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Abstract

This paper proposes a superlinearly and globally convergent method for
reaction and diffusion problems with a non-Lipschitz operator. We refor-
mulate the problem as a system of equations with locally Lipschitzian func-
tions. Then the system is solved by using a smoothing Newton method
which converges superlinearly and globally. Numerical examples illustrate
the reformulation and the smoothing Newton method.
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1 Introduction
We consider the following system of nonlinear equations

$F(x):=Ax+Cf(X)-b=0$ (1.1)

where $A$ is an $n\cross n$ symmetric positive definite matrix, $C$ is an $n\cross n$ diagonal
matrix with positive diagonal entries $c_{i},$ $i=1,2,$ $\ldots,$

$n$ ,

$f_{i}(x)=f_{i}(xi)=\{$
$x_{i}^{p}$ , $x_{i}\geq 0$

$0$ , $x_{i}<0$ ,

and $b$ is a vector in $R^{n}$ . Here $p\in(\mathrm{O}, 1)$ is a constant. System (1.1) arises from finite
element approximations or finite difference approximations for reaction-diffusion
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problems. A typical problem is as follows $[1, 2]$ . Let $\Omega$ be a bounded domain in
$R^{2}$ with a Lipschitz boundary $\partial\Omega$ . Given a positive number $\lambda$ , find $u$ such that

$-\triangle u+\lambda\xi(u)=0$ in $\Omega$

$u=1$ on $\partial\Omega$ ,

where
$\xi(u)=\{$

$u^{p}$ , $u\geq 0$

$0$ , $u<0$ .

The difficulty to solve (1.1) is that $F$ is not local Lipschitz. In the last decade,
many superlinearly and globally convergent algorithms for nonsmooth equations
defined by a locally Lipschitzian operator have been developed [6, 7, 9]. The
Rademacher theorem, the Clarke generalized Jacobian and the semismoothness
play key roles in convergence analysis of Newton type methods for nonsmooth
equations with locally Lipschitzian operators. The Rademacher theorem states
that a locally Lipschitzian operator is almost everywhere differentiable. According
to the Rademacher theorem, if $F$ is local Lipschitz, the Clarke generalized Jacobian
can be defined by [6]

$\partial F(x)=co\{x\in x^{k}k\lim_{xarrow,DF}F’(_{X^{k}})\}$
,

where $D_{F}$ denotes the set of points at which $F$ is differentiable and $co$ denotes the
covex hull. A locally Lipschitzian function is called semismooth at $x^{*}$ if the limit

$V \in\partial,F1^{x},+th’)\lim_{harrow h^{*}t\downarrow 0}\{Vh’\}$

exists for any $h\in R^{n}[9]$ . Unfortunately, $F$ defined in (1.1) is not local Lipschitz.
These powerful tools are not applicable for solving (1.1).

Globally convergent methods for solving (1.1) have been studied in $[1, 2]$ . How-
ever, the convergence rate of these methods is not expected faster than linear.

The aim of this paper is to present a superlinearly and globally convergent
method for solving (1.1). In section 2, we reformulate the system of equations
(1.1) as a system of equations defined by a locally Lipschitzian function, and study
the Clarke generalized Jacobian and the semismoothness of the new function. In
section 3, we give a smooth approximation function of the locally Lipschitzian
function. In section 4, we study a smoothing Newton method for solving (1.1)
and show that the method is superlinearly and globally convergent. Moreover, we
illustrate the reformulation and the method by a numerical example.

The set of all positive real numbers is denoted by $R_{++}=\{t|t>0, t\in R\}$ .
The index set is denoted by $N=\{1,2, \ldots,n\}$ . We use $||\cdot||$ to denote the Euclidean
norm.
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2 Lipschitz Reformulation
Let $\omega:Rarrow R$ be defined by

$\omega(t):=\{$

$t^{1/p}$ , $t\geq 0$

$t$ , $t<0$ .

