On pro-p extensions of algebraic number fields (Recent topics related to Greenberg's generalized conjecture)

Yasutaka Ihara, RIMS, Kyoto University (京都大学数理解析研究所 伊原康隆)

この講演の内容は、岩澤理論に於る"一般 Greenberg 予想"("Greenberg's generalized conjecture",以下 GGC と略記),及びそれをめぐる極く最近の話題の紹介です.R. Greenberg 氏の 1971 年の学位論文 $[G_1]$ に端を発する"従来の Greenberg 予想"に関しては,日本人による寄与も多く,又それについては約 3 年前,尾崎学氏がここでの同様の研究集会で優れた解説をして下さった([O] 参照)ので,多くの方々になじみ深い事と思います.ところで最近,Greenberg 氏は,より一般化した予想を提出されました.($[G_2]$ Conjecture 3.5).この予想 (GGC) をめぐって,Lannuzel-Nguyen Quang Do [LN],McCallum [Mc] 等,興味深い成果が相次いで得られ,更に 2000 年秋,Sharifi [Sh] は [Mc] の結果を用いて,私が $\mathbb{P}^1-\{0,1,\infty\}$ の \mathbb{P}^1 の

岩澤理論では,一つ素数 p を固定して数体の pro-p アーベル拡大の (そのまた) pro-p アーベル拡大を考えるのですが,前者としては " \mathbb{Z}_p 拡大" よりも最大 ($\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$) 拡大を考え,後者も不分岐なものだけでなく,p の外で不分岐なものも考えます (\mathbb{Z}_p は p 進整数環の加法群). しかし,より広く,与えられた代数体の p の外で不分岐な pro-p 拡大全体の中で考えるのが自然なので,その枠組の定式化の復習から始めます.これは無論,Safarevic, Koch, ... 等による独立した出発点も持つ古典的枠組

1 k(p)/k とそのガロア群

1.1

代数体 k と素数 p の対 (k,p) を一組取って固定します。問題にするのは (k,p) で定まる,ある種の "大局的対象" の性質です。 p の上の k の素点全体の集合を S_p と書きます。又,簡単の為,以下 p>2 とします。(従って,k の任意の pro-p 拡大に於て k の無限素点は自動的に不分岐です。)

まず、k(p)/k を S_p の外で 不分岐な k の最大 pro-p 拡大とします。そのガロア群 $G_k(p) = Gal(k(p)/k)$ は無限 pro-p 群ですが、その位相群としての生成元の最小個数 $h^1 = h^1(G_k(p))$ (= $\dim H^1(G_k(p), \mathbb{Z}/p)$) と関係式の最小個数 $h^2 = h^2(G_k(p))$ (= $\dim H^2(G_k(p), \mathbb{Z}/p)$) は共に有限であり、それらの間に簡単な関係

$$h^1 - h^2 = r_2 + 1$$
 $(r_2 = r_2(k))$ は k の虚素点の個数)

が成立ちます。 h^2 を与える公式も知られていて(例えば [NSW] Th 8.7.3 参照),特に, $h^2=0$ 即ち $G_k(p)$ が自由 pro-p 群(この場合,階数は r_2+1)となる為の必要十分条件も知られています(\S 5-1 で復習します).

1.2

ガロア拡大 k(p)/k の最大アーベル部分体を $k(p)^{ab}$ で表わし、ガロア群 $G_k(p)$ のアーベル化を $G_k(p)^{ab}$ で表わします。即ち $G_k(p)^{ab}=Gal(k(p)^{ab}/k)$ 。このとき、 $G_k(p)^{ab}$ の生成元の最小個数は $G_k(p)$ のそれと同じ h^1 であり(Burnside の原理)、一方、 $G_k(p)^{ab}$ は pro-p アーベル群ゆえ \mathbb{Z}_p 加群と見なせるので、 $\mathbb{Z}_p^{h^1}$ の商です。この $G_k(p)^{ab}$ を $\mathbb{Z}_p^{h^1}$ の商として表わすとき必要な基本関係式は、元の $G_k(p)$ に関する h^2 個のそれのうち "アーベル化しても無駄にならないもの" で、従ってその個数は h^2 以下です。従って、上ツキ tor で torsion 部分群を表すとき、単因子論により、

