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1 Introduction
We consider the nonstationary Navier-Stokes equations in the plane.

$(\mathrm{N}\mathrm{S})$

where $u=u(X, t)=(u^{1}(X, t),$ $u^{2}(x, t))$ and $p=p(x, t)$ stand for the unknown
velocity vector field of the fluid and unknown scaler of its pressure, while
$u_{0}=u_{0}(x)=(u_{0}^{1}(x), u(\mathrm{o}x)2)$ is a given initial velocity vector field.

Our goal is to prove the unique existance of $\mathrm{g}\mathrm{l}\mathrm{o}\mathrm{b}\mathrm{a}1_{-}\mathrm{i}\mathrm{n}$-time smooth solu-
tion of $(\mathrm{N}\mathrm{S})$ when initial velocity $u_{0}$ belongs to merely bounded uniformly
continious, i.e., $u_{0}\in BUC=BUC(\mathbb{R}^{2})$ .

Theorem 1 Assume that $u_{0}\in BUC$ satisfies $\mathrm{d}\mathrm{i}\mathrm{v}u_{0}=0$ in $\mathbb{R}^{2}$ (in the sense
of distribution). Then there exists $u\in C([0, \infty);BUc)$ such that $u(\mathrm{O})=u_{0}$
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and $(u(t), \nabla p(t))$ is a unique classical solution of $(NS)$ $fort>0$ , provided that
$\nabla p(t)=\Sigma_{i,j=1}^{2}\nabla RiRju^{i}(t)u(jt)$ , where $R_{j}=(-\triangle)^{-1/}2\partial/\partial_{X_{j}}$ is the Riesz
transform.

We may note that we do not impose any smallness assumptions on $u_{0}$ in
Theorem 1.

We consider that $u_{0}$ belongs to $BUC$ . In this case the initial velocity does
not decay at space infinity. For example $u_{0}$ can be taken such as a constant
or a spatially periodic function.

There is a large literature on local solvability of Navier-Stokes equations
even in a various domain of $\mathbb{R}^{n}(n\geq 2)$ . In particular Leray [Le] has already
obtained the time global smooth solutions if $u_{0}\in L^{2}(\mathbb{R}^{2})$ . The method of
his proof is based on the energy estimate. The kinematic energy is defined
by $||u||_{L^{2}}^{2}/2$ . This method does not apply directly to our situation because
the energy is infinite.

On the other hand the time local solution in our situation is constructed
by Cannon-Knightly [CK] in 1970, Cannone [Ca] in 1995, and Giga-Inui-
Matsui [GIM] in 1999. They show the time local solvability including higher
dimensional problems.

The relation $\nabla p=\sum\nabla R_{i}R_{j}uu^{j}i$ does not follow from the equations since
$u$ may not decay at space infinity. Recently work of Jun .Kato [Ka] shows a
sufficient condition on $p$ to get this relation.

Remark 1 (Jun Kato) Assume that the initial data $u_{0}\in BUC(\mathbb{R}^{n})$ sat-
isfying $\mathrm{d}\mathrm{i}\mathrm{v}u_{0}=0$ . Let $(u,p)$ is classical solutions with $u\in L^{\infty}((\mathrm{O}, T)\cross \mathbb{R}^{n})$

and $p\in L_{loc}^{1}((\mathrm{o}, T);BMo(\mathbb{R}^{n}))$ , where $BMO$ denotes the space of bounded
mean oscillation functions. Then $(u(t), \nabla p(t))$ is a u.nique for $t>0$ , and the
relation

$\nabla p(t)=\sum_{i,j=1}^{n}\nabla RiRju^{i}(t)u(jt)$

holds.
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2Sketch of the proof of Theoreml
Let us briefly explain main ideas of proving Theorem 1. We use the integral
equation;

(INT) $u(t)=e^{t\triangle}u_{0}- \int_{0}^{t}\nabla\cdot e^{(ts)\triangle_{\mathrm{p}}}-(u\otimes u)(s)d_{S}$,

where the matrix operator $\mathrm{P}=(P_{ij})_{i,j1,2}=’ P_{ij}=\delta_{ij}+R_{i}R_{j}$ . We denote
that $\delta_{ij}$ is Kronecker’s delta, and $\mathrm{P}$ is formaly the orthogonal projector on
divergence-hee subspace. $e^{t\Delta}$ is the solution operator of heat equation. We
call the solution of (INT) the mild solution.

In the literature [CK] and [GIM], the local solution $u\in C.([0, \tau_{0}];BUc)$ ,
this $T_{0}$ is estimates by

$T_{0}\geq C/||u_{0}||_{\infty}^{2}$ ,

where $C$ is a numerical constant.

The main idea is to establish a priori bound for $||u(t)||_{\infty}$ . Once we obtain
it, the local solution can be extended globally.

Theorem 2 Assume that $u_{0}\in BUC$ , and assume that $u$ is the mild solution
in $[0, T]$ . Then there exists a positive constant $K$ independent of $T$ and $u$ ,
such that

$||u(t)||_{\infty}\leq K\exp(Ke^{Kt})$ for $t\in[0, T]$ .

