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1. INTRODUCTION

In the preceding paper [8], the authors studied the optimal control problems for

the Keller-Segel equations. In that paper we showed the existence of optimal control
and the first order necessary condition by formulating the Keller-Segel equations as a
semilinear abstract equation. Many papers have already been published to study the
control problems for nonlinear parabolic equations. In the books Ahmed [1] and Barbu
[2], some general frameworks are given for handling the semilinear parabolic equations
with monotone perturbations. In [1] the nonlinear terms are monotone functions with
linear growth, and in [2] they are generalized to the multivalued maximal monotone
operators determined by lower semicontinuous convex functions. Papageorgiou [7] and
Casas et al. [3] have studied some quasilinear parabolic equations of monotone type.
This note is the generalization of [8] as a semilinear abstract equation of non-monotone
type. :
Notations. R denotes the sets of real numbers. Let I be an interval in R. LP(I;H),
1 < p < 00, denotes the LP space of measurable functions in I with values in a Hilber
space H. C(I;H) denotes the space of continuous functions in I with values in H. Let
D(I) denote the space of C*°-functions with compact support on I and D'(I) denote
the space of distributions on I. For simplicity, we shall use a universal constant C to
denote various constants which are determined in each occurrence in a specific way by
6, M, and so forth. In a case when C depends also on some parameter, say 8, it will be
denoted by Cpy.

2. THE FORMULATION OF PROBLEM

Let V and H be two separable real Hilbert spaces with dense and compact embedding
V — ‘H. Identifying H and its dual H’ and denoting the dual space of V by V', we
have V — H — V'. We denote the scalar product of ‘H by (-,-) and the norm by | - |.
The duality product between V' and V which coincides with the scalar product of H on
H x H is denoted by (-,-), and the norms of V and V' by || - || and || - ||+, respectively.
U = L?(0,T;V") and Uyq is closed, bounded and convex subset of U.

We consider the following Cauchy problem

day
— 4+ AY = F(Y t 0<t<T

Y(0) = Y,
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in the space V'. Here, A is the positive definite self-adjoint operator of H defined by a
symmetric sesquilinear form a(Y,Y) on V, (4Y,Y) = a(Y,Y), which satisfies

(a.i) a(Y, V)| < MIYI[IY], Y,Y €V,

(a.ii) aY,Y) > 8||Y|?, YeVv

with some § and M > 0. A is also a bounded operator from V to V'. F(.) is a given
continuous function from V to V' satisfying

(f.i) For each n > 0, there exists an increasing continuous function ¢, : [0,00) —
[0, 00) such that

IE)ll« < nllY[l+ (YD), Y€V

(£ii) For each n > 0, there exists an increasing continuous function v, : [0,00) —
[0, 00) such that

IF(Y) = F)[l« <nllY = Y[+ (Y] + [V + Db, (V] + Y)Y - Y], Y,V eV.

U(-) € L*(0,T;V") is a given function and Y, € H is an initial value.
We then obtain the following result (For the proof, see Ryu and Yagi [8]).

Theorem 2.1. Let (a.i), (a.i), (f.i), and (fii) be satisfied. Then, for any U €
L2(0,T; V") and Yy € H, there exists a unique weak solution

Y € HY(0,T(Yo,U); V') N C([0, T (Yo, U)); H) N L*(0, T(Yp, U); V)
to (E), the number T'(Yo,U) > 0 is determined by the norms ||U||r20 .11y and |Yo|.
In this section we are concerned with the following problem
(P) Minimize J(U),

where the cost functional J(U) is of the form
5 s
I0) = [IDY ) -~ YalPdi+ [ W0IRdt, U € U
0 0

Here, Y(U), U € Uyq, is the weak solution of (E) and is assumed to exist on a fixed °
interval [0,S]. D is a bounded operator from V into V and Y} is a fixed element of
L%(0, S;V). v is a nonnegative constant.

Remark. Let Yy € 'H be fixed. By Theorem 2.1, for U € Uy,q, Y (U) exists on the interval
[0, T(U)] with T(U) > 0 depending on [|U||z20,r,). Hence, 0 < S < inf{T(U);U €
Upa}-

We prove the following theorem.
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Theorem 2.2. There exists an optimal control U € Uy,q for (P) such that

O = g, )

Proof. The proof can be carried out in the same way as that of Theorem 2.1 (see [8,
Theorem 2.1]). As it is standard (cf. [2, Chap. 5, Proposition 1.1] and [6, Chap. III,
Theorem 15.1]), we will only sketch.

Let {U,} C U4 be a minimizing sequence such that nh_)n;o J(Uy,) = Urélg{nd J(U). Since

{U,} is bounded, we can assume that U,, — U weakly in L2(0,S;)’). For simplicity,
we will write Y, instead of the solution Y (U,,) of (E) corresponding to U,

Y,
dd—t"'AY-——F(Yn)'i_Un(t)’ 0<tSS’

Y,(0) = Yg.
Taking the scaler product of the equation and Y,,, we obtain that
3 SVl + (AYa(t), Yal0)) = (F(Ya(t), Yal0) + (Un(0) Ya(0)).

