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Abstract
$l\mathrm{n}$ this paper, we propose a numerical conformal mapping of periodic structure

domains onto periodic parallel $\mathrm{s}\mathrm{l}_{1}^{arrow}\mathrm{t}$ domains- The method presented here is obtained
by extending Amano’s method of numerical conformaI mapping based on the charge
simulation method. Some numerical examples show that the method presented here
is efficient. We also apply our method to the analysis of $\mathrm{p}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}\tilde{\iota}\mathrm{a}\mathrm{I}$flow past obstacles
in a periodic array.

1 Introduction
Conformal mapping is a basic problem in complex analysis and is important in applications
to science and engineering, for example, the $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{I}\mathrm{y}\mathrm{s}i\mathrm{s}$ of two-dimensional potential flow,
electromagnetic fieId, and so on. But the exact solution of comformal mapping is known
for few oases. Therefore computational method of conformal mappings, that is numerical
conformal mapping, has been an attractive problem in numerical analysis. See Henr$i\mathrm{c}\mathrm{i}[5\}$ ,
$\mathrm{K}\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}6\iota,$ $\mathrm{N}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{r}i_{\mathrm{L}}\mathrm{r}7\mathrm{I}$ and $r_{\mathrm{R}\mathrm{e}\mathrm{f}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{n}[81}\mathrm{e}$ for surveys of numerical conformal mappings.

Amano et al. $\mathfrak{t}^{\iota,2,3}1$ proposed a numerical $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}_{\mathrm{o}\mathrm{r}}\mathrm{m}\mathrm{a}1$ mapping based on the charge
simulation method, which is a fast solver for potential problems. In the method, the
problem of numerical conformal mapping is reduced to the one of approximating the
mapping function, which is expressed by using the charge simulation method, $\tilde{1}.\mathrm{e}.$ , the
approximate mapping function is expressed by using a linear combination of complex
logarithmic potentiaIs

$\sum_{j=1}^{N}Q_{j}l\mathrm{o}\mathrm{g}(Z-\zeta j)$ , $Q_{j}\in \mathbb{R},$ $\zeta_{j}\in \mathbb{C}(j--\}, 2, \ldots, N)$ . (1)

The method was applied to the conformal mappings of multiply cornected domains onto
various slit domains and shown to be very efficient from some numerical experiments. An
$\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{I}_{1\mathrm{C}}^{arrow}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ to the analysis of potential flows was also $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}[4]$ .

$l\mathrm{n}$ this paper, by extending the above method, we propose a numericai conformal
mapping of periodic structure domains onto periodic parallel slit domains (See Figure
1). In the method presented here, the problem is reduced to the one of approximating
a periodic analytic function, which is approximated by a linear combination of periodic
logarithmic potentials

$\sum_{j=1}^{N}Qj$ Iog $\mathrm{s}i\mathrm{n}[^{\ulcorner}\frac{7}{a}(z-\zeta j)]$ , $\sigma>0,$ $Q_{j}\in \mathbb{R},$ $\zeta_{j}\in \mathbb{C}(j=1,2, \ldots, N)$ . (2)
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Some numerical experiments show that the method presented here is very efficient. We

Figure 1: ConformaI mapping of the periodic structure domain $\mathscr{D}$ onto the periodic
$\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{e}\mathrm{I}_{\mathrm{S}}\mathrm{I}\mathrm{i}\mathrm{t}$ domain $\ovalbox{\tt\small REJECT}$ .

also apply our method to the analysis of potential flows past obstacles in a periodic array.
In section 2, we prepare some mathematical notations. In section 3, we propose our

method for the numerical conformal mapping of periodic structure domains. In section 4,
we show some numerical examples and applications to the analysis of potential flow. In
section 5, we conclude this paper and refer to future problems.

2 Notations
First we define exactly the periodic structure domain and the periodic parallel slit domain.
Let $a$ be a positive constant.

Let $D_{0}$ be a domain surrounded by a closed Jordan curve in $z(=x+iy)$-plane and
$D_{m}(m\in \mathbb{Z})$ the domain defined by

$D_{m}=\{Z+ma|z\in D_{0}\}$ (3)

which $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Psi$

$\overline{D_{m}}\cap\overline{D_{\iota-}}-\emptyset$ $(m\neq l)$ . (4)

The periodic structure domain $\mathscr{D}$ is defined as the exterior to the domains $D_{m}(m\in \mathbb{Z})$ .

