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Abstract

A simple and general derivation of Josephson formulae for the tun-
neling currents is presented on the basis of Sewell’s general formulation
of superconductivity in use of off-diagonal long range order (ODLRO).

1 Introduction

Why superconductivity and Josephson effect?: Because superconductivity
provides a very important prototype of

$SSB$ ( $=\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{s}$ symmetry breaking)
and

. collective phenomena caused by SSB (e.g., supercurrent, Meissner ef-
fect, Josephson effect, magnetic flux quantization, etc.).

Among these collective phenomena, Josephson effect [1] exhibits the
physical roles of order parameters arising from SSB in relation to phase
coexistence. To formulate this effect in a concise way, we first note the key
roles played by the Cooper pair condensates [2] in superconductivity. They
yield the non-trivial order parameter which can be formulated as a “variable
at infinity” based on cluster property in thermodynamic pure phase $(=\mathrm{f}\mathrm{a}\mathrm{c}-$

tor state with GNS representation having trivial centre) $[3, 4]$ . According to
Sewell’s “macroscopic quantum theoretical approach”, we adopt his general
characterization of superconducting BCS states $\langle\cdot\rangle_{BCS}[5]$ in the form of
off-diagonal long range order (ODLRO):

$| \langle\psi(X_{1}+\frac{\xi_{1}}{2})\psi(X_{1}-\frac{\xi_{1}}{2})\psi^{\uparrow}(X_{2}-\frac{\xi_{2}}{2})\psi^{\uparrow}(X_{2}+\frac{\xi_{2}}{2})\rangle_{BCS}-\Psi(X_{1}, \xi_{1})\Psi^{*}(X_{2}, \xi_{2})|$

$|\vec{X}_{1}-\vec{X}_{2}|-\inftyarrow 0$
.

Here $\psi(x)$ is the second quantized non-relativistic electron field obeying
CAR: $\{\psi(x), \psi^{\uparrow}(y)\}=\delta^{3}(x-y)$ , and $\Psi(X, \xi)=\langle\psi(X+\xi)\psi(X-\xi 22)\rangle_{BCS}$

*Talk based on I. Ojima, Lett. Math. Phys. 51, 257 (2000).
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denotes the “macroscopic wave function” which is non-vanishing at spatial
infinity $|\vec{X}|arrow\infty$ . Starting from this assumption, he gave a general proof
of Meissner effect ( $\vec{B}=0$ inside of superconductor) [5]. Our aim here is
two-fold:

i) In the context of superconductivity: To understand its essential features
in a model-independent way;

ii) In general context: To extract useful hints for understanding symmetry
breaking, collective phenomena and phase coexistence, etc.

Obtained result is: A simple and general derivation of ( $dc$ and $ac$ )
Josephson formulae for tunneling currents due to phase difference between
two superconductors separated by a thin barrier of insulator $(=\mathrm{J}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{p}\mathrm{h}\mathrm{s}\mathrm{o}\mathrm{n}$

junction).
From this we can conclude that Josephson tunneling current is a di-

rect consequence of ODLRO and of non-invariance of energy in each side of
junction under gauge transformation due to phase difference, which should
be contrasted with the traditional derivations such as those based on the
perturbative treatment of the tunneling Hamiltonian, or, based on the phe-
nomenological Ginzburg-Landau equation.

2 Simple Derivation of Josephson Formulae

A completely model-independent approach is desirable, but we need here
the standard BCS Hamiltonian $[6, 3]$ arising from electron-phonon coupling:

$H_{BCS}( \Lambda;w)=\int_{\Lambda}dx[\frac{1}{2m}\vec{\nabla}\psi^{\uparrow}(x)\cdot\vec{\nabla}\psi(x)-\mu\psi^{\dagger}(x)\psi(x)]$

$+ \frac{1}{|\Lambda|}\int_{\Lambda}dx\int_{\Lambda}dy\int_{\Lambda}dz\int_{\Lambda}duw(x, y, z, u)\mathrm{x}\mathrm{x}\psi^{\uparrow}(x)\psi^{\uparrow}(y)\psi(u)\psi(z)$ ,

where $m$ is the mass of an electron and $\mu$ is the chemical potential of electrons
in bulk superconductor occupying a macroscopically extended spatial region
$\Lambda$ with volume $|\Lambda|$ .