Then, from (a.ii) and (f.i),

Vo) + 8l[Ya (I < nllYa (I + {@n(IYa®)]) + U Ya (O

DO | b
&=

With some increasing, locally Lipschitz continuous function ¢: [0,00) — [0, 00), it fol-
lows that

d 8
(2.1) { ZVR@F + 6V < (Y2 ®)?) + SN0 0<t<5,
L Y2 (0)” = Yol

Let zp(t) = [Yo(2)]* — 3 fo |Un(s)||?ds, 0 <t < S. Since fo lUn(s)||2ds < C, it follows
that iz

— <
o Oz, +8C6™ )

On the other hand, let z(t) be a solution to the ordinary differential equation

Z—Z—gb(z—l—SC’(S ), 0<t<S,
2(0) = [Yo|*.

Then, by the theorem of comparison, z,(t) < z(¢) for all 0 < ¢t < S. Hence, |Y,(t)]? <
I2llc(o,s1y +8C61

The sequence {Y,} is thus bounded in L*°(0,S;H). As a consequence, it follows
from (2.1) that {Y,,} is bounded in L?(0,S;V) also. Moreover, from (f.i), {dY,/dt} is
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bounded in L?(0, S;)’). Therefore, choosing a subsequence if necessary, we can assume
that

Y, »Y weaklyin L2(0,S;V),

dy, dY . 2 N
—= = = weakly in  L?%(0, S;V').

Since V is compactly embedded in H, it is shown by [5, Chap. 1, Theorem 5.1] that
(2.2) Y, — Y strongly in L%(0,S;H).

Let us verify that Y is a solution to (E) with the control U. Let ¢ € D(0,.S) and
V €V, and put ®(t) = £(t)V. Then,

S S
/ (Y.(8), (8))dt + / (AY, (1), ®(2)) dt
0 0

S S
_ / (F(Ya(t), B(E))dt + / (Un(t), ®(b))dt.
0 0

Let here n tend to infinity. It is then observed from (f.ii) that
S . s .
| P = PO, a1t < 0 [ 1v0) - VO ll00)
S
+/O Y@+ YOI + Doy ((Ya )] + [Y (D Ya(t) — Y (@)1 2(2)]ldt,

where 77 > 0 is arbitrary. From (2.2) it is seen that fOS<F(Yn),(I>(t))dt converges to
fOS(F (Y(t)), ®(t))dt as n — oco. Therefore, we obtain that

S S
/ (V' (), B(t))dt + / (AT (1), B(t))dt
0 0 s s
— /0 (F(Y (1), ®(t))dt + /0 (U(t), d(t))dt.

This then shows that Y (¢) satisfies the equation of (E) for almost all ¢t € (0,5). In a
similar way it is also shown that Y (0) = Yj, note from [4, Chap. XVIII, Theorem 1]
that Y € C([0, S];’H). Hence, Y is the unique solution to (E) with the control U; that
is, Y =Y(U).

Since Y,, — Y, is weakly convergent to Y — Yy in L%(0,S; V), we have:

. < T < 1. — . )
Jain, /) = /0 = i SO = g, T

Hence, J(U) = Ur»Ielzi,tn JU). O
ad
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3. FIRST ORDER NECESSARY CONDITION

In this section, we show the first order necessary condition for the Problem (P). We
denote the scalar products in ¥V and V' by (-,-)y and (-, )y, respectively. In order to
the necessary conditions of optimality, we need some additional assumptions:

(£iii) The mapping F(-) : V — V' is Fréchet differentiable and for each 7 > 0, there
exists an increasing continuous functions p,, v : [0,00) — [0,00) such that

Al ZNPH+ Y+ Deg(1(YDIZIPN, Y, 2, P eV,
(F'(V)Z,P)| < ¢ nllZIIPI+ (Y L+ Dua((YDIZIPL, Y, 2, P eV,
v(IYDIZIIPI, Y, 2, P eV.

(f.iv) F'() is continuous from H into £(V,V’).

Proposition 3.1. Let (a.i), (a.ii), (£.i), (£.ii), (f.iii), and (f.iv) be satisfied. The mapping
Y : U,q — HY(0,S;V')NC([0, S]; H) N L3(0,S;V) is Gateauz differentiable with respect
to U. For V € Uyq, Y'(U)V = Z is the unique solution in H*(0,5;V") NC([0, S];H) N
L?(0,8;V) of the problem

dt
Z(0) = 0.

dzZ , B
(3.1) {—+AZ*F(Y>Z—V(t), 0<t<S,

Proof. Let U,V € Uyg and 0 < h < 1. Let Y, and Y be the solutions of (E) correspond-
ing to U + hV and U, respectively.

Step 1. Yy, — Y strongly in C([0,S];H) as h — 0. Let W =Y, — Y. Obviously, W
satisfies

(3.2) dt

DV AW — (F(Ya(t) - F(Y(1)) = BV (), 0<t< 5,
W (0) = 0.

Taking the scalar product of the equation (3.2) with W, we obtain that

1d

57| WOP + (AW (0), W(1)) = (FY(t) - F(Y (1)), W(t) + (hV (1), W(2)).

