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Abstract

Reach set computations are of fundamental importance in control theory. We consider the
reach set problem for open-loop systems described by parametric inhomogeneous linear differential
systems and use real quantifier elimination methods to get exact and approximate solutions. The
method employs a reduction of the forward and backward reach set and control parameter set
problems to the transcendental implicitization problems for the components of special solutions
of simpler non-parametric systems. For simple elementary functions we give an exact calculation
of the cases where exact semialgebraic transcendental implicitization is possible. For the negative
cases we provide approximate alternating using discrete point checking or safe estimations of reach
sets and control parameter sets. Examples are computed using the REDLOG and QEPCAD packages.

1 Introduction
Today integrated systems which combine physical processes with information systems $(i.e$.

digital programs) are in great demand. In fact complex systems which have been designed re-
cently incorporate both differential equations to model the continuous behavior and discrete event
systems to model instantaneous state changes in response to events. Systems that are finite state
machines with differential equations at each discrete state are called Hybrid Systems.

A lot of research effort has been devoted to develop mathematical models, specification for-
malisms, $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{s}/\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{l}$ methods and tools to help control engineers in building such
systems (see [18, 30, 26]). Most of the applications of hybrid systems are safety critical. Safety
is usually encoded as avoidance of an undesirable region of the state space. Consequently, the
most important problems for analyzing hybrid systems are verification problems; these are es-
sentially reachability problems, that ask whether trajectories of the hybrid systems reach certain
undesirable (unsafe) regions from an initial region.

Computing the reach set of hybrid systems is difficult because hybrid systems have an infinite
state space. Due to the difficulty of computing the reach set for systems of differential equations,
formal verification methods and tools for hybrid systems have been developed $[2, 17]$ . These
methods and tools, however, can deal with only very simple continuous models as, $e.g.\dot{x}=1$ ,
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$A\dot{x}=b$ . What is actually required is to handle hybrid systems with more complicated continuous
parts.

Decidability of reachability problem for hybrid systems with linear differential equation of
the form $\dot{y}=Ay+Bu$ is discussed in $[23, 24]$ . This is a significant class of linear differential
equations that is widely used in linear control theory. The results are based on the notion of
“

$0- \mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}$] $\mathrm{i}\mathrm{t}\mathrm{y}$

” $[16]$ from model theory and “quantifier $\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

” $[11]$ . $\mathrm{O}$-minimality is used
to define a class of hybrid systems “

$0$-minimal hybrid systems” and it is shown that all o-minimal
hybrid systems admit finite bisimulations in [22]. To make the bisimulation algorithm compu-
tationally feasible, they utilize mathematical logic, in particular, real quantifier elimination, as
main tool to represent and manipulate sets symbolically. Since quantifier elimination, in gen-
eral, is possible for the polynomial theory of reals [11], they have found subclasses of o-minimal
hybrid systems that are definable in the theory.
Remark: There are many results that apply quantifier elimination to control theory [6, 15, 19, 4]. In
$[28, 3]$ quantifier elimination is used for verification problems (reachability and observability problems) of
discrete-time polynomial systems.

In this paper we study in particular reach set problems for continuous open-loop systems
described by parametric systems of linear differential equations [21]. Roughly speaking reach
set problems are concerned with the relations between possible values of the state variables at
some initial time $t_{0}$ and the corresponding values at later points in time. The specific problems
studied in this paper are the following:

1. Fix a set $M$ of values of the state variables at $t_{0}$ ; what are the possible corresponding values
at later points $t$ in time (up to some bound $t_{1}$ or $\infty$ ). (Forward reach set)

2. Fix a set $N\mathrm{o}\mathrm{f}$
“

$\mathrm{s}\mathrm{a}\mathrm{f}\mathrm{e}$

” values of the state variables. Find a set $M$ as large as possible of initial
values of the state variables at time $t_{0}$ that guarantees that the values of the state variables
will for all later time points $t$ (up to some bound $t_{1}$ or $\infty$ ) remain inside N. (Backward reach
set)

3. Fix a set $M$ of values of the state variables at $t_{0}$ and a set $N$ of “safe” values of the state
variables. Find a set $P$ as large as possible of the control parameters such that all state
variables with initial values at $t_{0}$ in $M$ will have values in $N$ for all later time points $t$ (up to
some bound $t_{1}$ or $\infty.$ ) (Control parameter set)

Our main tool is the method of real quantifier elimination in computer algebra. This approach
was introduced into reach set computations in [29]. In a series of papers they showed how to
get exact solutions of the forward reach set problem for certain homogeneous linear differential
systems of special type with constant coefficients [23] and for associated inhomogeneous systems
with very special right hand side [24]. The exact solutions are always obtained as semialgebraic
sets described by a boolean combination of polynomial inequalities.

Here we extend this ad hoc approach for special types of differential systems to a systematic
study of the type of results obtainable by an approach via real quantifier elimination. By reducing
the approach to its bare essentials, we obtain a much wider systematic framework applicable to
a considerably larger class of systems. The main observation is that all the problems mentioned
above can be reduced by exact symbolic algorithms to an implicitization problem for certain
basic transcendental functions associated with the given system. Exact solutions for impliciti-
zation problems with rational parametrizations are well-known $[8, 27]$ . Here we deal with the
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corresponding problem for transcendental parametrizations that has been studied only for special
cases $e.g$. in $[13, 20]$ .