$\mathscr{D}=\mathbb{C}\backslash \{_{m\in}\mathrm{U}_{\mathbb{Z}}\overline{Dm}\}-$ (5)

Let $\varphi$ be an angle such that $-\pi/2<\varphi\leq\pi/2,$ $w_{0}$ a point in $w(=u+\mathrm{i}v)$-plane, $d$ a
positive constant and $S_{m}(m\in \mathbb{Z})$ the rectilinear slit defined by

$S_{m}--\{w_{0}+ma+td\mathrm{e}^{\mathrm{i}\varphi}\}0\leq t\underline{<}1\}$ . (6)

The periodic parallel slit domain $\ovalbox{\tt\small REJECT}$ is defined as the exterior to the slits $S_{m}(m\in \mathbb{Z})$ .

$\ovalbox{\tt\small REJECT}=\mathbb{C}\backslash \{m\mathrm{U}sm\}\in \mathbb{Z}$ . (7)
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Our problem is to find numerically a conformal mapping $f$ : $\mathscr{D}arrow\ovalbox{\tt\small REJECT}$ . Rom the peri-
odic structure of the domains, the mapping function is expected to satisfy the periodicity
$f(z+a)=f(z)+a$ $(z\in \mathscr{D})$ . $l\mathrm{n}$ fact, for a given periodic structure domain $\mathscr{D}$ and an
angle $\varphi(-\pi/2<\varphi\leq\pi/2)$ , there exist a periodic parallel slit domain $\ovalbox{\tt\small REJECT}$ and a conformal
mapping $f$ : $\mathscr{D}arrow \mathcal{J}$ which satisfies the following properties.

(C1) (boundary condition) $f(\partial D_{m})--S_{m}$ $(m\in \mathbb{Z})$

(C2) (periodicity) $f(z+a)=f(z)+a$ $(z\in \mathscr{D})$

(C3) (asymptotic condition) $f(z)=z+\mathrm{O}(1)$ ( ${\rm Re} z$ fixed, ${\rm Im} zarrow\pm\infty$ )

We are concerned with a conformal mapping $f$ : $\mathscr{D}arrow\ovalbox{\tt\small REJECT}$ satisfying the properties (C1),
(C2) and (C3).

3 Numerical Conformal Mapping
In this section, we propose a numerical conformal mapping of the periodic structure
domain $\mathscr{D}$ onto the periodic parallel slit domain $\ovalbox{\tt\small REJECT}$ by using the charge simulation method.

The mapping function $f(z)$ of the conformal mapping $\mathscr{D}arrow\ovalbox{\tt\small REJECT}$ is an analytic function
in the domain $\mathscr{D}$ . Thus the problem of the numerical conformal mapping is equivalent to
the one of approximating the function $f(z)$ analytic in $\mathscr{D}$ .

We write the mapping function as

$f(z)=Z+\mathrm{e}^{(\varphi}\mathrm{i}\pi/2)(z)$ , (8)

where $(z)$ is a function analytic in $\mathscr{D}$ and periodic with the period $a$ . We approximate
$(z)$ by the charge simulation method.

Rom the viewpoint of function approximation, we can say that the charge simulation
method is the method of approximating an analytic function by $a$ linear combination of
complex logarithmic potentials

$\sum_{j=1}^{N}Q_{j}\log(z-\zeta j)$ , $Q_{j}\in \mathbb{R}_{I}\zeta_{j}\in \mathbb{C}(j=\iota,2, \ldots, N)$. (9)

In our case, $(z)$ is a periodic function of the period $a$ from the property (C1).

$(z+a)=$ $(z)$ $(z\in \mathscr{D})$ .

The ordinary formula of the charge simulation method (9), however, is not suitable for
approximating periodic functions. We approximate the function $\varphi(z)$ in the following way
by modiPing the formula (9).

$(z) \approx\sum_{j=1}^{N}Qj\log\sin[\frac{\pi}{a}(z-\zeta j)]$ , (10)
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where $Q_{j}$ $(j=1,2, \ldots , N)$ are real coefficients called the charges and $\zeta_{j}(j=1,2, \ldots , N)$

fixed points in $D_{0}$ called the char.g$e$ points. Thus we have the approximate mapping
function

$f(z) \approx F(z)=Z+\mathrm{e}^{(\varphi}\mathrm{i}\pi/2)\sum_{j=1}^{N}Q_{j}\log\sin[\frac{\pi}{a}(z-\zeta_{j})]$ . (11)

The right hand side of (11) includes complex logarithmic functions. In order to make
$F(z)$ single-valued, we pose on $Q_{j}(j=1,2, \ldots, N)$ the following constraint.