$$(1.2.1) G_k(p)^{ab} \cong \mathbb{Z}_p^r \times (G_k(p)^{ab})^{tor},$$

$$(1.2.2) r \ge h^1 - h^2 = r_2 + 1,$$

と 分 解 し ま す. (1.2.2)に 於 て 等 式 が 成 立 つ だ ろ う, と い う の が Leopoldt 予想です. より正確には,k の単数群(n non-torsion 部分)のp 進独立性 に関する有名な Leopoldt 予想と(類体論によって)同値です. この予想はk が \mathbb{Q} 上

アーベル,又は虚 2 次体上アーベルのときには成立することが知られています(A. Brumer 等).

1.3

 \mathbb{Z}_p を p 進整数環の加法群, $F_d^{(p)}$ $(d=1,2,\dots)$ を階数 d の自由 pro-p 群とします. 従って $F_1^{(p)}\cong \mathbb{Z}_p$ $(F_d^{(p)})^{ab}\cong \mathbb{Z}_p^d$ (上ッキ ab はここでもアーベル化を表わす). 次の命題は, \mathbb{Z}_p の場合(岩澤), $F_d^{(p)}$ の場合(山岸 - 朝田)等, 順次示されましたが, 証明は非常に簡単です.

命題. k 上のガロア拡大でガロア群が $\cong \mathbb{Z}_p^d$,又は $\cong F_d^{(p)}$ なるものはすべて k(p) に含まれる.

証明. ガロア群の pro-p 性は明らか. 一方, これが S_p の外で不分岐なることは, \mathbb{Z}_p^d や $F_d^{(p)}$ が $(\infty v \nmid p$ の上の惰性群(この場合 cyclic)の生成元やフロベニウス置換から生ずるところの)

$$\tau^2 = 1, \quad \tau \neq 1,$$

なる元も.

$$\sigma \tau \sigma^{-1} = \tau^{l^f}, \ \tau \neq 1, \ l : \text{素数} \neq p, \ f \geq 1,$$

なる元 σ, τ の組も含み得ないことより明らか. $(\mathbb{Z}_p^d$ は torsion をもたず, $F_d^{(p)}$ の閉部分群はすべて自由 $\operatorname{pro-}p$ 群!).

注意. 上の証明より、この命題は、p=2でも成立ちます。

1.4

 $k(p)^{ab}/k$ のガロア群 $G_k(p)^{ab}$ の torsion 部分群と対応する中間体を K とおくと,(1.2.1)により, $Gal(K/k)\cong \mathbb{Z}_p^r$. 一方 $\S 1.3$ の命題によって k 上の \mathbb{Z}_p^d 型拡大はすべて k(p) に含まれ,この場合アーベル拡大なので $k(p)^{ab}$ にも含まれます.一方 \mathbb{Z}_p^d 拡大と \mathbb{Z}_p^d 拡大の合成も $\mathbb{Z}_p^{d''}$ 型拡大となるので,結局, K は k 上のすべての \mathbb{Z}_p 拡大の合成に等しく,又 k の最大 \mathbb{Z}_p^d 型拡大でもあるわけです.この体 K を後に"基礎体"として使います.

尚 $k(p)^{ab}$ と K の差, $(G_k(p)^{ab})^{tor}=Gal(k(p)^{ab}/K)$ が何であるかは,かなり微妙な問題のようです.