Our main results are as follows: We associate with every parametric linear system of differ-
ential equations $\dot{y}=A(t)y+b(t, \underline{r})$ a finite system $F$ of basic functions. Then for semialgebraic
sets $M,$ $N$ all three problems can be solved exactly by real quantifier elimination relative to the
implicitization problem for the components of the functions in $F$ . Moreover the discrete point
version of these problems require only finitely many evaluations of functions in $F$ . We prove a
theorem that determines the exact classes of vector-valued functions of the kind arising in lin-
ear differential systems with constant coefficients, where exact semialgebraic implicitization is
possible. As a corollary we obtain the exact limitations of the approach of $[23, 24]$ for linear
differential systems with constant coefficients and special right hand sides.

We propose several ways to overcome these limitations by approximate computations: One
way is to compute exact reach sets at a finite selection of discrete time points. This is always pos-
sible and practically quite efficient, but may lead to underestimation of the true forward reach set,

depending on the selection of time points. Another approach separates the common time vari-
able into different time variables. This leads to an overestimation in the implicitization problem
resulting in an overestimation of the forward reach set and an underestimation of the backward
reach set and the control parameter set: So all three approximations are on the safe side.

We illustrate some problems and solution methods by examples computed in the REDLOG-

package of REDUCE [14] and QEPCAD [12]. We expect that our results can be extended to the
hybrid systems with linear continuous parts.

2 Reach sets&transcendental implicitization problem

2.1 Problem statement
We consider parametric inhomogeneous systems $S$ of linear differential systems of the form

$\dot{y}=A(t)y+b(t, \underline{r})$ with an $n\cross n$ matrix $A(t)$ of real continuous functions $a_{ij}(t)$ and a vector-
valued real continuous function $b(t, \underline{r})$ defined on some interval $I$ . The inhomogeneous part is
assumed to be alinear combination $b(t, \underline{r})=\sum_{i=1}^{k}r_{i}gi(t)$ with continuous functions $g_{i}$ : $Iarrow$

$\mathrm{R}^{n}$ , and real parameters $r_{i}$ . Such a system can be viewed as an continuous open-loop control
system with control parameters $\underline{r}=(r_{1}, \ldots, r_{k})$ . Let $M$ be some subset of $\mathrm{R}^{n}$ and fix an initial
time point $t_{0}\in I$ : Then we denote the set of all solution functions $f$ : $Iarrow \mathrm{R}^{n}$ of the given
system with parameters $\underline{r}=(r_{1}, \ldots, r_{k})$ , by $F_{r}$ , and the set of all solution functions $f\in F_{r}$

with initial value $f(t_{0})\in M$ by $F=F_{M,r}$ .
We consider the followingforward reach set problems:

discrete reach sets Compute for finitely many time points $t_{1}<\ldots<t_{m}$ in $I$ the union of the
sets $\{f(t_{i})|f\in F_{M,r}\}$ .

bounded reach set Compute for a given time $t_{1}>t_{0}$ in $I$ the set $\{f(t)|f\in F_{M,r},$ $t_{0}\leq t\leq$

$t_{1}\}$ .

unbounded reach set Suppose $I\supseteq[t_{0}, \infty)$ , and compute the set $\{f(t)|f\in F_{M_{7}},\cdot, t_{0}\leq i\}$ .
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All computations should be performed in explicit dependence on the control parameters $\underline{r}$ .
Any solution of the discrete reach sets problem yields an lower estimate for the sets to be com-
puted in the bounded and unbounded reach set problems.

Of equal interest are the corresponding “backward” reach set problems that are a kind of
“dual” to the corresponding “forward” problems.

Some backward reach set problems are as follows: Let $N$ be a subset of $\mathrm{R}^{n}$ .

backward discrete reach sets Compute for finitely many time points $t_{1}<\ldots<t_{m}$ in $I$ the
sets $\{f(t_{0})|f(t_{1}), \ldots, f(t_{m})\in N\}$ .

backward bounded reach set Compute for a given time $t_{1}>t_{0}$ in $I$ the set $\{f(t_{0})|f(t)\in$

$N$ for all $t_{0}\leq t\leq t_{1}$ }.

backward unbounded reach set Suppose $I\supseteq[t_{0}, \infty)$ , and compute the set $\{f(t_{0})|f(t)\in$

$N$ for all $t_{0}\leq t$ }.

