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Abstract
In this paper, we propose a numerical conformal mapping of periodic structure
domains onto periodic parallel slit domains. The method presented here is obtained
by extending Amano’s method of numerical conformal mapping based on the charge
simulation method. Some numerical examples show that the method presented here
is efficient. We also apply our method to the analysis of potential flow past obstacles
in a periodic array.

1 Introduction

Conformal mapping is a basic problem in complex analysis and is important in applications
to science and engineering, for example, the analysis of two-dimensional potential flow,
electromagnetic field, and so on. But the exact solution of comformal mapping is known
for few cases. Therefore computational method of conformal mappings, that is numerical
conformal mapping, has been an attractive problem in numerical analysis. See Henrici[5],
Kythe[6], Nehari[7] and Trefethen|8] for surveys of numerical conformal mappings.

Amano et al. [1, 2, 3] proposed a numerical conformal mapping based on the charge
simulation method, which is a fast solver for potential problems. In the method, the
problem of numerical conformal mapping is reduced to the one of approximating the
mapping function, which is expressed by using the charge simulation method, i.e., the
approximate mapping function is expressed by using a linear combination of complex
‘logarithmic potentials

N
Y Qlog(z—¢), Q€R, GeC(j=12,...,N). (1)
=1 |
The method was applied to the conformal mappings of multiply connected domains onto
various slit domains and shown to be very efficient from some numerical experiments. An
application to the analysis of potential flows was also presented[4].

In this paper, by extending the above method, we propose a numerical conformal
mapping of periodic structure domains onto periodic parallel slit domains (See Figure
1). In the method presented here, the problem is reduced to the one of approximating
a periodic analytic function, which is approximated by a linear combination of periodic
logarithmic potentials

N
> Q;logsin [g(z—cj)].,, >0, Q;eR, eC(j=12,...,N). (2)

i=1



109

Some numerical experiments show that the method presented here is very efficient. We

2

Figure 1: Conformal mapping of the periodic structure domain 2 onto the periodic
parallel slit domain ..

also apply our method to the analysis of potential flows past obstacles in a periodic array.

In section 2, we prepare some mathematical notations. In section 3, we propose our
method for the numerical conformal mapping of periodic structure domains. In section 4,
we show some numerical examples and applications to the analysis of potential flow. In
section 5, we conclude this paper and refer to future problems.

2 Notations

First we define exactly the periodic structure domain and the periodic parallel slit domain.
Let a be a positive constant.

Let Dy be a domain surrounded by a closed Jordan curve in 2(= z + iy)-plane and
D, (m € Z) the domain defined by

Dyp={z+ma|z€ Dy} (3)

which satisfy
DnNDi=0 (m#1). (4)

The periodic structure domain Z is defined as the exterior to the domains Dy, (m € Z).
@zC\{UD_m}. (5)
mEZ

Let ¢ be an angle such that —7/2 < ¢ < 7/2, wp a point in w(= u + iv)-plane, d a
positive constant and Sy, (m € Z) the rectilinear slit defined by

Sm={wo+ma+tde¥ |0<t <1}, (6)
The periodic parallel slit domain . is defined as the exterior to the slits S, (m € Z ).

y=C\{U sm}. (7)

mEZL
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Our problem is to find numerically a conformal mapping f : 2 — .. From the peri-
odic structure of the domains, the mapping function is expected to satisfy the periodicity
flz+a)y=f(z)+a (z€2). In fact, for a given periodic structure domain 2 and an
angle ¢ (—7/2 < ¢ < 7/2), there exist a periodic parallel slit domain .% and a conformal
mapping f : 9 — & which satisfies the following properties.

(C1) (boundary condition) f(8D,) =S, (meZ)
(C2) (periodicity) f(z+a)=f(z2)+a (2€9)
(C3) (asymptotic condition) f(z) =2+ O(1) (Rez fixed, Im z — +o0 )

We are concerned with a conformal mapping f : 2 — .% satisfying the properties (C1),
(C2) and (C3).

3 Numerical Conformal Mapping

In this section, we propose a numerical conformal mapping of the periodic structure
domain Z onto the periodic parallel slit domain . by using the charge simulation method.
The mapping function f(z) of the conformal mapping 9 — .% is an analytic function
in the domain 2. Thus the problem of the numerical conformal mapping is equivalent to
the one of approximating the function f(z) analytic in 2.
We write the mapping function as

f2)=z+€® "2 (z) (8)

where (2) is a function analytic in 2 and periodic with the period a. We approximate
(z) by the charge simulation method.
From the viewpoint of function approximation, we can say that the charge simulation
method is the method of approximating an analytic function by a linear combination of
complex logarithmic potentials

N
Y Qilog(z—¢), Q€R, GeC(j=12...,N). (9)
j=1

In our case, (2) is a periodic function of the period a from the property (C1).
(z4+a)= (2) (2€92).