一方、k上の $F_d^{(p)}$ 拡大も $\S1.3$ によってk(p)に含まれるので、k上の $F_d^{(p)}$ 拡大の研究は $G_k(p)$ のpro-p自由商の研究と同じです。これについて知られていることも少ないですが、 $\S5$ で触れるつもりです。

2 拡大体 L/K と $\mathbb{Z}_p[[t_1,\ldots,t_r]]$ -加群 X=Gal(L/K)

2.1

まず、一般に $k \subset K \subset L \subset k(p)$ なる中間体 K,Lであって、K/k 及び L/K はアーベル拡大、L/k はガロア拡大となるものを考え、X = Gal(L/K) を(pro-p アーベル群ゆえ) \mathbb{Z}_p 加群と考えます.このとき $\Gamma = Gal(K/k)$ は X に共役によって

$$X \ni x \to \gamma(x) = \tilde{\gamma}x\tilde{\gamma}^{-1} \in X$$

 $(\gamma \in \Gamma)$ と作用します.ここで $\tilde{\gamma} \in Gal(L/k)$ は γ の延長($\gamma(x)$ は $\tilde{\gamma}$ のとり方によらない).これら \mathbb{Z}_p と Γ の作用を, \mathbb{Z}_p 線形性と連続性を用いて,完備群環 $\Lambda = \mathbb{Z}_p[[\Gamma]]$ の X への作用に延ばすことが出来,これによって X を Λ - 加群と見なします.

2.2

歴史的には、Kとしてkの一つの \mathbb{Z}_p 拡大(例えば円分 \mathbb{Z}_p 拡大),Lとしては Kの最大不分岐 pro-p P -ベル拡大をとり,X=Gal(L/K) の $\Lambda=\mathbb{Z}_p[[\mathbb{Z}_p]]$ - 加群としての性質を研究したのが岩澤理論の発端でした。より正確には,Serre によってこの形で見通しよく捉え直され,その上に発展しました。1970 年頃,Greenberg はk上の \mathbb{Z}_p 拡大 Kを動かしたときの Λ 加群 X の変化を調べる為,K が k 上の \mathbb{Z}_p^d 拡大 $(d \geq 1)$ の場合も考えました。このとき Λ は \mathbb{Z}_p 上の d 変数形式的巾級数環と同型になります。より正確には, \mathbb{Z}_p^d の生成元 γ_1,\ldots,γ_d をとり, $t_i=\gamma_i-1$ $(1\leq i\leq d)$ とおくとき, $\mathbb{Z}_p[[\mathbb{Z}_p^d]]=\mathbb{Z}_p[[t_1,\ldots,t_d]]$ 。これは UFD(一意分解環)でネーター環です。次の定理は d=1 のときの岩澤の定理の(その方法を用いての)Greenberg による拡張です。

定理 (Iwasawa, Greenberg). K を k の \mathbb{Z}_p^d 拡大 $(1 \leq d \leq r)$, L/K を最大不分 岐アーベル pro-p 拡大とする。 (従って $L \subset k(p)$.)このとき, X = Gal(L/K) は $\Lambda = \mathbb{Z}_p[[Gal(K/k)]] \cong \mathbb{Z}_p[[t_1, \ldots, t_r]]$ 上の加群として有限生成で,しかも torsion

加群である. 即ち

$$X = \Lambda \xi_1 + \dots + \Lambda \xi_s,$$

$$fX = 0,$$

なる $\xi_1, \ldots, \xi_s \in X$, $f \in \Lambda$, $f \neq 0$ が存在する.

この証明の数論的なポイントは代数体の類数の有限性(K/k の部分拡大に適用)であり、代数的ポイントは Λ - 加群についての中山のレンマですが、結果として示されたこと — すべての X を消す Λ の元 $f \neq 0$ が存在する — は、驚くべきことの一つだと思います。簡単の為、K/k は不分岐な中間体の拡大を含まないと仮定して、類体論によって K/k の有限次部分ガロア拡大 k'/k のイデアル類群の p-Sylow 群 $Cl(\mathcal{O}_{k'})^{(p)}$ への群環 $\mathbb{Z}_p[Gal(k'/k)]$ の作用の言葉に翻訳すると、これは $Cl(\mathcal{O}_{k'})^{(p)}$ 全体を消す元 $f_{k'}\in\mathbb{Z}_p[Gal(k'/k)]$ であって、k' に関して compatible でしかも k' が十分大きければ $f_{k'}\neq 0$ なるもの、の存在を意味しています。(ノルム $\sum_{\sigma}\sigma$ は compatible にならない。倍数がどんどんかかる。)円分体での Stickelberger 作用素のようなものが、一般的にも存在することを示しています。