From the viewpoint of control theory these problems have still other variants conceming the
determination of suitable control parameter values $\underline{r}=(r_{1}, \ldots, r_{k})$ . Let $M$ as before be a subset
of $\mathrm{R}^{n}$ , and let $N$ be another subset of $\mathrm{R}^{n}$ . Then we have the following natural control parameter
set problems:

discrete point control Compute for finitely many time points $t_{1}<\ldots<t_{m}$ in $I$ the set $\{\underline{r}\in$

$\mathrm{R}^{k}|f(t_{i})\in N$ for all $f\in F_{M,r},$ $1\leq i\leq m$ }.

bounded interval control Compute for a given time $t_{1}>t_{0}$ in $I$ the set $\{\underline{r}\in \mathrm{R}^{k}|f(t)\in$

$N$ for all $f\in F_{M,r},$ $t_{0}\leq t\leq t_{1}$ }.

unbounded interval control Suppose $I\supseteq[t_{0}, \infty)$ , and compute the set $\{\underline{r}\in \mathrm{R}^{k}|f(t)\in$

$N$ for all $f\in F_{M,r},$ $t_{0}\leq t$ }.

In order to make these problems mathematically precise, we need to specify the way in which
the input sets $M$ and $N$, and the output sets should be described. For an approach using symbolic
computations it is natural to consider semialgebraic sets as possible inputs. These are subsets
of $\mathrm{R}^{n}$ described by a boolean combination $\varphi(x_{1,\ldots,n}x)$ of real polynomial inequalities. If in
addition all the polynomials involved in $\varphi(x_{1}, \ldots , x_{n})$ are linear, then the set described by $\varphi$ is
called semilinear $[16, 32]$ .

Our goal is to solve the forward and backward reach set and control parameter set problems
for semialgebraic input sets as far as possible with descriptions of semialgebraic sets as outputs.
This, however, is not always possible. Hence we consider also the computation of overestimating
the forward reach sets and underestimating the backward reach set and the control parameter sets
by suitable semialgebraic sets.

Our main tool will be a reduction of reach set and control parameter set computations to
corresponding implicitization problems for a fixed finite system of functions associated with $S$ ,
namely a fundamental system $f_{1},$

$\ldots,$
$f_{n}$ for the homogeneous system $S_{0}$ associated with $S$ , and

special solutions $h_{i}$ of the parameter-free inhomogeneous system $S_{i}$ given by $\dot{y}=A(t)y+g_{i}(t)$

for $1\leq i\leq k$ . We refer to $\{f_{1}, \ldots, f_{n}, h1, \ldots, hk\}$ as a system of basic functions for $S$ .
Implicitization problems for rational parametrizations of algebraic varieties have been widely

considered in computer algebra $[8, 27]$ . Here we have to study the corresponding problem for the
vector-valued functions $f_{1},$

$\ldots,$
$f_{n},$ $h_{1},$

$\ldots,$
$h_{k}$ , arising from the system $S$ . As these functions
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will in general be transcendental, we refer to these problems as transcendental implicitization
problems.

More precisely, we consider the following transcendental implicitization problems for given
functions $f_{i}$ : $Iarrow \mathrm{R}^{n}$ for $1\leq i\leq k$ :

discrete points implicitization Compute for finitely many time points $t_{1}<\ldots<t_{m}$ in $I$ the
values $(f_{1}(t_{i}), \ldots f_{k}(t_{i}))$ , regarded as points in $\mathrm{R}^{nk}$ .

bounded implicitization Compute for a given time $t_{1}>t_{0}$ in $I$ the set $\{(f_{1}(t), \ldots fk(t))\in$

$\mathrm{R}^{nk}|t_{0}\leq t\leq t_{1}\}$ .

unbounded implicitization Suppose $I\supseteq[t_{0}, \infty)$ , and compute the set
$\{(f_{1}(t), \ldots fk(t))\in \mathrm{R}^{nk}|t_{0}\leq t\}$ .

The first problem amounts to simple evaluations of the given functions. Notice that the
unbounded and bounded implicitization problem for a single solution of the differential system
$S$ is in fact a special case of the unbounded and bounded forward reach set problem for $S$ ,
respectively, namely for the case of a singleton set $M$ .

2.2 Reduction to implicitization problems

Next we show that all reach set computations and control parameter set computations listed
above can for semialgebraic input sets $M,$ $N$ be reduced in an exact symbolic way to one of these
implicitization problems. All these reductions require real quantifier elimination as fundamental
tool. For the case of discrete points forward and backward reach set and control parameter set
and semilinear input sets $M,$ $N$ we find moreover that the output sets are also semilinear.

Let $\varphi(x_{1}, . .- , x_{n})$ and $\psi(x_{1}, \ldots, x_{n})$ be quantifier-free formulas describing the semialge-
braic input sets $M$ and $N$ , respectively. Let $\dot{y}=Ay+b(t, \underline{r})$ with $b(t, \underline{r})=\sum r_{i}g_{i}(t)$ be a
parametric linear system $S$ with control parameter $r_{i}$ . Let $f_{i}$ be a fundamental system of so-
lutions of $\dot{y}=Ay$ . Let $h_{i}$ be a special solution of the system $\dot{y}=Ay+g_{i}(t)$ . Then by
the superposition principle, a special solution of the system $S$ is given by $\sum_{i=1}^{k}r_{i}h_{i}$ . Note
that here $r_{i}’ \mathrm{s}$ may be regarded as constants or as free parameters. Then it is straightforward to
write down first-order formulas describing the respective forward and backward reach sets and
control parameter sets in terms of evaluations of the basic functions $f_{1},$

$\ldots,$
$f_{n},$ $h_{1,-}$ . .