The function $\omega$ is strictly monotonically increasing. Hence the inverse of $\omega$ exists
and has the form

$\omega^{-1}(s)=\{$

$s^{p}$ , $s\geq 0$

$s$ , $s<0$ .

Moreover $\omega(t)\geq 0$ if and only if $t\geq 0$ .
Let

$g(y)=(\omega(y_{1}),\omega(y2),$ $\ldots,\omega(yn))^{T}$ .

Then by definitions of $f$ and $g$ , we have

$f_{i}(g_{i}(y_{i}))$ $=$ $\{$

$g_{i}(y_{i})^{p}$ , $y_{i}\geq 0$

$0$ , $y_{i}<0$

$=$ $\{$

$y_{i}$ , $y_{i}\geq 0$

$0$ , $y_{i}<0$

$=$ $\max(0, y_{i})$ , $i\in N$.

Now we define a Lipschitz function $H:R^{2n}arrow R^{2n}$ as

$H(x,y)=(_{x-}^{A_{X}+c}g(y) \max(\mathrm{o}, y)-b)$ ,

where “
$\max$

” denotes the componentwise maximum.
It is easy to see that if $(x,y)$ is a solution of

$H(x,y)=0$ (2.1)

then $x$ is a solution of (1.1). Conversely, if $x$ is a solution of (1.1) then $(x, g^{-1}(x))$

is a solution of (2.1).
The function $H$ is not differentiable only at points $(x,y)$ where $y_{i}=0$ for some

$i\in N$ . In other words, the set of points at which $H$ is differentiable is

$D_{H}=$ { $(x,$ $y)|y_{i}\neq 0$ , for $\mathrm{f}\mathrm{f}\mathrm{i}i\in N$}.

Since $H$ is local Lipschitz, we can define the Clarke generalized Jacobian of $H$ . Let
$r:Rarrow R$ be defined by

$r(t)=\{$
$1+t^{(1-p)}/p/pt>0$

1 $t\leq 0$ .

Let $I$ be the $n\cross n$ identity matrix and

$R(y)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(r(y1), r(y_{2}),$
$\ldots,$

$r(y_{n}))$ .
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Theorem 2.1 The Clarke generalized Jacobian of $H$ at $(x,y)$ is equal to the set
of matrices

where
$Q_{y}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(q1,q_{2}, \ldots, q_{n})$

and

$q_{i} \in\partial\max(\mathrm{o},y_{i})=\{$

{1} $t>0$
$[0,1]$ $t=0$
$\{0\}$ $t<0$

$i\in N$.

Theorem 2.2 At every point $(x, y)\in R^{2n}$ , all elements of $\partial H(x, y)$ are nonsin-
gular.

Remark 2.1 The function $H$ is a piecewise continuously differentiable function.
According to Theorem 4.1 in [9], $H$ is semismooth in $R^{2n}$ .

3 Smoothing Rnction of $H$

In this section, we study smoothing functions of $H$ . The nonsmoothness of $H$

appreas in two terms: $\max(\mathrm{O}, y)$ and $g(y)$ . To define a smoothing function of $H$ ,
we set

$\theta(t)=\{$
$t^{1/p}t\geq 0$

$0$ $t<0$ .

It is easy to see that $\theta$ is continuously differentiable in $R$ . Moreover,

$\omega(t)=\min(\theta(t),t)=t-\max(t-\theta(t), 0)$ , for $t\leq 1$ .

Now for $\max(\mathrm{O},t)$ , we use the following smoothing function

$\phi(t,\epsilon)=\{$
$\max(0, t)$ $|t|\geq\epsilon$

$\frac{1}{4\epsilon}(t+\epsilon)^{2}$ $|t|<\epsilon$ .

Let $\alpha\in(0,p^{\mathrm{P}/}-p)](1$ . We define the following smoothing function for $\omega$ .

$\psi(t, \epsilon)=\{$

$t- \frac{1}{4\epsilon}(t-\theta(t)+\epsilon)^{2}$ , $t\leq\alpha\ |t-\theta(t)|<\epsilon$

$\omega(t)$ , otherwise.