さて、ではこういう f はどの位沢山あるのでしょうか?それに関する基本的予想が (GGC) です。その記述の前に、体K,L を次にように特定します。

2.3

以下Kとしては1.4で定めた体,従って

$$k \subset K \subset k(p)^{ab}, \quad \begin{array}{l} [k(p)^{ab}:K] < \infty, \\ Gal(K/k) \cong \mathbb{Z}_p^r, \end{array}$$

Lとしては, K の最大不分岐アーベル pro-p 拡大(従って $L \subset k(p)$)更に "もうー つの L " として

 $M: K \circ k(p)$ 内での最大アーベル拡大 $=S_p \circ \text{外で不分岐} \circ K \circ \text{最大アーベル pro-} p$ 拡大,

を考え.

$$X = Gal(L/K), Y = Gal(M/K)$$

を共に $\Lambda = Gal(K/k) \cong \mathbb{Z}_p[[t_1, \dots, t_r]]$ 上の加群と見なします. §2.2 の定理により X は有限生成 torsion Λ - 加群です. (Y については §4.2 参照.)

3 一般 Greenberg 予想 (GGC)

3.1

K,L を $\S 2.3$ の体とし, $\Lambda=\mathbb{Z}_p[[Gal(K/k)]]\simeq\mathbb{Z}_p[[t_1,\ldots,t_r]],\ X=Gal(L/K)$ とおき,X を Λ - 加群と見ます.X の annihilator

$$Ann_{\Lambda}(X) = \{\lambda \in \Lambda; \lambda x = 0 \ \forall x \in X\}$$

は Λ のイデアルで、 $\S 2.2$ の定理により $Ann_{\Lambda}(X) \neq (0)$ ですが、これはどの位大きいのでしょうか? (GGC) は次の予想です (cf. $[G_2]$ Conj. 3.5).

予想 (GGC). Λ のイデアル $Ann_{\Lambda}(X)$ は高さ 2以上であろう,即ち Λ の高さ 1 の素 イデアルにはふくまれないであろう.

注意. Λ は UFD なので,その素イデアル \neq (0) が高さ $1 \leftrightarrow$ 単項.よって,上の予想は次のように云いかえられます.

(*) $Ann_{\Lambda}(X)$ のすべての元を割る Λ の元は可逆元以外にないであろう.

これは又,次のようにも云いかえられます.

(**) $Ann_{\Lambda}(X)$ は互いに素な2つの元 f,g を含む.

ここで $f,g \in \Lambda$ が互いに素とは、 f,g 双方を割る Λ の元は可逆元に限ること.

尚, $|S_p|=1$ でkの類数がpで割れないときはX=0となり,従ってこの場合 (GGC) は自明に成立しています.(その証明は,やはり有限p群Gに関する Burnside の原理 \cdots G の部分群I の G^{ab} での像が G^{ab} 全体なら $I=G\cdots$ これをk(p)/k の部分有限次拡大k' のp-Hilbert 類体 k'^H のガロア群 $G=Gal(k'^H/k)$ とp上の惰性群I に適用。)

3.2

k が総実のとき, Leopoldt 予想のもとで $r=r_2+1=1, \Lambda \simeq \mathbb{Z}_p[[t]]$.このとき,

上の予想 $\longleftrightarrow \Lambda/Ann_{\Lambda}(X)$: 有限 $\longleftrightarrow X$: 有限

これが元来の Greeberg 予想であり,これについては日本人の寄与も大きい([O] 参照). ただ,(k,p) についての Greenberg 予想が <u>すべての</u> 素数 p に対して示されている総実代数体 k は,未だに $k=\mathbb{Q}$ だけのようです. $k=\mathbb{Q}$ のときは, K は円分 \mathbb{Z}_p 拡大で L=K, X=0.一方, $k \supseteq \mathbb{Q}$ のときは, Greenberg 予想が非自明である p は有限個ではありません. 類数を割る p だけでなく, $|S_p| \ge 2$,つまり k/\mathbb{Q} で分解する p すべてに対して検証を要しますから,数値計算だけですべての p に対して証明することは出来ません.