$,$

$hk$ , the
given formulas $\varphi(x_{1}, \ldots, X_{n}),$ $\psi(x_{1,\ldots,n}x)$ and a quantifier-free formula $\mu(y_{11},$

$\ldots,$ $y_{1n},$ $\ldots$ ,
$y_{n1},$ $\ldots$ , $y_{nn}$ ) describing the combined range of $(f_{1}, \ldots , f_{n}, h_{1}, \ldots , h_{k})$ , as a semialgebraic set.
All these formulas will involve several quantifiers over real numbers. By real quantifier elimina-
tion one can construct equivalent quantifier-free formulas, and thus get the desired semialgebraic
descriptions.

We will exhibit concrete first-order formulas for some reach set problems and control param-
eter set problem. The remaining cases are handled similarly in [5]. The forward discrete reach
set problem can be described by the following formula and hence be solved by real quantifier
elimination and evaluation of the basic functions at finitely many points.

$\exists x_{1}\ldots\exists x_{n}(\varphi(\sum iX_{i}f_{i}+\sum_{i}rihi)(t0)\wedge[\bigwedge_{j1}^{n}=y_{j}=(\sum_{i}x_{i}f_{ij}+\sum_{i}rih_{ij}(t1))$

V. . . $\vee\bigwedge_{j=1}^{n}y_{j}=(\sum_{i^{X_{i}}}fij+\sum_{i}r_{i}h_{ij})(t_{m})])$ .
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Next suppose we have a quantifier-free formula $\mu(y_{11},$
$\ldots,$ $y1n’\ldots,$ $y_{n1},$ $\ldots$ , $y_{nn’ 11}z,$ $\ldots$ ,

$z_{1n},$ $\ldots,$ $z_{k1},$ $\ldots,$
$Z_{kn})$ describing the combined range of $(f_{1}, \ldots , f_{n}, h_{1}, \ldots , h_{k})$ on the interval

$[t_{0}, \infty)$ or $[t_{0}, t_{1}]$ . So $\mu(y_{11}, .. . , z_{kn})$ holds for $n(k+n)$ -tuple in $\mathrm{R}^{n(kn}+$ ) if and only if this
tuple is in the combined range of $(f_{1}, \ldots ? f_{n}, h_{1}, \ldots , h_{k})$ on the given interval. Then the for-
ward bounded and unbounded reach set problem, respectively, can be described by the following
formula and hence solved by real quantifier elimination:

$\exists x_{1}\ldots\exists X_{n}[\varphi(\sum iX_{i}f_{i}+\sum_{i}rihi)(t_{0})\wedge\exists y_{11}\ldots\exists ynn\exists z11\cdots\exists z_{kn}(\mu(y11, \ldots, z_{kn})$

$\wedge\bigwedge_{ji}^{n}=1y_{j}=$( $\sum_{i}xiy_{ij}+\sum$ rizij) $)]$ .

With the same formula $\mu$ , the backward bounded and unbounded reach set problem, respec-
tively, can be described by the following formula and hence solved by real quantifier elimination:

$\exists x_{1}\ldots\exists x_{n}[\bigwedge_{j1}^{n}=y_{j}=(\sum_{i^{X_{i}f\sum_{i}r_{i}}}ij+hij)(t_{0}))\wedge\forall y_{11}\ldots\forall ynn\forall z11\cdots\forall zkn$

$( \mu(y_{11}, \ldots, z_{kn})arrow\psi(\sum_{i^{X}}i\underline{yi}+\sum ir_{i^{Z}}\underline{i})(t))]$.

Finally, the bounded interval control problem and the unbounded interval control problem,
respectively, can be described by the following formula and hence solved by real quantifier elim-
ination:

$\exists x_{1}\ldots\exists X_{n}[\varphi(\sum ixif_{i}+\sum_{i}r_{ii}h)(t0)$ A $\forall y11\cdots\forall y_{nn}\forall z_{11}\ldots\forall zkn$

$( \mu(y_{11}, \ldots, z_{kn})arrow\psi(\sum_{i^{X}}i\underline{yi}+\sum iri\underline{Zi})(t))]$ .

3 Exact transcendental implicitization
Here we consider cases, where the unbounded and bounded transcendental implicitization

problem for given functions $f_{i}$ : $Iarrow \mathrm{R}^{n}(1\leq i\leq k)$ has an exact solution. Notice that the
transcendental implicitization problem refers only to the component functions $f_{ij}(t)$ of $f_{i}(t)$ ;
the grouping of these component functions into vector-valued functions is irrelevant here. So we
may assume w.l.o.g. that $k=1$ and that we deal with a single vector-valued function $f(t)$ $:=$

( $f_{1}(t\mathrm{I}, \ldots, fn(t))$ . Then the exact transcendental implicitization problem is to determine the
range of $f(i)$ on an unbounded interval $[t_{0}, \infty)$ , or a compact interval $[t_{0}, t_{1}]$ contained in $I$ .
Since the $f$ is continuous, this range is always a connected subset of $\mathrm{R}^{n}$ .

