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Consider the following free boundary problems with volume constraint, of
which the first one has been applied to the construction of optimal heat
conductors while the second one has been introduced as a model for the
equilibrium state of two immiscible fluids described by an order parameter:

1) $u\geq 0,$ $\triangle u=0$ in $\Omega\cap\{u>0\}$ , $|\nabla u|$ is constant on $\Omega\cap\partial\{u>0\}$ ,

$\mathcal{L}^{n}(\Omega\cap\{u>0\})=c$ .

2) $0\leq v\leq 1,$ $\triangle v=0$ in $\Omega\cap\{0<v<1\},$ $|\nabla v|$ is constant on $\Omega\cap\partial\{v>0\}$ ,

$|\nabla v|$ is constant on $\Omega\cap\partial\{v<1\},$ $\mathcal{L}^{n}(\Omega\cap\{v=0\})=c_{1},$ $\mathcal{L}^{n}(\Omega\cap\{v=1\})=c_{2}$ .

Here we suggest a gradient flow approach that avoids numerical difficulties
arising from a minimization process.

Problem 1) has been derived from the minimization problem

$\int_{\Omega}|\nabla u|^{2}arrow\min$
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with the constraint $\mathcal{L}^{n}(\Omega\cap\{u>0\})=\omega$ (see [3]). Existence of a minimizer
has been shown in [1] via a penalization method. Aguilera, Alt and Caffarelli
prove that for small $\epsilon>0$ each minimizer of the penalized functional

$J_{\epsilon}(w):= \int_{\Omega}(|\nabla w|^{2}+f_{\epsilon}(\mathcal{L}^{n}(\Omega\cap\{w>0\})))$

where

$f_{\epsilon}(s)=\{$

$\frac{1}{\epsilon}(s-\omega),$ $s\geq\omega$

$\epsilon(s-\omega),$ $s\leq\omega$

is automatically a solution of the problem

$\int_{\Omega}|\nabla u|^{2}arrow\min,$ $\mathcal{L}^{n}(\Omega\cap\{u>0\})=\omega$ .

In two dimensions it follows then ([1]) that $u$ is a classical solution of the
problem, i.e. $u\in C^{2}(D\cap\overline{\{u>0\}})$ for each $D\subset\subset\Omega$ and $\Omega\cap\partial\{u>0\}$ is
an analytic surface. In higher dimensions $u$ is still a “weak solution”, and
the results in [6] can be applied to infer that the singularities of the free
boundary are in the case of three dimensions isolated in $\Omega$ and the singular
set $\Sigma$ satisfies $\dim(\Sigma)\leq n-3$ in general.
Let us also mention the result [3], where the asymptotic behavior as $\mathcal{L}^{n}(\Omega\cap$

$\{u=0\})arrow 0$ is studied.

Problem 2) has been derived as a model for the equilibrium state of two
immiscible fluids described by an order parameter ([4]).
In [2] existence has been proved and the asymptotic behavior as the interfa-
cial volume tends to $0$ , i.e. $\mathcal{L}^{n}(\Omega\cap\{u=0\})arrow\gamma$ and $\mathcal{L}^{n}(\Omega\cap\{u=1\})arrow$

$\mathcal{L}^{n}(\Omega)-\gamma$ , has been studied. It turns out that the limits of $\Omega\cap\{u=0\}$

minimize the perimeter and satisfy the volume constraint.
Tilli proves in [5] continuity of minimizers which makes it possible to apply
the regularity theory in [1] and [6] to obtain as before in two dimensions the
existence of a classical solution as well as that the singularities are in the
case of three dimensions isolated in $\Omega$ and form in general a set of dimension
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$\leq n-3$ .

We suggest here a (surface) gradient flow approach to the construction of
solutions of problem 1) and 2) which makes it possible to dispense with the
penalization of [1]. This is important for the numerical analysis as penaliza-
tion would mean introduction of an additional parameter (in addition to the
regularization parameter and the parameter of the Galerkin approximation),
in which case we would expect the solution to depend sensitively on the rela-
tion of the parameters. Another point in favor of our approach is that we can
explicitly use in computations the quantity (called below $\lambda_{\epsilon}(t)$ ) converging
to our Lagrange multiplier as time goes to infinity.
We describe the approach for problem 1). Problem 2) can be treated in the
same way. Let $\epsilon\in(0,1),$ $\beta_{\epsilon}(z)=\frac{1}{\epsilon}\beta(\frac{z}{\epsilon})$ , $\beta\in C_{0}^{1}([0,1])$ , $\beta>0$ in $(0,1)$