Proposition 3.1 Functions $\psi,$ $\psi$ : $R\cross R_{++}arrow R$ satisfy the following properties.

1. For every fixed $\epsilon,$
$\phi(t, \epsilon)$ and $\psi(t, \epsilon)$ are continuously differentiable with respect

to $t$ in $R$ .

2. For every $t\in R$,
$| \phi(t, \epsilon)-\max(\mathrm{O}, t)|\leq\epsilon$.

$|\psi(t, \epsilon)-\omega(t)|\leq\epsilon$.
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3. For every fixed $t\in R$,

$\lim_{\epsilon\downarrow 0}\frac{\partial\phi(t,\epsilon)}{\partial t}=\phi^{o}(t)\in\partial\max(\mathrm{O},t)$

and
$\lim=\psi\underline{\partial\psi(t,\epsilon)}o(t)\in\partial\omega(t)$ .
40 $\partial t$

Using the functions $\phi$ and $\psi$ , we can define a smoothing function of $H$ . Let

$\Phi(y, \epsilon)=(\emptyset(y1, \epsilon),$
$\ldots,$

$\emptyset(y_{n}, \epsilon))$

$\Psi(y, \epsilon)=(\psi(y_{1}, \epsilon),$ $\ldots,\psi(y_{n}, \epsilon))$

and

$H(x, y, \epsilon)=$ .

For brevity we let $z=(x, y)$ .
According to Proposition 3.1, we have the following theorem.

Theorem 3.1 Function $\mathcal{H}$ : $R^{2n}\cross R_{++}arrow R^{2n}$ satisfies the following propenies:

1. For every fixed $\epsilon>0,$ $\mathcal{H}$ is continuously differentiable with respect to $z$ in $R^{2n}$ .

2. For every $z\in R^{2n}$ ,

$||\mathcal{H}(z, \epsilon)-H(z)||\leq\epsilon\sqrt{n(||C||^{2}+1)}$.

3. For every fixed $z\in R^{2n}$ ,

$\lim_{\epsilon\downarrow 0}\mu_{z}(z, \epsilon)=:\mathcal{H}^{o}(z)\in\partial H(Z)$.

Theorem 3.2 $\mathcal{H}_{z}(z, \epsilon)$ is nonsingular at every point $(z, \epsilon)\in R^{2n}\cross R_{++}$ .

4 An algorithm and an example
In this section we study an algorithm which is an application of Algorithm 3.1 in
[5] to the system of equations (2.1).

Algorithm 1 Given $\rho,$ $\tau,$ $\eta\in(0,1)$ , and a starting point $z^{0}\in R^{2n}$ . Choose a
scalar $\sigma\in(0,1-\tau)$ . Let $\nu=\tau/(2\sqrt{2n}\max\{1, ||C||\})$ . Let $\beta_{0}=||H(Z^{0})||$ and
$\epsilon_{0}=\nu\beta_{0}$ .

For $k\geq 0$ :

1. Find a solution $\hat{d}^{k}$ of the system of linear equations

$H(_{Z}k)+\mathcal{H}o(zk)d=0$ .

If $||H(z^{k}+\hat{d}^{k})||\leq\eta\beta_{k}$ , let $z^{k+1}=z^{k}+\hat{d}^{k}$ and perform Step 3. Otherwise
perform Step 2.
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2. Find a solution $d^{k}$ of the system of linear equations

$H(z^{k})+H_{z}(_{Z}k,)\epsilon_{k}d=0$ .

Let $m_{k}$ be the smallest nonnegative integer $m$ such that

$||\mathcal{H}(z^{k}+\rho^{m}dk,)\epsilon k||^{2}-||\mathcal{H}(z^{k}, \epsilon)||^{2}\leq-\sigma\rho^{m}||H(Z^{k})||^{2}$.

Set $t_{k}=\rho^{m_{k}}$ and $z^{k+1}=z^{k}+t_{k}d^{k}$ .