In particular for $n=1$ the range is a real interval $J$ ; moreover $J$ is compact for the bounded
implicitization case. In the unbounded implicitization case $J$ is compact iff $f$ is bounded on
$[t_{0}, \infty)$ , otherwise it is a closed semiinfinite interval or all of R. In particular $J$ is always a
semialgebraic set that can computed explicitly from upper and lower bounds for $f$ . In other words
the unbounded and the bounded transcendental implicitization problem always has a positive
solution for $n=1$ .

For $n=2$ there are two well-known cases, where exact unbounded and bounded impliciti-
zation is possible, namely the $\sin-\cos$ -pair and the $\sinh-\cosh- \mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$: If $f$ has components $f_{1}$ $:=$

$\cos(p(x)),$ $f2:=\sin(p(x))$ , where $p(x)$ is a real polynomial of positive degree, then the range
of $p(x)$ on $[t_{0}, \infty)$ includes an unbounded interval; consequently the range of $f$ on $[t_{0}, \infty)$ is
exactly the unit circle $\{(x_{1}, x_{2})|x_{1}^{2}+x_{2}^{2}=1\}$ . On a bounded interval $[t_{0}, t_{1}]$ , the range of
$p(x)$ is again a compact interval, and so the range of $f$ is a connected subset of the circle that can
be easily computed as semialgebraic set from the range of $p(x)$ . For the hyperbolic case, where

105



$f_{1}:=\cosh(p(x)),$ $f2:=\sinh(p(x))$ , the situation is analogous, except that the role of the circle
is replaces by the hyperbola $\{(x_{1}, x_{2})|x_{1^{-X_{2}^{2}}}^{2}=1\}$ .

The next theorem shows that exact transcendental implicitization is preserved under compo-
sition of functions in a very general sense:

Theorem 1 Let $f(t):=(f_{1}(t), \ldots , f_{k}(t))$ be a vector valuedfunction such that the range of $f$

on every compact or unbounded closed interval I is a semialgebraic set described by a quantifier-
free formula $\varphi_{I}(x_{1}, \ldots, x_{k})$ . Let $g$ be a continuous real function defined on some compact or
upper semiinfinite closed interval $I’$ . Let $h_{i}(1\leq i\leq n)$ be semialgebraic realfunctions defined
on some subset of $\mathrm{R}^{n}$ extending the range of $f$ . Let $\rho_{i}(x_{1,\ldots,n}x, y)$ be quantifier-freeformulas
defining the graph $\{(X_{1,\ldots,y)}Xn’|y=h_{i}(X_{1}, \ldots, Xn)\}$ of $h_{i}$ . Then the vector-valuedfunction
$f^{*}(t):=(f_{1}^{*}(t), \ldots , f_{n}^{*}(t))$ with components $f_{i}^{*}(t):=h_{i}(f1(g(t)), \ldots, fn(g(t)))$ for $1\leq i\leq$

$n$ has a semialgebraic range described by the formula

$\psi(x_{1,\ldots,n}X):=\exists y_{1}\ldots\exists yn(\varphi J(y1, \ldots, y_{n})\wedge\bigwedge_{i=1}^{n}\rho_{i}(y1, \ldots, yn’)x_{i})$ ,

where $J$ is the range of$g(t)$ on $I’$ .

The proof is obvious. Notice that the algorithmic quantifier elimination for the ordered field
of real numbers this formula is required in order to transform the formula $\psi$ into an equivalent
quantifier-free formula that describes the range of $f^{*}$ as a semialgebraic set. Typical instances of
$g$ and $h_{i}$ are real polynomials or real rational functions. The method can in particular be applied
to the situation, where $f$ consists of a $\sin-\cos_{\mathrm{P}^{\mathrm{a}}}- \mathrm{i}_{\Gamma}$ or a $\sinh-\cosh$-pair as described above. Other
interesting examples are pairs $(\wp, \wp’)$ , where $\wp(t)$ is a Weierstrass $\wp$-function [1]. Then the range
of $(\wp, \wp’)$ , on alarge enough interval is a real elliptic curve $\{(x, y)|y^{2}--4x^{3}-g2x-g\mathrm{s}\}$ . See
[5] for the more examples.