To see the essence, we here use a simple picture of weakly coupled su-
perconductors placed in two spatial regions $\Lambda_{1},$ $\Lambda_{2}(\subset\Lambda)$ separated by a
Josephson junction regarded as a phase boundary $W\equiv\partial\Lambda_{1}=\partial\Lambda_{2}$ . In view
of the wide applicability of BCS model (at least in non high $T_{c}$ cases), we
suppose that the differences in properties of superconductors in $\Lambda_{1}$ and in $\Lambda_{2}$

should be absorbed in differences in potentials $w_{\Lambda_{1}}(x, y, z, u)\equiv w(x, y, z, u)$

for $x,$ $y,$ $z,$ $u\in\Lambda_{1;w_{\Lambda_{2}}}(x, y, z, u)\equiv w(x, y, z, u)$ for $x,$ $y,$ $z,$ $u\in\Lambda_{2}$ . Up to this
freedom, dynamics of superconductors are described universally by $H_{BCS}$

and the differences of realized thermodynamic phases are reduced to the
choice of states $\langle\cdot\rangle$ .
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Remark 1 To give a precise meaning to “thermodynamic phases”, we need
the thermodynamic limit with volume $arrow\infty$ . Then, the sizes of regions

$\Lambda_{1},$ $\Lambda_{2}$ are macroscopically finite and microscopically “infinite”. Then, the
location of junction $W=\partial\Lambda_{1}$ goes to “spatial infinity” far away from $\Lambda_{1}$

with outside region $\Lambda_{2}$ lying beyond it. It is possible to give a precise meaning
to this heuristic expression in a non-standard analytic formulation [7].

The next cruicial point is: How to define tunneling current? Because
of the non-local terms in $H_{BCS}$ we have no locally conserved electric cur-
rent. So we need to clarify in which sense the electric current is conserved.
Defining the electric charge $Q(\Lambda)$ in $\Lambda$ by

$Q( \Lambda)=-|e|\int_{\Lambda}dx\psi^{\uparrow}(x)\psi(x)$ ,

we see that it generates global $U(1)$-gauge transformation:

$[iQ(\Lambda), \psi(x)]$ $=$ $i|e|\psi(x)$ ,
$[iQ(\Lambda), \psi^{\uparrow}(x)]$ $=$ $-i|e|\psi\dagger(x)$ ,

where $e=-|e|$ : unit of electric charge. Then the meaning of conservation
is found in the expression:

$[H_{BCS}(\Lambda;w), Q(\Lambda)]=0$ for $\forall\Lambda$ .

De nition2 Tunneling current $J$ between $\Lambda_{1}$ and $\Lambda_{2}$ is defined by

$J= \frac{d}{dt}\langle Q(\Lambda_{1})\rangle_{Bcs=}\langle[iH_{BCS}(\Lambda), Q(\Lambda_{1})]\rangle_{Bcs}$ .

Remark 3 i) $J$ cannot be non-vanishing without outside region $\Lambda_{2}$ .

ii) Its heuristic meaning is seen in $J\propto dN/dt=\partial H/\partial\theta$ in the number-
phase picture of Ginzburg-Landau theory [8].

Decomposing $H_{BCS}(\Lambda;w)$ into regions $\Lambda_{1}$ and $\Lambda_{2}$ :

$H_{BCS}( \Lambda;w)=H_{BCS}(\Lambda_{1;}\frac{|\Lambda_{1}|}{|\Lambda|}w)+H_{BCS}(\Lambda_{2;}\frac{|\Lambda_{2}|}{|\Lambda|}w)+H_{12}$,

and combining it with the local (anti-)commutativity due to CAR, we see
that $J$ can be reduced to

$J=\langle[iH_{12}, Q(\Lambda_{1})]\rangle_{Bcs}=-\langle[iQ(\Lambda_{1}), H_{12}]\rangle_{BCS}$

with $H_{12}$ given by

$H_{12}= \frac{1}{|\Lambda|}\sum_{\{i,j,k,l\}=\{1,2\}}\int_{\Lambda_{i}}dx\int_{\Lambda_{j}}dy\int_{\Lambda_{k}}dz\int_{\Lambda_{l}}duw(x, y, z, u)\psi\dagger(x)\psi^{\uparrow}(y)\psi(u)\psi(z)$.
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Then we have

$J=-\langle[iQ(\Lambda_{1}), H_{12}]\rangle_{BCS}$

$=i|e| \frac{1}{|\Lambda|}\sum_{\{i,j,k,l\}=\{1,2\}}\int_{\Lambda_{i}}dx\int_{\Lambda_{j}}dy\int_{\Lambda_{k}}dz\int_{\Lambda_{l}}du$

$\mathrm{x}w(x, y, z, u)(-\delta_{i1}-\delta_{j1}+\delta_{k1}+\delta_{l1})\langle\psi^{\uparrow}(x)\psi^{\uparrow}(y)\psi(u)\psi(z)\rangle_{BCS}$ .