$\sum_{j=1}^{N}Q_{j}=0$ . (12)

We can show that the function $F(z)$ is single-valued under the constraint (12) because,
for an arbitrary closed curve $\overline{C}$ surrounding the domain $D_{m}(m\in \mathbb{Z})$ , we have

$\int_{\tilde{C}}\mathrm{d}F(_{Z})$ $=$ $\mathrm{e}^{\mathrm{i}(\varphi}\pi/2)\sum_{1j=}^{N}Q_{j}\int_{\tilde{c}}\mathrm{d}(\log\sin[\frac{\pi}{a}(z-\zeta_{j}-ma)])$

$=$ $2 \pi \mathrm{i}\mathrm{e}^{\mathrm{i}(\varphi}\pi/2)\sum_{j=1}NQ_{j}$

$=$ $0$ ,

which implies that $F(z)$ is single-valued in $\mathscr{D}$ .
We can show easily that the approximate mapping function $F(z)$ , which is defined by

(11) and is subject to (12), satisfies the following properties.

(C2) (periodicity) $F(z+a)=F(z)+a$ $(z\in \mathscr{D})$

(C3) (asymptotic condition) $F(z)=z+\mathrm{O}(1)$ ( ${\rm Re} z$ fixed, ${\rm Im} zarrow\pm\infty$ )

which respectively correspond to the properties (C2) and (C3) of the exact mapping
function $f(z)$ .

We treat the boundary condition (C1) in the following way. The condition (C1) is
rewritten as

${\rm Re}\{\mathrm{e}^{\mathrm{i}(\pi/2}\varphi)f(z)\}=u0$ $(z\in\partial D_{0})$ , (13)

where $u_{0}$ is a real constant. Instead of (13), we impose on $F(z)$ the following condition.

${\rm Re}\{\mathrm{e}^{\mathrm{i}(\pi/2}\varphi)F(z_{i})\}=U_{0}$ $(i=1,2, \ldots, N)$ , (14)

where $z_{i}(i=1,2, \ldots, N)$ are fixed points on $\partial D_{0}$ called the collocation points and $U_{0}$

approximates the value $u_{0}$ . We call (14) the collocation condition.
The condition (14) is rewritten as

$\sum_{j=1}^{N}Q_{j}\log|\sin[\frac{\pi}{a}(Zi-\zeta_{j})]|-U0=-\sin\varphi\cdot x_{i}+\cos\varphi\cdot y_{i}$ $(i=1,2, \ldots, N)$ . (15)
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The equalities (12) and (15) form $(N+1)$ simultaneous linear equations with respect
to $Q_{j}$ $(j=1,2, \ldots , N)$ and $U_{0}$ . By solving (12) and (15), we determine the charges
$Q_{j}(j=1,2, ..2 , N)$ and obtain the approximate mapping function $F(z)$ .

We must modify the expression of the approximate mapping function $F(z)$ (11)
because the function $\log[(\pi/a)(z-\zeta_{j})]$ has its discontinuity on the half-infinite line
$(-\infty+\mathrm{i}({\rm Im}\zeta j), \zeta j]$ parallel to the real axis, which makes the computation difficult.

In case that the boundary $\partial D_{0}$ is starlike with respect to the point $\zeta_{0}$ in $D_{0}$ , subtracting
$0= \sum_{jj}^{N}=1Q\log\sin[(\pi/a)(z-\zeta 0)]$ from the both sides of (11), we have the expression of
the approximate mapping function.