4 Semialgebraic implicitization for simple elementary func-
tions

In this section we characterize those cases of linear differential systems $S$ with constant
coefficients and “simple right hand side”, where an exact implicitization of the system of basic
functions for $S$ is possible. The condition on the right hand side $b(t)$ of the system is as follows:
All components $b_{i}(t)$ of $b(t)$ are $\mathrm{R}$-linear combinations of functions of the form $t^{d_{i}}e^{a_{i}}{}^{t}\mathrm{c}\mathrm{o}\mathrm{s}(\omega_{i}t)$ ,
$t^{d_{i}}e^{a_{i}}{}^{t}\mathrm{s}\mathrm{i}\mathrm{n}(\omega_{i}t)$ , where $d_{i}$ are non-negative integers and $a_{i},$ $\omega_{i},$ $\alpha_{i}$ are real numbers. Then it is
well known that a special solution of the inhomogeneous system and the fundamental solutions
of the homogeneous system are again real linear combinations of functions of this kind. We
call linear systems of this form regular and functions of type $t^{d}e^{at}\cos(\omega t),$ $b^{d}e^{a}\sin t(\omega t)$ , with
$a,$ $\omega,$ $\alpha$ real numbers simple elementary functions. In some special cases of regular systems, it
has been shown how to solve the reach set problem by an implicit semialgebraic implicitization
of functions of the following type in [23, 24, 22] : (i) real polynomials $p_{i}(t),$ $(\mathrm{i}\mathrm{i})$ exponential
functions $e^{a_{i}t}$ with rational values of $a_{i}$ . (iii) trigonometric functions $\cos(\omega_{i}t),$ $\sin(\omega_{i}t)$ , for
rational $\omega_{i}$ .
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In the following we show that for simple elementary functions there are only few more cases
which allow unbounded exact semialgebraic implicitization; all these cases are covered by The-
orem 1 of the last section. In most of the remaining cases the exact semialgebraic implicitization
problem is unsolvable. In fact we provide a complete characterization of those cases, where
unbounded semialgebraic implicitization is possible.

Let $f(t):=(f_{1}(t), \ldots, fn(t))$ with non-constant, pairwise different component functions
$f_{i}(t):=t^{d_{i}}e^{a_{i}}{}^{t}\mathrm{c}\mathrm{o}\mathrm{s}(\omega_{i}t)$ , or $f_{i}(t):=t^{d_{i}}e^{a_{i}}{}^{t}\mathrm{s}\mathrm{i}\mathrm{n}(\omega_{i}t)$ , where $d_{i}$ are non-negative integers and
$a_{i},$ $\omega_{i}$ are real numbers. Moreover we assume that the functions $f_{i}$ appear in $\cos-\sin-\mathrm{P}\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{S}$ , when-
ever $\omega_{i}\neq 0$ .

Theorem 2 Let $f$ : $[t_{0}, \infty)arrow \mathrm{R}^{n}$ be as above and let $n\geq 2$ . Then the range of $f$ is a
semialgebraic set iffone of the following holds:

1. For all $1\leq i\leq n,$ $f_{i}(t):=t^{d_{i}}$ .

2. For all $1\leq i\leq n,$ $d_{i}=0,$ $f_{i}(t):=e^{a_{i}t}$ and $dim_{\mathrm{Q}}(span(a1, \ldots, an))\leq 1$ .

3. For all $1\leq i\leq n,$ $d_{i}\neq 0,$ $a_{i}\neq 0,$ $f_{i}(t):=t^{d_{i}}e^{a_{i}t}$ , and
$dim_{\mathrm{Q}}(span(a_{1,\ldots,n}a))\leq 1,$ and $\frac{d_{i}}{d_{1}}=\frac{a_{i}}{a_{1}}$ .

4. For all $1\leq i\leq n,$ $f_{i}(t):=\cos(\omega_{i}t)$ , or $f_{i}(t):=\sin(\omega_{i}t)$ , and
$dim_{\mathrm{Q}}(span(\omega_{1,\ldots,n}\omega))\leq 1$ .

Moreover in these positive cases a quantifier-free formula describing the range of $f$ can be
computed algorithmically over the reals.

Idea of the Proof. In the cases mentioned above the unbounded semialgebraic implicitization
is always achieved by the methods of the previous section, in particular Theorem 1. It remains
to show that in all other cases the range of $f$ is not a semialgebraic set. This requires a case
distinction. In each case we show that the assumption that the range of $f$ is semialgebraic leads
to a contradiction. Based on the assumption that the range of $f$ is semialgebraic we construct
new semialgebraic sets with impossible properties. Either this set is one dimensional such that
neither the set nor its complement is a finite union of intervals or it describes the graph of a
semialgebraic function with an impossible rate of growth (compare [9]). See [5] for details of
the proof.

This theorem clearly shows the limitations of the approach presented in $[23, 24]$ . In fact we
have the following immediate corollary:

Corollary 3 Let $\dot{y}=Ay$ with constant $n\cross n$ -matrix $A$ be a homogeneous system of linear
differential equations. Then exact semialgebraic implicitization is possible for a fundamental
$s\gamma_{Sf}em$ ofsolutions of the system iffone of the following cases holds.$\cdot$

1. All eigenvalues of $A$ are zero, i.e. $A$ is a nilpotent matrix.

2. All eigenvalues $\lambda_{1},$

$\ldots,$
$\lambda_{n}$ of $A$ are non-zero, pairwise distinct reals, and

$dim_{\mathrm{Q}}$ (span( $\lambda 1,$
$\ldots$ , $\lambda_{n})$ ) $\leq 1$ .

3. All eigenvalues $\lambda_{1},$

$\ldots,$
$\lambda_{n}ofA$ are purely $imagi\prime ar\}^{\backslash }$, say oftheform $\lambda_{i}=\mu_{i}\sqrt{-1}$ with non-zero

pairwise distinct reals $\mu_{i}$ , and $dim_{\mathrm{Q}}(span(\mu 1, \ldots.\mu_{n}))\leq 1$ .
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5 Approximate solutions
. .