The ordinary formula of the charge simulation method (9), however, is not suitable for
approximating periodic functions. We approximate the function (z) in the following way
by modifying the formula (9).

(2) ~ ZN:QJ‘ log sin [Z(z - Cj)] : (10)

j=1
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where Q; (7 =1,2,..., N) are real coefficients called the charges and ¢; (j =1,2,...,N)
fixed points in Dy called the charge points. Thus we have the approximate mapping
function ‘

N
f(2) = F(2) = z+€l® /2 ; Q;logsin [g(z - Cj)] . (11)

The right hand side of (11) includes complex logarithmic functions. In order to make
F(z) single-valued, we pose on Q; (j =1,2,..., N ) the following constraint.

“ZQJ- =0. (12)

We can show that the function F'(2) is single-valued under the constraint (12) because,
for an arbitrary closed curve C' surrounding the domain D,, (m € Z ), we have

/~dF(z) = ¢llv 7/2) i Q; /5d (logsin [g(z - ¢ — ma)])

C

N

= 2rielle /2 ZQJ
=1

= 0,

which implies that F'(z) is single-valued in 2.
We can show easily that the approximate mapping function F(z), which is defined by
(11) and is subject to (12), satisfies the following properties.

(C2)" (periodicity) F(z+a)=F(2)+a (2z€9)
(C3)" (asymptotic condition) F(z) =2+ O(1) (Rez fixed, Im z — +o00 )

which respectively correspond to the properties (C2) and (C3) of the exact mapping
function f(z).

We treat the boundary condition (C1) in the following way. The condition (C1) is
rewritten as

Re {2 9 f(2)} =uy (2€dDy), (13)

where ug is a real constant. Instead of (13), we impose on F(z) the following condition.
Re{e™? OF(z)} =U, (i=1,2,...,N), (14)

where z; (4 = 1,2,...,N) are fixed points on 8Dy called the collocation points and U,
approximates the value ug. We call (14) the collocation condition.
The condition (14) is rewritten as

N
Zleog'sin [g(zi —Cj)]l —Up=—sinp-z;+cosp-y; (i=1,2,...,N). (15)
j=1
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The equalities (12) and (15) form (N + 1) simultaneous linear equations with respect
to @Q; (j =1,2,...,N ) and Up. By solving (12) and (15), we determine the charges
Q; (7 =1,2,...,N) and obtain the approximate mapping function F(z).

We must modify the expression of the approximate mapping function F(z) (11)
because the function log[(m/a)(z — {;)] has its discontinuity on the half-infinite line
(—o0 +i(Im ¢;), {;] parallel to the real axis, which makes the computation difficult.

In case that the boundary 8D, is starlike with respect to the point (o in Dy, subtracting
0= E 1 Qjlogsin[(7/a)(z — {o)] from the both sides of (11), we have the expression of
the approx1mate mapping function.

F(z) =z+e® ™03 Q;log (212{8’?3 Eii - goiD ' o)

The function log(sin[(7/a)(z — {;)]/sin[(7/a)(z — {o)]) is continuous in the domain 2.
In fact, the function sin[(7/a)(z — {;)]/sin[(7/a)(z — ()] has only one zero at the point
z = (; + ma and only one pole of the order one at the point 2 = ({; + ma in each domain
D, (m € Z). From the argument principle, we have

/Cvdbg (:ﬂégz;g — CO;D dz = 27i(1—1) =0

for an arbitrary closed path C surrounding the domain D,,, which implies that the function
log(sin[(r/a)(z — ¢;)]/ sin[(7/a)(z — ¢)]) has no discontinuity on the path C, i.e., the
function log(sin{(7/a)(z — {;)]/ sin[(7/a)(z — (o)]) is continuous in the domain 9

~In case that the boundary 8D is not starlike, we can use the expression

Pt P G (o) 7

where‘@j =@+ Q+---+Q; (j=12,...,N—1). We can prove that the right
hand side of (17) is continuous in the domain 2 in a similar way to the case that the
boundary 8D is starlike. The expression (17) is obtained from (11) in the following way.
Modifying the right hand side of (11), we have

F(z) = z+¢® ”/”{Qllogsin[ (z—C1]+Z<QJ Q) 1>10gsm[ (Z‘CJ)]}

= z + el(‘P m/2) {Z Q;logsin (Ssllnn[%zr//;;)((j:éi)j]) + @N log sin [g(z - CN)] }

Jj=1

and, using the equality Qn = 0 which is obtained from (12), we have the expression (17).
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4 Numerical Examples

4.1 Examples of Numerical Conformal Mappings

We show the examples of the numerical conformal mappings for some typical domains.
Computations were carried out on a SONY PCV-L330A/BP personal computer using
programs coded in C with double precision working.