$F(z)=Z+ \mathrm{e}^{(\varphi}\mathrm{i}\pi/2)\sum_{=j1}Qj\log N(\frac{\sin[(\pi/a)(_{Z}-\zeta_{j})]}{\sin[(\pi/a)(_{Z}-\zeta 0)]})$ . (16)

The function $\log(\sin[(\pi/a)(z-\zeta_{j})]/\sin[(\pi/a)(z-\zeta_{0})])$ is continuous in the domain $\mathscr{D}$ .
In fact, the function $\sin[(\pi/a)(z-\zeta_{j})]/\sin[(\pi/a)(z-\zeta 0)]$ has only one zero at the point
$z=\zeta_{j}+ma$ and only one pole of the order one at the point $z=\zeta_{0}+ma$ in each domain
$D_{m}(m\in \mathbb{Z})$ . Rom the argument principle, we have

$\int_{\overline{C}}$ dlog $( \frac{\sin[(\pi/a)(_{Z}-\zeta_{j})]}{\sin[(\pi/a)(_{Z}-\zeta 0)]})\mathrm{d}z=2\pi \mathrm{i}(1-1)=0$

for an arbitrary closed path $\overline{C}$ surrounding the domain $D_{m}$ , which implies that the function
$\log(\sin[(\pi/a)(z-\zeta_{j})]/\sin[(\pi/a)(z-\zeta_{0)}])$ has no discontinuity on the path $\overline{C}$ , i.e., the
function $\log(\sin[(\pi/a)(z-\zeta_{j})]/\sin[(\pi/a)(z-\zeta 0)])$ is continuous in the domain $\mathscr{D}$ .
‘,. In $\mathrm{c}a\mathrm{s}\mathrm{e}$ that the boundary $\partial D_{0}$ is not starlike, we can use the expression

$F(z)=Z+ \mathrm{e}^{(\varphi}\mathrm{i}\pi/2)\sum_{j=1}^{N}\overline{Q}_{j}1\log(\frac{\sin[(\pi/a)(_{Z}-\zeta_{j})]}{\sin[(\pi/a)(z-\zeta_{j+1})]})$ , (17)

where $\overline{Q}_{j}=Q_{1}+Q_{2}+\cdots+Q_{j}$ $(j=1,2, \ldots, N-1)$ . We can prove that the right
hand side of (17) is continuous in the domain $\mathscr{D}$ in a similar way to the case that the
boundary $\partial D_{0}$ is starlike. The expression (17) is obtained from (11) in the following way.
Modifying the right hand side of (11), we have

$F(z)$ $=z+ \mathrm{e}^{\mathrm{i}(\varphi}\pi/2)\{Q_{1}\log\sin[\frac{\pi}{a}(z-\zeta 1)]+\sum_{j=2}^{N}(\overline{Q}j-\overline{Q}j1)\log\sin[\frac{\pi}{a}(z-\zeta_{j})]\}$

$=z+ \mathrm{e}^{\mathrm{i}(\varphi}\pi/2)\{^{N1}\sum_{j=1}\overline{Q}j\log\sin(\frac{\sin[(\pi/a)(_{Z}-\zeta_{j})]}{\sin[(\pi/a)(z-\zeta_{j1}+]})+\overline{Q}_{N}\log\sin[\frac{\pi}{a}(Z-\zeta N)]\}$

and, using the equality $\overline{Q}_{N}=0$ which is obtained from (12), we have the expression (17).
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4 Numerical Examples

4.1 Examples of Numerical Conformal Mappings
We show the examples of the numerical conformal mappings for some typical domains.
Computations were carried out on a SONY PCV-L330A/BP personal computer using
programs coded in $\mathrm{C}$ with double precision working.

The first example is for the domain exterior to circles in a periodic array.

$\mathscr{D}_{1}=\{z\in \mathbb{C}||z-3m|>1 (m\in \mathbb{Z})\}$ . (18)

Figure 2 shows the result of the numerical conformal mapping of the domain $\mathscr{D}_{1}$ . The
collocation points $z_{i}(i=1,2, \ldots, N)$ and the charge points $\zeta_{j}(j=1,2, \ldots, N)$ are
respectively given by

$z_{i}=$ $\exp(\mathrm{i}\frac{2\pi(i-1)}{N})$ $(i=1,2, \ldots, N)$ , (19)

$\zeta_{j}=$ $0.5 \exp(\mathrm{i}\frac{2\pi(j-1)}{N})$ $(j=1,2, \ldots, N)$ , (20)

where $N=64$.

slit domain slit domain
domain $\mathscr{D}_{1}$

$(\varphi=\pi/2)$ $(\varphi=\pi/4)$

Figure 2: Numerical conformal mapping of the domain exterior to periodic disks $\mathscr{D}_{1}$ .