In this section we study the cases, where an exact semialgebraic unbounded or bounded
implicitization is definitely not possible. In these cases we want to find a semialgebraic superset
of the true forward reach set and a semialgebraic subset of the true backward reach set or the
true control parameter set, both if possible such that the set difference to the true reach set or
control parameter set is in some sense “small enough.” Then an inspection of the reduction
formulas shows that an overestimation of the implicitization problem leads to an overestimation
of the forward reach set and an underestimation of the backward reach set and of the control
parameter set $i.e$ . for “safe” estimations. Hence we are reduced to the problem of finding a
semialgebraic superset of the true range of a transcendental vector valued function on a compact
or upper semiinfinite closed interval.

One strategy to find overestimations of the range is separation of variables: It comes in two
flavours: Separation of variables in different components, and separation of variables in products.

Separation of variables in different components: Let $f(t)=(f_{1}(t), \ldots, f_{n}(t))$ be defined
on an interval $I$ . Then separation of variables in different components yields the function $g(t)=$

$(f_{1}(t_{1}), \ldots, fn(t_{n}))$ defined on the cube $I^{n}$ with range(g) $\supseteq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}(f)$ . The range of $g$ is easily
computed as a box $J_{1}\cross\cdots\cross J_{n}$ , where $J_{i}$ is the range of $f_{i}$ . Notice that this box is in fact the
smallest box containing the range of $f$ .

Separation of variables in products: Suppose the component functions of the given functions
are products $f_{i}(t):=f_{i,1}(t)\cdots f_{i,m}(t)$ , where each $f_{i,j}(t)$ is defined on the interval $I$ . Put
$g_{j}(t):=(f_{1,j}, \ldots, f_{n,j})^{T}$ . Then each $g_{j}$ is also defined on the interval $I$ . Let $B_{j}$ be the range $g_{j}$ ,
and put $C:=B_{1}\cdots B_{\dot{m}}$ , where the multiplication is performed on the elements componentwise.
Then $C$ is obviously a superset of the range of $f$ .

Example. 1 Let $I$ be the upper semiinfinite interval $[0, \infty)$ .

1. Let $f_{1}:=\cos(t),$ $f_{2}:=\sin(t)$ . Then the true range of $f$ is the unit circle. Separation of
variables in different components yields as overestimation the closed unit square.

2. Let $f_{1}:=\cosh(t),$ $f_{2}:=\sinh(t)$ . Then the true range of $f$ is the hyperbola $\{(x, y)|$

$x^{2}-y^{2}=1\}$ . Separation of variables in different components yields as overestimation
the “quadrant” $\{(x, y)|x, y\geq 1\}$ .

3. Let $f_{1}:=e^{t}\cos(t),$ $f_{2}:=e^{t}\sin(t)$ . Then the true range of $f$ is an expanding exponential
spiral. Separation of variables in different components yields as overestimation the full plane
$\mathrm{R}^{2}$ . Separation of variables in products yields as better overestimation the annulus $\{(x, y)|$

$x^{2}+y^{2}\geq 1\}$ .

4. Let $f_{1}:=e^{-t}\cos(t),$ $f_{2}:=e^{-t}\sin(t)$ . Then the true range of $f$ is a contracting exponential
spiral. Separation of variables in different components yields as overestimation a closed
box $\{(x, y)|-e^{\pi}\leq x\leq 1, -e^{3\pi/2}\leq y\leq e^{\pi/2}\}$ . Separation of variables in products
yields as overestimation the closed disk $\{(x, y)|x^{2}+y^{2}\leq 1\}$ . These approximations are
incomparable. So their intersection is a common improvement of both.

108



6 Complexity
In this section we briefly discuss the complexity of our algorithms. From the results on com-

plexity of quantifier elimination in [7] we can give upper bounds for the asymptotic complexity
of our approach:

Discrete point reach set problems are described by purely existential formulas. Hence the
complexity of quantifier elimination is at most simply exponential in the dimension of the differ-
ential system. For fixed dimension it the computation runs in a polynomial time. The complexity
of bounded and unbounded reach set problems is the same as for the discrete reach set problem
for a fixed number $m$ of points. The backward discrete reach set problems can be solved in singly
exponential time. The complexity of backward bounded and unbounded reach set computation
is of type $e^{n^{O}}(1)$ (generalized singly exponential). The upper complexity bounds for the control
parameter set problems are same as for the corresponding backward reach set problems.

7 Computational example in REDLOG and QEPCAD

In this section we report on experimental results in reach set and control parameter set com-
putation. In [5] we have presented experimental results for numerous examples that illustrate the
different problem types and solution methods. Here we display only one of these examples with
non-constant coefficients to show the generality of the approach. All computations are performed
in the REDLOG package [14] of REDUCE 3.7 and QEPCAD [12] 1). The main algorithm employed
is the linear and quadratic quantifier elimination $[25, 31]$ of REDLOG and quantifier elimination
based on cylindrical algebraic decomposition [12] of QEPCAD.

Example. 2 Consider the inhomogeneous system $\dot{y}=Ay+b$ with

$A:=,$ $b:=r_{1}$ .