Using (a.ii) and (f.ii), we have

——|W + o||W(t

< S lw P + (@1 + 1Y @12 + 1% (Ya®l+ Y O) W 0P

+4h?5 V()12

N >
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Therefore,
1 5 6 7 0
(3.3) =|W@®)|*+ = lW(s)||*ds
2 2 Jo

(IYa(s)] + Y (5)]) "W (s)[2ds

s
4

s[;mnwmz+m«mﬁ+nw

S
+ 4h257! /O |V (s)|2ds.

Using Gronwall’s lemma, we obtain that

FEUYR)IPHIY ()12 +H1) 0 s (Ya(s)|+HY (s)])ds
W) < CRAIVI320.50m€° i

for all t € [0, S]. Hence, Y, — Y strongly in C([0, S];H) as h — 0.

Step 2. % — Z strongly in H'(0,S; V') N C([0, S]; H) N L?(0,5;V) as h — 0. We
rewrite the problem (3.2) in the form
Y,—-Y ), — —
Y=Y Y=Y FOR) = FY) =V(t), 0<t<S,
dt h h h
(3.4) v _y
h - —
- (0) =0. |
On the other hand, we consider the linear problem (3.1). From (a.i), (a.i), (f.i),
(f.ii), and (f.iil), we can easily verify that (3.1) possesses a unique weak solution Z €
H(0,S;V") N C([0,S); H) N L?(0,S;V) on [0,5] (cf. [4, Chap. XVIII, Theorem 2}).
Define F}, = [ F'(Y +8(Y, —Y))df. Then W = Yo=Y _ Z satisfies

(3.5) d‘f;(” + AW () — FW(t) = (F}, - F))Z(t), 0<t<S§,
W(0) = 0.

Taking the scalar product of the equation of (3.5) with W, we obtain that
Ld
2dt

=(ERW (), W (1)) + ((Fy, — Fg) Z(1), W ().

(W ()2 + (AW (t), W (2))

<SIW@IR + (Y@ + [V(0) = YOI + DV + 1Y) ()

+ S~ B 2O

where p : [0,00) — [0,00) is some increasing continuous function. Therefore,
t
@mtmeM/ummms
0
t
SAWﬂﬂWWH@WHwWW+WWW®WS

8
+ 5||(Fr’z - Fé)Z(t)H%Z(o,s;v')-
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From (f.iii), we have ||[F} Z(t)||« < C||Z(¢)||, t € [0,5]. Since Y3, — Y strongly in H, it
follows from (f.iv) that

FLZ(t) — F{Z(t) strongly in V' a.e..
By the dominated convergence theorem, we have
I(Fy, — Fo)Z()|1 320,50y = 0 as h— 0.

Using Gronwall’s lemma, it follows from (3.6) that Xﬁh—"—z is strongly convergent to Z in
H(0,S;V')nc([o,S]; H)n L2(0,S; V). O

With the aid of this proposition, we can easily show the first order necessary condi-
tion.

Theorem 3.2. Let U be an optimal control of (P) and letY € L%(0, S;V)NC([0, S]; H)N
H'(0,8;V") be the optimal state, that is Y is the solution to (E) with the control U(t).
Then, there ezists a unique solution P € L%(0,S;V) NC([0,S];H) N H(0,S;V') to the
linear problem

dP . _
- — F'(Y)"P = D*A(DY - Y, <
37 — + AP —F'(V)"P ( ), 0<t<S§,

P(S) =0

inV', where A :V — V' is a canonical isomorphism; moreover,

S .
/ (AP +~U,V —U)ydt >0 for all V € Uyy.
0

Proof. Since J is Gateaux differentiable at U and U,q is convex, it is seen that
JOWV -U)>0  forall V & Uyy.

On the other hand, we verify that

S

S .
(3.8) J’(U)(V—U):/ (DY (U) — Yy, DZ)ydt + 7/0 (U, V —U)ydt

0
with Z = Y/(U)(V — U). Let P be the unique solution of (3.7) in H(0,S;V') N
C([0, S]; H)N L?(0, S; V). From (a.i), (a.ii), (f.i), (f.ii), and (f.iii), we can guarantee that
such a solution P exists (cf. [4, Chap. XVIII, Theorem 2]). Thus, in view of Proposition
3.1 the first intergal in the right hand side of (3.8) is shown to be

S S
/ (DY (U) - Yy, DZ)ydt = / (D*N(DY (T) - Ya), Z)dt
0 0

S . S
:/ <_d_P+AP—F’(7)*P,Z)dt:/ P, | Az - PT)2)dt
0 dt 0 dt

S
= / (AP, V — U)yrdt.
0
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Hence,

S
/ (AP +~U,V —U)yrdt > 0, forall V e Uyy. O
0

Remark. Note that our result covers that of [8, 9] when the sensitivity function x(p)
is linear function of p, x(p) = bp (b being a positive constant). Furthermore, since all
assumptions of our abstract result are satisfied when x(p) = Tll—f;, our result is also
applied in this case.
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