The first example is for the domain exterior to circles in a periodic array.

P ={z€C|lz—3m|>1 (meZ)}. (18)

Figure 2 shows the result of the numerical conformal mapping of the domain %;. The
collocation points z; (¢ = 1,2,...,N ) and the charge points {; (j = 1,2,...,N ) are
respectively given by : ‘

p— exPGW) (i=1,2,...,N), (19)
on(j — 1
G= 05 exp(i———————W(JN‘ )) (i=12,...,N), (20)
where N = 64.
e B N g

“s ”4 ;;;4 ““o : _z 4 [ *s """ IIIIII Q-Eﬂ: ° :%& [ ‘s “ 2 ° 2
domain P slit domain slit domain
omati 1 (p=m/2) (¢ =m/4)

Figure 2: Numerical conformal mapping of the domain exterior to periodic disks 2.

The second example is the domain exterior to ellipses in a periodic array.

(y — 3m)®

2
z° + %

@2:{z=x+iy€(c

> 1 (meZ)}. (21)

Figure 3 shows the result of the numerical conformal mapping of the domain %,. The
collocation points 2; (# = 1,2,...,N ) and the charge points (; (j = 1,2,...,N ) are
respectively given by

2; = r;el%

_ 2n(i — 1)

0; v

Sin29,;) 1/2 : : (i:'1:27'~',N)7 ‘ (22)

L, = <cos2 0; + 5
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. N . )
¢ =2 +0.5|241 — 2 1]exp (1arg(zj+1 — 2% 1) +1—2—) (j=12,...,N), (23)

where zp = 2y, z2vy1 = 2z and N = 64 (The choise of the points (22) and (23) was
originally proposed by Amano). We observe from the ﬁgure that the boundary of each
ellipse is mapped onto a rectilinear slit.

|
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Figure 3: Numerical conformal mapping of the domain exterior to periodic ellipses Z,.

In order to estimate the error of the numerical conformal mapping, we computed the
value

€ = max |Re{e'® "PF(2)} - Uo|, (24)

which is the distance between the image of the boundary 8Dy by the numerical conformal
mapping and the slit Sp. The value € does not give the upper bound of the error but is
expected to give a rough estimate of the error. Table 1 shows the error estimates e for
the numerical conformal mappings of the domains 2, and %,. From the table, we can say
that the numerical conformal mapping presented here achieves high accuracy, especially
the accuracy of double precision for the domain exterior to circles 2;.

Table 1: Error estimate of the numerical conformal mapping.

domain €
@1 3.6x10 15
@2 4.0x10 4

4.2 Applications to Potential Flow Analysis

Our method can be applied to the analysis of potential flows past obstacles in a periodic
array.

Figure 4 shows the contourlines of the function Im{e ¥F(z)}, where F(z) is the
approximate mapping function of the domain %, defined by (18). The figure illustrates
the streamlines of potential flows past cylinders in a periodic array.



Figure 4: Potential flows past cylinders in a periodic array.

115

Figure 5 shows the contourlines of the function Im{e ¥F(z)}, where F(z) is the
approximate mapping function of the domain %, defined by (21). The figure illustrates
the streamlines of potential flows past ellipses in a periodic array.

3

Figure 5: Potential flows past ellipses in a periodic array.

6

“ 2

(o=n/2)

5 Conclusions

F] < 4 6

(o =n/d)

We presented in this paper a numerical conformal mapping of periodic structure domains
onto periodic parallel slit domains using the charge simulation method. Numerical exam-
ples in some typical cases show that the method presented here is very efficient, especially
it achieves the accuracy of double precision for the case of the domain exterior to circles.

As future works, we are interested in the following problems.

1. Can we analyse the dynamics of more practical fluid, for example, Stokes flow, Oseen
flow and so on, past obstacles in a periodic array?

2. Can we compute conformal mappings of two-dimensional periodic structure do-

mains?
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