Then basic functions are

computations in the $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}/\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}$ unbounded reach set and the control parameter set prob-
lems below (Note that we set $t_{0}=0$):

$\bullet$ Forward unbounded reach set: A quantifier-free formula $\mu(y_{11}, y_{12}, y_{21}, y_{22}, \mathcal{Z}_{11}, Z_{12})$ is
obtained from the following first-order formula $\mu_{\mathit{0}}$

$\mu_{\mathit{0}}=\exists u\exists v$( $u2+v^{2}=1$ A $y_{11}=v\wedge y_{12}=u$ A $y_{21}=u$ A $y_{22}=-v$ A $z_{11}=v$ A $z_{12}=0$ ) $)$

by using quantifier elimination. By using $\mathrm{R}\mathrm{E}\mathrm{D}\mathrm{I}_{\lrcorner}\mathrm{O}\mathrm{G}$ we have

$\mu:=y_{11}^{2}+y_{12}^{2}-1=0$ A $y_{11}+y_{22}=0$ A $y_{11}-z_{11}=0$ A $y_{12}-y_{21}=0$ A $z_{12}=0$

in 10 $\mathrm{m}\mathrm{s}$ . Then we set $r_{1}=1$ and moreover $\varphi=(0\leq x_{1}\leq 1\wedge x_{2}=0)$ . Then forward
unbounded reach set problem is solved by using real quantifier elimination for the following
first-order formula freach;

$1)\mathrm{A}\mathrm{l}1$ the computations are executed on a SUN SPARC station Ultra I $(140\mathrm{M}\mathrm{H}\mathrm{z})$ .
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where
freach $=\exists x_{1}$ ( $\varphi\wedge$ freachaux)

freachaux $=\exists y11\exists y12\exists y_{2}1\exists y_{22}\exists Z_{1}1\exists Z12(\mu$ A $y_{1}=x_{1}y_{11}+x_{2}y_{21}+r_{1}z_{11}$

$\wedge y_{2}=X_{1yy_{22}}12+x_{2}+r1z_{1}2)$

By using QEPCAD for freach we obtain as an answer for the forward unbounded reach set;
$y_{1}^{2}+4y_{2}^{2}-4<=0$ in 10 $\mathrm{m}\mathrm{s}$ .

$\bullet$ Backward unbounded reach set: $\mu$ is the same formula as in forward unbounded reach set.

first-order formula breach;

breach $=\exists x_{1}\exists X_{2}$ ( $y_{1}=x_{2}$ A $y_{2}=x_{1}$ A breachaux)
where

breachaux
$= \forall y_{11}\forall y12\wedge-\frac{11}{2}\forall y2\forall y22\forall z<x_{1}y12+x2y_{22}+r1Z_{1}11\forall z12(\muarrow(-\frac{1}{2}<_{2}<\frac{y_{1}}{2})x_{111}+x_{2}y_{21}+r_{1}z_{11}<\frac{1}{2}$

By using REDLOG for breach we obtain in 420 ms a semialgebraic description of the backward
unbounded reach set consisting of 21 atomic formulas.

$\bullet$ Control parameter set: The formula $\mu$ is the same as in the reach set cases. We also set

formula pcontrol;

control $=\exists x_{1}$ ( $\varphi$ A controlaux)
where

controlaux
$= \forall y_{11}\forall y12\forall y2\wedge-\frac{11}{2}\forall y22\forall z11\forall z12(\mu\prec(-\frac{1}{2}<<X_{1y1}2+x_{2y22}+r1z12<\frac{y1}{2})x_{111}+x_{2}y_{21}+r_{1}z_{11}<\frac{1}{2}$

By using REDLOG for control we obtain in 70 ms a semialgebraic description of control param-
eter set consisting of 12 atomic formulas. It can be simplified to the result-l $\leq r_{1}<\frac{1}{2}$ by hand
calculation.

8 Conclusions
In this paper we have studied forward and backward reach set and control parameter set

problems for continuous parametric open-loop systems described by a system of parametric lin-
ear differential equations with arbitrary coefficients.

The approach using quantifier elimination was introduced into reach set computations in
[29]. We extend their ad hoc approach for special types of differential systems to a systematic
study of the type of results obtainable by an approach via real quantifier elimination. Thus we
obtain a much wider systematic framework applicable to a considerably larger class of systems.
The main observation is that all the problems can be reduced by exact symbolic algorithms to
an implicitization problem for certain basic transcendental functions associated with the given
system.
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We have proved a theorem that determines the exact classes of vector-valued functions of
the kind arising in linear differential systems with constant coefficients, where exact semialge-
braic implicitization is possible. As a corollary we have obtained the exact limitations of the
approach of $[23, 24]$ for linear differential systems with constant coefficients and simple elemen-
tary inhomogeneous part. We have also proposed several ways to overcome these limitations by
approximate computations. The problems have been illustrated by examples computed in the
$\mathrm{R}\mathrm{E}\mathrm{D}\mathrm{L}\mathrm{O}\mathrm{C}-\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{a}\mathrm{g}\mathrm{e}$ of REDUCE and QEPCAD.

Further research will be concemed with an extension of these results to hybrid systems.
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