It is easy to see that Theorem 2 implies Theorem 1.

We give an outline of the proof of Theorem 2. It consists of 3 steps.

(i) Maximum principle for vorticity equation.

(ii) Estimate of bilinear terms.

(iii) Logarithmic type Gronwall inequality.

(Step i) We take rotation to $(\mathrm{N}\mathrm{S})$ to get

$\omega_{t}-\triangle\omega+(u, \nabla)\omega=0$ ,
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where $\omega(t)=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}u(t)$ , which is a scalar function.
Since $\omega$ and $u$ are bounded, we can apply the maximum principle for the
vorticity equation. We obtain the following inequality:

$||\omega(t)||_{\infty}\leq||\omega_{0}||_{\infty}$ for $t\in[0, T]$ ,

where $\omega_{0}=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}u_{0}$ .
It is well-known result that there is a regularizing effect, so that for all

$t_{0}\in(0, T),$ $\nabla u(t_{0})\in BUC$ . Thus we may assume that this $t_{0}$ is an initial
time, so that $||\omega_{0}||_{\infty}$ is finite.

We note that in the case of the boundary exists the above estimate is
not expected since the vorticity is created near the boundary. In higher di-
mensional cases without boundary it is not expected to have similar vorticity
estimate because of vorticity stretching terms.

(Step ii) It is summarized in the following lemma:

Lemma 1 There exists a numerical positive constant $C$ such that

$|| \nabla e^{t\triangle}(f\otimes f)||\infty\leq C\{(1+\frac{1}{\sqrt{t}}+\log R)||f||\infty||\mathrm{c}\mathrm{u}\mathrm{r}1f||\infty+\frac{1}{R}||f||_{\infty}^{2}\}$,

for all $t>0,$ $R>1$ , and $f\in C^{1}(\mathbb{R}^{2});\mathrm{d}\mathrm{i}_{\mathrm{V}}f=0$ .

We refer to the similar estimate holds in higher dimensional cases.
The proof of this lemma is not difficult, but not short. We estimate the

Riesz transform by using duality, but we skip the detail.

(Step iii) This step is summarized by the logarithmic type Gronwall
inequality:

Lemma 2 Let nonnegative function $a(t, s)$ be continious in $\{(t, s);0\leq s<$

$t\leq T\}$ , and satisfies $a(t, \cdot)\in L^{1}(0, t)$ for $t\in(0, T]$ , with some $T>0$ .
Assume that there exists a positive constant $\epsilon_{0}$ and a constant $A\in(0,1)$

such that
$\sup_{0\leq t\leq T}\int_{t-\epsilon}^{t}0a(t, s)ds\leq 1-A$ .
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If positive constants $\alpha,$ $\beta>0$ , and nonnegative continious function $f\in$

$C([0, T])$ satisfy that

$f(t) \leq\alpha+\int_{0}^{t}a(t, S)f(s)ds+\beta\int_{0}^{t}\{1+\log(1+f(S))\}f(S)d_{S}$,

for $t\in[0, T]$ . Then the following inequality holds,$\cdot$

$f(t) \leq-1+\frac{1}{e}[(1+\frac{\alpha}{A})e]^{\mathrm{e}}\mathrm{x}\mathrm{p}(^{\underline{\beta}+}At\Delta)$ ,

for $t\in[0, T]$ , where the constant $\gamma$ is defined by

$\gamma=\sup_{0\leq t\leq\tau}\{0\leq s\leq t-\sup_{0\epsilon}a(t, S)\}$ .

The Gronwall inequality with the logarithmic terms is shown by Wolibner
[Wo] in 1933 and Brezis-Gallouet [BG] in 1980. But in our case there is a
singular term $a(t, s)$ , so ours is quite different from thiers.

Finally we estimate $L^{\infty}$-norm of the mild solution explicitly.

$||u(t)||_{\infty} \leq||e^{t\Delta}u_{0}||_{\infty}+\int_{0}^{t}||\nabla e^{(t}-s)\triangle \mathrm{P}(u\otimes u)(S)||_{\infty^{d}}s$ .

We use the estimate $||e^{t\triangle_{u_{0}}}||_{\infty}\leq||u_{0}||_{\infty}$, and by Lemma 1 to obtain

$||u(t)||_{\infty} \leq||u_{0}||\infty+\int_{0}^{t}c\{(1+\frac{1}{\sqrt{t-s}}+\log R)||u(s)||_{\infty}||\omega(s)||\infty+\frac{1}{R}||u(s)||^{2}\infty\}ds$ ,

with some positive constant $C$ . We now take $R=1+||u(S)||_{\infty}$ ; this choice
of $R$ is similar to that of [BG]. By maximum principle for vorticity equation,
we have

$||u(t)||_{\infty} \leq||u_{0}||_{\infty}+C(1+||\omega 0||_{\infty})\int_{0}^{t}\{1+\frac{1}{\sqrt{t-s}}+\log(1+||u(S)||\infty)\}||u(S)||\infty^{dS}$.

We apply the logarithmic type Gronwall inequality (Lemma 2) to obtain
Theorem 2.
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