In thermodynamic limit $\Lambda,$ $\Lambda_{1},$ $\Lambda_{2}arrow\infty$ with $|\Lambda_{1}|/|\Lambda_{2}|$ fixed, the junc-
tion at the boundary $W$ goes infinitely far away, and hence, the terms coming
from $\Lambda_{2}$ beyond $W$ are replaced by their expectation values in $\langle\cdot\rangle_{BCS}$ owing
to cluster property:

$|\langle\psi^{\#}(x_{1}^{(1)})\cdots\psi^{\#}(x_{k_{1}}^{(1)})\psi^{\#}(x_{1}^{(2)})\cdots\psi^{\neq}(x_{k_{2}}^{(2)})\rangle_{BCS}$

$-\langle\psi^{\#}(x_{1}^{(1)})\cdots\psi^{\#}(x_{k_{1}}^{(1)})\rangle_{BCS}\langle\psi^{\#}(x_{1}^{(2)})\cdots\psi^{\#}(x_{k_{2}}^{(2)})\rangle_{BCS}|$

$\Lambda_{1},\Lambda_{2}arrow\infty,|\Lambda_{1}|/|\Lambda_{2}|:$ fix
$\mathrm{e}darrow 0$ ,

where $x_{1}^{(1)},$
$\cdots,$

$x_{k_{1}}^{(1)}\in\Lambda_{1},$ $x_{1}^{(2)},$
$\cdots,$

$x_{k_{2}}^{(2)}\in\Lambda_{2}$ and $\psi\#=\psi$ or $\psi\dagger$ .
Here we recall that under the assumption of spatial homogeneity at infin-

ity the expectation values of odd powers of fermionic operators $\psi,$ $\psi\dagger$ vanish
(i.e., Bose-Fermi superselection rule holds) [9]. Then we see that, in the inte-
grand $\chi_{\Lambda_{i}}(x)\chi_{\Lambda_{j}}(y)\chi_{\Lambda_{k}}(z)\chi_{\Lambda_{l}}(u)\cross(-\delta_{i1}-\delta_{j1}+\delta_{k1}+\delta_{l1})\langle\psi^{\uparrow}(x)\psi^{\uparrow}(y)\psi(u)\psi(z)\rangle_{BCS}$

( $\chi_{\Lambda}\equiv \mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}$ function of set $\Lambda$), surviving terms come from the cases with
$i=j=1,$ $k=l=2$ or $i=j=2,$ $k=l=1$ :

$\sum_{\{i,j,k,l\}=\{1,2\}}\chi(x, y, z, u)(-\delta_{i1}-\delta_{j1}+\delta_{k1}+\delta_{l1})\langle\psi\dagger(x)\psi^{\uparrow}(y)\psi(u)\psi(z)\rangle_{BCS}$

$\Lambda_{1},\Lambda_{2}arrow\infty,|\Lambda_{1}|/|\Lambda_{2}|:$ fixed
$arrow$

$\sum_{i=j\neq k=l}\chi(x, y, z, u)(-\delta_{i1}-\delta_{j1}+\delta_{k1}+\delta_{l1})$

$\cross\langle\psi^{\uparrow}(x)\psi^{\uparrow}(y)\rangle_{Bcs}\langle\psi(u)\psi(z)\rangle_{Bcs}$ ,

where $\chi(x, y, z, u)\equiv\chi_{\Lambda_{t}}(x)\chi_{\Lambda_{j}}(y)\chi_{\Lambda_{k}}(z)\chi_{\Lambda_{l}}(u)$ .
Assuming “almost spatial homogeneity” in $\Lambda_{1}$ and $\Lambda_{2}$ w.r.t. “macrx

scopic wave function” $\Psi(X, \xi)$ in ODLRO in the sense of

$\langle\psi(x)\psi(y)\rangle_{BCS}$ $\simeq$ $\Psi(\frac{x+y}{2}, x-y)$

$=$ $\{$

$|\Psi_{1}|e^{i\theta_{1}}(x, y\in\Lambda_{1})$ ,
$|\Psi_{2}|e^{i\theta_{2}}(x, y\in\Lambda_{2})$ ,

we obtain the desired formula for $dc$-Josephson current by picking out phase
factors from the integrands:

$J\simeq \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{x}(e^{i(\theta_{1}-\theta_{2})}-e^{-i(\theta_{1}-\theta_{2})})\propto\sin(\triangle\theta)$ ,
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where $\triangle\theta\equiv\theta_{1}-\theta_{2}$ is the phase difference of Cooper pairs across thejunction.
Using this, we can easily derive the $ac$-Josephson formula in situations

with voltage gap $V$ across the junction, simply by replacing the above $\Delta\theta$

with $\Delta\theta+2eVt$ . This is due to the following reason: In spite of lost local
gauge invariance in $H_{BCS}$ in spatial directions due to non-local interactions,
local gauge invariant coupling is still meaningful in temporal direction. By
this temporal gauge freedom, situation with voltage gap $V$ is realized by a
time-dependent local gauge transformation:

$A^{\mu}=( \phi,\vec{A}=0)arrow(\phi+\frac{\partial}{\partial t}(Vt)=V,\vec{A}=0)$ ;

$\psi(x, t)arrow e^{ieVt}\psi(x, t)$ ,

which results in $\triangle\thetaarrow\triangle\theta+2eVt$ . Thus we have $J_{ac}\propto\sin(\triangle\theta+2eVt)$ for
$ac$-Josephson current.

In the above, we need (almost) spatial homogeneity to extract phase
difference. Although precise coefficients cannot be determined by such qual-
itative discussion, we can extract in a similar way the term in energy density
coming from $\Delta\theta$ at the boundary located infinitely far away:

$\frac{\langle H_{12}\rangle_{BCS}}{|\Lambda|}arrow\Lambda_{1},\Lambda_{2}arrow\infty,|\Lambda_{1}|/|\Lambda_{2}|:$

fixed
constant $\cross\cos(\Delta\theta)$ .

If the coefficient of $\cos(\triangle\theta)$ is of negative sign, this guarantees self-consistency
of the postulate that phase of Cooper pair condensates should be spatially
homogeneous in favour of $\Delta\theta=0$ in the absence of a constraint maintaining
phase difference at the barrier.

To verify this consistency in a more satisfactory way, it seems necessary
to confront a challenging problem of how one can justify the notion of a
point-like order parameter $\Psi(x)$ of Cooper pairs appearing in Ginzburg-
Landau approach. It is crucial also for discussing Type II superconductivity
involving spatial inhomogeneity and local gauge invariance problem.

3 Discussion: Infinities and Infinitesimals

Here some comments are in order on the use of non-standard analysis [7]:
It can be useful in describing situations with infinitely large regions $\Lambda_{1},$ $\Lambda_{2}$

separated by a boundary $W$ at infinity. What is important is that it allows
to treat simultaneously theories with finite and infinite volumes without
disconnecting the two approaches.

Before introducing the distinctions among finite, $\infty$ and $1/\infty$ (level of
intemal objects), it looks as if we were in finite volume theory. Once such
distinctions are introduced (interpretation in a non-standard model) by re-
garding $|\Lambda_{1}|$ and $|\Lambda_{2}|$ as infinite numbers (whose ratio is kept finite), infinite
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volume theory is seen to be contained in the former, extracted by the pro-
cedure of taking standard parts of quantities with all infinitesimals such as
$1/|\Lambda_{1}|$ thrown away.

With only one thermodynamic phase, the procedure of extracting stan-
dard parts may be equivalent to the usual formulation in thermodynamic
limit. In the present situation with two infinitely large regions $\Lambda_{1}$ and $\Lambda_{2}$ ,
we have still “another world” in $\Lambda_{2}$ beyond the infinitely distant boundary
$W$ of infinitely extended $\Lambda_{1}$ . This is difficult to be treated in the usual
formulation; it can be described without difficulty in such a framework that
all the infinities and infinitesimals are fully legitimate quantities. Moreover,
all the limiting or approximate relations appearing above are replaced by
simple algebraic equivalence relations modulo infinitesimals, in which one of
its conceptual advantages can be found.
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