3. 3.1 $If||H(Z)k+1||=0_{2}$ terminate.
3.2 If

$0<||H(z^{k})+1|| \leq\max\{\eta\beta k, \mathcal{T}-1||H(z^{k+1})-\mathcal{H}(Z, \epsilon_{k})k+1||\}$ ,

let
$\beta_{k+1}=||H(Z)k+1||$ and $\epsilon_{k+1}=\min\{\nu\beta_{k1}+, \frac{\epsilon_{k}}{2}\}$.

3.3 Otherwise, let $\beta_{k+1}=\beta_{k}$ and $\epsilon_{k+1}=\epsilon_{k}$ .

Theorem 4.1 The system of equations (2.1) has a unique solution.

Theorem 4.2 For any $\gamma>0$ , the set

$s_{\gamma}=\{z|||H(Z)||2\gamma\leq\}$

is nonempty and bounded.

Theorem 4.3 For any staning point $z^{0}\in R^{2n}$ , Algorithm 4.1 is well defined and
the generated sequence $\{z^{k}\}$ remains in the level set $S_{(+)}1\tau||H(z0)||$ and converges to
the unique solution $z^{*}$ of (2.1). Moreover, the convergence rate is superlinear.

To illustrate the smoothing Newton method, we consider the following example
[2].
Example 4.1

$- \triangle u+\frac{9}{(1-p)^{2}}\max(\mathrm{o}, u)p=\frac{9}{r(1-p)^{2}}(\frac{3r-1}{2})^{\frac{2\mathrm{p}}{1-p}}h(r-\frac{1}{3})$, in $\Omega=(0,1)\cross(0,1)$

$u(r)=( \frac{3r-1}{2})^{\frac{2}{1-\mathrm{p}}}h(r-\frac{1}{3})$ , on $\partial\Omega$ ,

where $r^{2}=x^{2}+y^{2}$ and $h$ is the Heaviside function.
This problem has the solution

$u(r)=( \frac{3r-1}{2})^{\frac{2}{1-\mathrm{p}}}h(r-\frac{1}{3})$ .

Application of the five-pint difference scheme with mesh size $1/(\sqrt{n}+1)$ to this
problem gives a system of equations $F(x)–\mathrm{O}$ . We rewrite the system as a system
of equations $H(z)=0$ .
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Table 1: Numerical result of Example 4.1

$\frac{pnk||H(z^{k}-2)||||H(z^{k}-1)||||H(_{Z)}k||}{0.1225212.\mathrm{o}\mathrm{L}51.2\mathrm{E}-81.3\mathrm{L}14}$

$0.1$ 625 26 2. $4\mathrm{L}6$ 1. $8\mathrm{L}10$ 2. $2\mathrm{L}14$

$0.3$ 225 9 5.8E-4 2.5E-6 5. $0\mathrm{L}11$

$0.3$ 625 12 5. $2\mathrm{L}5$ 8.8E-8 1. $7\mathrm{L}12$

$0.5$ 225 6 2.1E-3 8.5E-7 1. $0\mathrm{L}12$

$\underline{0.562577.8\mathrm{E}- 53.7\mathrm{E}-85.3\mathrm{E}-13}$

We used Algorithm 4.1 to solve $H(z)=0$ . In our numerical experiment, pa-
rameters of Algorithm 4.1 were chosen as

$\rho=0.8$ , $\tau=0.6$ , $\eta=0.96$ , $\sigma=0.3$ .

We took the starting point $z^{0}=0$ and stoped the algorithm when $||H(Z^{k})||\leq 10^{-10}$ .
Numerical results are obtained by using Matlab on a IBM $\mathrm{P}\mathrm{C}$ . Numerical results

show that the Lipschitz reformulation is stable and Algorithm 4.1 is superlinearly
and globally convergent. In Table 1, we present $||H(Z^{k})||$ in the last three iterations
for different $n$ and $p$ .
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