrm{t}1_{1}\mathrm{e}$ outward direction at the point $s$ and $|\delta n(s)|$ denotes the distance from $s$

to $C+\delta C$ .

Definition
If $|| \delta n||=\sup_{s}|\delta n(s)|arrow 0$ then we say that $C+\delta C$ tends to $C$ .
$\backslash \mathrm{V}\mathrm{e}$ can now assume that $\delta n(s)$ is continuous.
Let us assume that $G$ satisfies the following.

$G(C+\delta C)-G(C)=\delta G(C)+g(C, \delta C)$ (3.2)
$\mathrm{s}\iota \mathrm{l}\mathrm{c}\mathrm{h}$ that

1. $\delta G(C)$ is continuous and linear in $\delta n(s)$ and

2. $g(C, \delta C)$ is $o(||\delta n||)$ ;

According to the fact (1), there is $\varphi$ such that $\delta G(C)$ can be expressed as

$\delta G(C)=\int_{C}\varphi(s)\delta n(s)ds$. (3.3)

Denote $\varphi(s)$ by $\frac{\partial G(C)}{\partial n}(s)$ . Thus we have

$\delta G(C)=\int_{C}\frac{\partial G(C)}{\partial n}(s)\delta n(s)ds$. (3.4)

Note. It is to note that the normal vector $\delta n(s)$ is taken to the outward direction from $C$,
since the interior of $C$ is tacitly understood to be the past in a sense so that $\delta C$ is taken
towards the future.

II. Random fields

Like as in the case of the non random function $G(C)$ , the variation of $\mathrm{Y}(C)$ is given by
the following proposition.
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Proposition 5.1 The variation of $l^{r}(C’))$ expressed in the form $(\mathit{4}\cdot \mathit{8})\emptyset S$

$\delta \mathrm{Y}(C)=\int_{C}g(s)x(s)\delta n(s)ds_{i}$ (3.5)

where $g(s)$ is the restriction of $g$ on $C$.

Let us define the functional of manifold $\Phi(C)$ as a linear function of $R^{d}$ parameter white
noise $x(u)$ as follows:

$\Phi(C)=\int_{(C)}F(C, u)x(u)du$ ,

where $F$ is in $L^{2}(R^{d})$ kernel.
Then, by using the $S$-transform, its variation is obtained as

$\delta\Phi(C)$ $=$ $\int_{C}F(C_{i}s)x(s)\delta n(s)ds$

$+ \int_{(C)}\int_{C}F_{n}’(C, u)(s)x(u)\delta_{n}(s)duds$ .

4 Literatures on variational calculus

In 1900 Kneser $\mathrm{p}\iota \mathrm{l}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d}$ the book Lehrbuch der Variationsrechnung, (Braunschweig) which
is the only modern text book at that time.

The other interesting literatures are

1. Bolza, Lectures on the calculus of $variations_{i}1904_{J}$. (Chicago, 1904 reprinted by Dover
Publ.)

2. Hancock, Lectures on the calculus of variations, 1904, Cincinnati.

The mathematicians and their interesting literatures , contributed on variational calculus,
are listed in the following.

L. Tonelli (1885-1946)

1923-1924 Tonelli Fondamenti $di$ Calcolo delle Variazioni, 2 vols Bologna

R. Goursat (1858-1936)

1927 Goursat Integral equations Calculus of Variations, Cours de analyse $\tau^{r}\mathrm{o}13$ .

R. $\mathrm{C}^{\tau}$ ourant (188\S -1972)
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1931 Collrant-Hilbert $Me$, thods of Mathematical Physics $VolI$.

1934 Morse The $Calcul_{}us$ of Variations in the $Large_{)}$ New York

Carath\’eodory (1873-1950)

1904 Dessertation, Gottingen

1935 Calcul,us of $var?,ations$ and partial differential, $eqv,ations$ of the $fi,rst$ order, (in
German) English translation $\backslash ^{\gamma}\mathrm{o}\mathrm{l}\mathrm{I}$ , II (1965-67)

V. Volterra (1860-1940)

Volterra Collected papers $Vol\mathit{5}$ .

Fomin-Volterra Calculus of variations, Princeton-Hall, (English $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ ) $(1961)$

Main terms of Lagarange function is similar to the potential equation of electro-
magnetic field.
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