 $k=\mathbb{Q}(\mu_p)^+=\mathbb{Q}(\cos\frac{2\pi}{p})$ に対する (k,p) のとき(Leopoldt 予想は正しいので r=1)は,有名な Vandiver 予想が X=0 を予想しており,それは p<12,000,000 なるすべての p について確かめられています.従って,この場合((k,p) に関する) Greenberg 予想は,単に Vandiver 予想を弱めたものになっています.

3.3

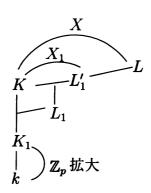
予想 (GGC) の「哲学的根拠」は $[G_2]$ でも少し触れられていますが,私には十分理解できていません.私としては,特に p 進 Artin L 関数 ($\neq 0$ の存在)との関連に興味があります. Greenberg 氏にメールで問合わせ,彼の考えていた二,三の根拠を教わりましたが,それについては,私の理解も不十分だし,ここで書く事はさし控えます.ここでは,次の"次元論的説明"にとどめたいと思います.

 $Ann_{\Lambda}(X)$ が高さ ≥ 2 という事は, $\psi:\Lambda \twoheadrightarrow \mathbb{Z}_p[[t]]$ なる全射準同型(勿論沢山ある)の核 $\mathrm{Ker}\psi$ (高さ (r+1)-2=r-1)と合わせると Λ のイデアル $(Ann_{\Lambda}(X)+\mathrm{Ker}\psi)$ は"大抵は"(つまり"一般の ψ "に対しては)高さ 2+(r-1)=r+1,即ち

$$\Lambda/(Ann_{\Lambda}(X) + \operatorname{Ker}\psi)$$

$$\psi: \Lambda = \mathbb{Z}_p[[t_1, \ldots, t_r]] \to \mathbb{Z}_p[[t]]; \ t_i \to (1+t)^{a_i} - 1$$

 $(1 \le i \le r)$ なる全射準同型を導く、さて $X_1 = X/(\mathrm{Ker}\psi)X$ は、 $Gal(K/K_1)$ が自明に作用する X の最大の商に等しく、従って $X_1 = Gal(L/L_1')$ となります。ここで L_1' は L/K_1 内の K/K_1 の最大中心拡大体(それは勿論 K を含む)。



 L_1 は K_1 の最大不分岐 pro-p アーベル拡大

さて制限射 $X_1 \to Gal(L_1/K_1)$ は一般には全射とも単射とも限らないので,どちらが他よりも大きくなる理由もありますが,仮りに (GGC) が成立つとすると,"一般の K_1 " に対しては X_1 は有限 $\Lambda/(Ann_\Lambda(X)+\mathrm{Ker}\psi)$ - 加群ゆえ, $|X_1|<\infty$,従って問題の $Gal(L_1/K_1)$ のうち k 上のアーベル拡大から来ない難しい部分 $Gal(L_1/K\cap L_1)$ が有限,ということを意味します.逆方向はよくわかりませんが,例えば K の p 上の素点が唯一つ(特に $|S_p|=1$)で $X=(\Lambda/Ann_\Lambda(X))$ ° のような場合を想定すると,一つでも $Gal(L_1/K_1)$ が有限 なる \mathbb{Z}_p 拡大 K_1/k があると(このときは $L_1K=L_1'$ となるので), $\Lambda/(Ann_\Lambda(X)+\mathrm{Ker}\psi)$ の有限性が(その ψ に対して)成立ち,これより $Ann_\Lambda(X)$ の高さ ≥ 2 でなくてはならないことがわかります.