The second example is the domain exterior to ellipses in a periodic array.

$\mathscr{D}_{2}=\{z=x+\mathrm{i}y\in \mathbb{C}|x^{2}+\frac{(y-3m)^{2}}{2^{2}}>1$ $(m\in \mathbb{Z})\}$ . (21)

Figure 3 shows the result of the numerical conformal mapping of the domain $\mathscr{D}_{2}$ . The
collocation points $z_{i}(i=1,2, \ldots, N)$ and the charge points $\zeta_{j}(j=1,2, \ldots, N)$ are
respectively given by ’

$z_{i}=r_{i}\mathrm{e}^{\mathrm{i}\theta_{i}}$

$\theta_{i}=\frac{2\pi(i-1)}{N}$ ,
$r_{i}=( \cos\theta 2+i\frac{\sin^{2}\theta_{i}}{2^{2}})1/2\}$ $(i=1,2, \ldots, N)$ , (22)
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$\zeta_{j}=z_{j}+0.5|z_{j+1}-z_{j}1|\exp(\mathrm{i}\arg(z_{j}+1-zj1)+\mathrm{i}\frac{\pi}{2})$ $(j–1,2, \ldots , N)$ , (23)

where $z_{0}=z_{N},$ $z_{N+1}=z_{1}$ and $N=64$ (The choise of the points (22) and (23) was
originally proposed by Amano). We observe from the figure that the boundary of each
ellipse is mapped onto a rectilinear slit.

$\mathrm{s}\iota \mathrm{l}\mathrm{t}$ (lomam slIt tlomamdomain $\mathscr{D}_{2}$

$(\varphi=\pi/2)$ $(\varphi=\pi/4)$

Figure 3: Numerical conformal mapping of the domain exterior to periodic ellipses $\mathscr{D}_{2}$ .

In order to estimate the error of the numerical conformal mapping, we computed the
value

$\epsilon=\max_{z\in\partial D_{0}}|{\rm Re}\{\mathrm{e}^{\mathrm{i}(\varphi}\pi/2)F(z)\}-U_{0}|$ , (24)

which is the distance between the image of the boundary $\partial D_{0}$ by the numerical conformal
mapping and the slit $S_{0}$ . The value $\epsilon$ does not give the upper bound of the error but is
expected to give a rough estimate of the error. Table 1 shows the error estimates $\epsilon$ for
the numerical conformal mappings of the domains $\mathscr{D}_{1}$ and $\mathscr{D}_{2}$ . Rom the table, we can say
that the numerical conformal mapping presented here achieves high accuracy, especially
the accuracy of double precision for the domain exterior to circles $\mathscr{D}_{1}$ .

Table 1: Error estimate of the numerical conformal mapping.

4.2 Applications to Potential Flow Analysis
Our method can be applied to the analysis of potential flows past obstacles in a periodic
array.

Figure 4 shows the contourlines of the function ${\rm Im}\{\mathrm{e}\mathrm{i}\varphi F(z)\}$ , where $F(z)$ is the
approximate mapping function of the domain $\mathscr{D}_{1}$ defined by (18). The figure illustrates
the streamlines of potential flows past cylinders in a periodic array.
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$(\varphi=\pi/\angle)$ $(\varphi=\pi/4)$

Figure 4: Potential flows past cylinders in a periodic array.

Figure 5 shows the contourlines of the function ${\rm Im}\{\mathrm{e}\mathrm{i}\varphi F(z)\}$ , where $F(z)$ is the
approximate mapping function of the domain $\mathscr{D}_{2}$ defined by (21). The figure illustrates
the streamlines of potential flows past ellipses in a periodic array.

$(\varphi=\pi/\cdot\Delta)$ $(\varphi=\pi/4)$

Figure 5: Potential flows past ellipses in a periodic array.

5 Conclusions
We presented in this paper a numerical conformal mapping of periodic structure domains
onto periodic parallel slit domains using the charge simulation method. Numerical exam-
ples in some typical cases show that the method presented here is very efficient, especially
it achieves the accuracy of double precision for the case of the domain exterior to circles.

As future works, we are interested in the following problems.

1. Can we analyse the dynamics of more practical fluid, for example, Stokes flow, Oseen
flow and so on, past obstacles in a periodic array?

2. Can we compute conformal mappings of two-dimensional periodic structure do-
mains?
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