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1 Introduction

We presented already IPNS(Infinite-Precision Numerical Simulation) to PDE systems with
smooth solutions[5]. Errors in numerical simulations originate from truncation errors in
discretization and rounding errors. IPNS realizes arbitrary reduction of both errors. In IPNS
the spectral method is used for the control of truncation errors. In particular, the spectral
collocation method with the Chebyshev-Gauss-Lobatto points[1] is very useful. The order of
the approximation can be controlled by the number of collocation points. Multiple precision
arithmetic[7] is used for the control of rounding errors, and it is easily available by using the
library on the net, e.g. http://www.lmu.edu/acad/personal /faculty /dmsmith2/FMLIB.html
[10]. It has already been shown that IPNS is effective in inverse problems, free boundary
problems, etc[4, 6, 9, 12]. ’

On the other hand, IPNS needs huge computer resources. This is due to that IPNS is
based on multiple precision arithmetic. High-performance solver is necessary to solve the
linear system which is derived by applying the spectral collocation method. The coefficient
matrix of this linear systems are non-symmetric and the condition numbers are large in
general. The Gauss elimination method has been used to solve linear system until now.
But, the Gauss elimination method need the great time of calculation and the large memory
area. Then, we use the CGS[11] method in this paper. Preconditioning is important for the
CGS method. We use the SOR method that iteration step is fixed as preconditioner.

2 Test problem

Here, we consider the following Cauchy problem|[2].



Problem. Find u(z,t) s.t.

Au(z,y) =0,
u(0,y) =0,
u(l,y) =0,
u(z,0) = 0,
Ou(z,0) 1
oy T n sin (7x),

The exact solution to Problem is

u(x,y) =

in

;12— sinh (7y) sin (7z).

0,

1) x

(0,1),
0<y<1
0<y<1
0<z<1,
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(2.6)

This is an inverse problem. Usual approaches are applications of the regularization and
least square method or AL. We tried some methods(3, 8], however we were not satisfied.
Here, we apply IPNS directly. We use the same order approximation in x and y directions
for simplicity. IV represents the order in spectral collocation method. The number of total

collocation points is (IV + 1)2.

The coefficient matrix of the linear system which is derived

by applying the spectral collocation method is M x M matrix, where M = N (N —1). This

is a sparse matrix but is not a band matrix. Fig. 1. shows the form of the coefficient matrix.
Here, % represents non-zero element.

* *
ES %
*
*
* * %
% * *
* % *
* * *
* *
* *
*
*
* *
X *
*
*
* *
* *
*

Fig.

* K X *

* ¥ X % X

* ¥ ¥ ¥ ¥

* K K ¥

* X ¥ ¥

* X X X% *

* XK X X %

L

* K K ¥

EE R

* K % ¥

* X X %

1. The form of the coefficient matrix.
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In the following chapters, we introduce the results by using various solvers.

3 Gauss elimination method

In this section the numerical results by the Gauss elimination method with 120 digit numbers
are shown. The maximum errors, CPU times and the used memory are shown in Table 1.
The amount of operations is proportional to M3(N%) and the amount of use of memory is
proportional to M2?(N*). In this paper, all numerical calculation are executed by Compaq

AlphaServer ES40 (CPU : 21264-666MHz, memory : 4GB).

Table 1. Numerical results by the Gauss elimination method.

N | M | Maximum error | CPU time(s) | Memory(MB)
10| 90 1.25 x 1077 0.8 )

20 | 380 2.86 x 10719 64 34

30 | 870 1.49 x 1073 813 160

40 | 1560 | 1.13 x 10~* 4811 507

50 | 2450 | 7.22 x 107%8 18879 1243

60 | 3540 | 8.09 x 10~™ 57836 2600

4 SOR method

In this section the SOR method for Cauchy problem is considered. We calculate the optimum
relaxation parameters w and the spectral radiuses p(w) to the iterations matrices of SOR
method by numerically. The results when 10 < N < 30 are shown in Table 2. When
N is even number, the value of w is more than 1. In these case, the SOR method are
not converged. When NNV is odd number, the spectral radius to the optimum relaxation
parameter is approximately 1. It shows that the convergence of the SOR method is very
slow. Therefore, the SOR method doesn’t suit this problem.

Table 2. The Optimum relaxation parameters w and the spectral radiuses p(w).

N w p(w) N w p(w)

11

1.5746315721

0.9990287280

21

1.6983954897

0.9999997536

13

1.6086960381

0.9997967442

23

1.7122827084

0.9999999642

15

1.6374743368

0.9999696146

25

1.7263674194

0.9999999935

17

1.6620194319

0.9999907450

27

1.7402953657

0.9999999985

19

1.6831462737

0.9999990088

29

1.7524578040

0.9999999998
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Fig. 2. shows the profiles of the spectral radiuses in N=10, 11, 20 and 21.
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Fig. 2. The profiles of the spectral radiuses.

5 CGS method

In this section some numerical results by the CGS method are shown.
First, Fig. 3 shows the results obtained with unpreconditioned CGS method. In this
case, N = 20 and 60 digit numbers have been used. But the CGS method is not converged.
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Fig. 3. Unpreconditioned CGS method

Next, we show the results by PCGS method. The SOR method was used as precondi-
tioner. The iteration step of the SOR method is fixed. The iteration numbers of the CGS
method to the relaxation parameters when the number of iteration for the SOR method are
1 and 5 are shown in Fig. 4. Here, N = 20 and 60 digit numbers have been used. Itera-
tions were stopped when || 7, ||2/|| b ||2 < 107%. The vertical axis represents the iteration
numbers of the CGS method. The CGS method is converged for various values of the relax-
ation parameter w. When the relaxation parameter w is 1.3~1.4, it seem that the iteration
numbers are least. On the other hand, the SOR method is not converged when N = 20.
Therefore, the optimal relaxation parameter w in original SOR method is not important.
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Fig. 5 shows that the iteration number and the amount of operations of the PCGS
method to the iteration step of the SOR method with w = 1.3 and 60 digit numbers.
Iterations were stopped when || 7, [l2/]| b ||z < 107%°. The horizontal axis represents the
number of iterations for SOR method. The vertical axis represents the number of iterations
for CGS method and the number of matrix-multiplications for the CGS method and the
SOR method in the left figure and right figure, respectively. The mount of operations of the
PCGS is least when the number of iterations for SOR method is 3.
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Fig. 5. Relationship between CGS and SOR

Fig. 6 shows the convergence behavior of PCGS method when N = 60 and digit number
is 400. In preconditioner SOR method, we take the parameter w = 1.4 and fixed the number
of iterations is 3. Iterations were stopped when || 7, ||2/|| b ||z < 107%. In this case our
method needs only 300MB memories, but the Guass elimination method needs 2600MB.
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Fig. 6. Convergence history for PCGS when N=60
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Conclusion

In this paper, the Gauss elimination method, the SOR method and the PCGS method are
applied to the linear system which is derived by IPNS to Cauchy problem. The PCGS
method with the SOR method that iteration step is fixed as preconditioner is effective.
The memory could be substantially saved compared with the case to have used the Gauss
elimination method.
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