and $\int\beta=\frac{1}{2}$ . The serves as regularization of the nondifferentiable nonlin-
earity in the problem ( $\epsilon$ is a regularization parameter which is not related
to the penalization parameter $\epsilon$ above). In addition we need the primitive
$B_{\epsilon}(z):= \int_{0}^{z}\beta_{\epsilon}(s)ds$ . As $2B_{\epsilon}(z)arrow\chi_{\{z>0\}}$ as $\epsilonarrow 0$ , $\int_{\Omega}2B_{\epsilon}(u_{\epsilon})$ will serve as
a regularization of the volume term $\mathcal{L}^{n}(\Omega\cap\{u>0\})$ .
For initial data $u_{\epsilon}^{0}\geq 0$ satisfying the constraint $\int_{\Omega}2B_{\epsilon}(u_{\epsilon}^{0})=\omega$ our approach
consists now in solving the evolution equation

$\partial_{t}u_{\epsilon}-\triangle u_{\epsilon}=-(\int_{\Omega}\beta_{\epsilon}(u_{\epsilon})^{2})^{-1}(\int_{\Omega}\beta_{\epsilon}(u_{\epsilon})\triangle u_{\epsilon})\beta_{\epsilon}(u_{\epsilon})$

in $(0, \infty)\cross\Omega$ . Note that $\lambda_{\epsilon}:=(\int_{\Omega}\beta_{\epsilon}(u_{\epsilon})^{2})^{-1}(\int_{\Omega}\beta_{\epsilon}(u_{\epsilon})\triangle u_{\epsilon})$ depends only on
the time variable $t$ and plays the role of the Lagrange multiplier as $tarrow\infty$ .
As

$\partial_{t}\int_{\Omega}2B_{\epsilon}(u_{\epsilon}(t))=\int_{\Omega}2\beta_{\epsilon}(u_{\epsilon}(t))\partial_{t}u_{\epsilon}(t)$

$= \int_{\Omega}2\beta_{\epsilon}(u_{\epsilon}(t))\triangle u_{\epsilon}(t)$ – $\int_{\Omega}2\beta_{\epsilon}(u_{\epsilon}(t))\triangle u_{\epsilon}(t)=0$ ,

$u_{\epsilon}$ satisfies the volume constraint $\int_{\Omega}2B_{\epsilon}(u_{\epsilon}(t))=\omega$ for each $t\geq 0$ .

Existence, time-asymptotic limits $(v_{\epsilon}(x), \lambda_{\epsilon})arrow(u_{\epsilon}(t, x),$ $\lambda_{\epsilon}(t))$ (as $tarrow+\infty$ ),
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Figure 1: A singularity for the limit problem in two space dimensions

uniform bounds for $v_{\epsilon}$ and $\lambda_{\epsilon}$ are going to be studied in collaboration with
I. Fonseca and M. Kowalcyk.
Concerning the $\epsilon$-limit the following can be said: there is a sequence $\epsilon_{m}arrow 0$

such that $v_{\epsilon_{m}}arrow v$ in $H^{1,2}(\Omega)$ , $\lambda_{\epsilon_{m}}arrow\lambda$ as $marrow\infty$ and $v$ is a solution in
the sense of domain variations, i.e. $v$ is smooth in $\Omega\cap\{v>0\}$ and satisfies

$\int_{\Omega}[|\nabla v|^{2}\mathrm{d}\mathrm{i}\mathrm{v}\xi-2\nabla vD\xi\nabla v]=-\lambda\int_{R}\xi\cdot\iota/d\mathcal{H}^{n-1}$ (1)

for every $\xi\in C_{0}^{0,1}(\Omega;\Omega)$ . Here

$R:=\{x\in\Omega\cap\partial\{v>0\}$ : there is $I/(x)\in\partial B_{1}(0)$ such that $v_{r}(y)=$

$\frac{v(x+ry)}{r}arrow\max(-y\cdot\nu(x), 0)$ locally uniformly in $y\in \mathrm{R}^{n}$

as $rarrow 0$}

is a countably $n-1$-rectifiable subset of the free boundary.
This is optimal in the sense that there are for each $\theta\in(0,1]$ solutions $v_{\epsilon}(x)arrow$

$\theta|x_{n}|$ as $\epsilonarrow 0$ , that is, there are in general large singular sets.
The relative boundary of $R$ may also be non-empty as shown in Figure 1.
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