従って乱暴にまとめれば、(GGC)は、k上の"一般の \mathbb{Z}_p 拡大" K_1 に対して $Gal(L_1/K_1)$ の"実質部分"が有限になりやすいという予想だ、と云えると思います。

4 (GGC)の別の見方,帰結,等 [LN][Mc]

4.1

従来の Greenberg 予想と同様, (GGC) も K/k 内でのイデアルの "capitulation" と密接に関係しています.

定理 ([LN]Th4.4). $k \supset \mu_p$ 且つ K/k のすべての有限次部分拡大体 F で p に対する Leopoldt 予想が成立つと仮定する.このとき

$$(\mathrm{GGC}) \longleftrightarrow \varinjlim_F Cl\left(\mathcal{O}_F\left[rac{1}{p}
ight]\right)^{(p)} = 0.$$

ここで \mathcal{O}_F は F の整数環, $Cl\left(\mathcal{O}_F\left[\frac{1}{p}\right]\right)$ は $\mathcal{O}_F\left[\frac{1}{p}\right]$ のイデアル類群(即ち \mathcal{O}_F のイデアル類群を p の素因子で代表される類で生成される部分群で割った群),上つき (p) はその p 成分を表わす.

4.2

一方, (GGC) を Y = Gal(M/K) (§2.3) の言葉に移すと:

定理 ([Mc]Cor14). $k \supset \mu_p$, 且つ各 $\mathfrak{p} \in S_p$ に対して K/k での \mathfrak{p} の分解群の \mathbb{Z}_p 階数 ≥ 3 とする (p > 3 なら満される). このとき

$$(GGC) \longleftrightarrow Y \; \mathcal{D}^{\sharp} \; \Lambda$$
-torsion free.

この証明には、Y と X'=Gal(L'/K) の間の Jannsen の双対性などが使われています。ここで L'/K は S_p の上の K のすべての素点が完全分解する L/K の最大部分体です。定理の仮定から X と X' は "近いもの" になります。

注意. Y は Λ - 加群として一般に(上の定理の仮定と無関係に)有限生成です。その証明は, $G_k(p)$ が有限生成 $\operatorname{pro-}p$ 群であることと Y の群論的定義だけからでも容易に得られます。

【 $4.1 \ge 4.2$ の関係】 $|S_p| = 1$ のときの一方向の説明.

$$N = K\left(arepsilon^{1/p^n}; n \geq 1, \quad arepsilon \in \mathcal{O}_K\left[rac{1}{p}
ight]^{ imes}
ight)$$

とおくと, $K \subset N \subset M$ だが, $k \supset \mu_p$,(このとき $K \supset \mu_{p^{\infty}}$ に注意) $|S_p| = 1$ のとき,Gal(N/K) は Λ -torsion free ([Mc]Th3).もし $\varinjlim_F Cl\left(\mathcal{O}_F\left[\frac{1}{p}\right]\right)^{(p)} = 0$ ならM/Kの Kummer 拡大としての構成を考えばわかるように,M=N.よって Y も Λ -torsion free となる.

4.3 $(\mathbb{Q}(\mu_p), p)$ に対する (GGC) ([Mc]).

p が $\mathbb{Q}(\mu_p)$ の類数を割るとき p は regular prime, 割らないとき irregular prime といいます.

p: regular のときは X = 0 ゆえ (GGC) は自明.

p: irregular のとき:

定理 ([Mc]Th1). p: irregular prime で更に次の (1)(2) を満たすとする.

- (1) Q(μ_p) の類数の p 成分は丁度 p に等しい.
- (2) $\mathbb{Q}(\mu_p)$ の単数群を E, $\mathbb{Q}_p(\mu_p)$ のそれを U, また E の U 内での p 進閉包を \bar{E} とかくとき, U/\bar{E} の p 巾 torsion 部分群 $(U/\bar{E})[p^\infty]$ は \mathbb{Z}/p と同型.

このとき $(\mathbb{Q}(\mu_p),p)$ に対して (GGC) が成り立つ.

McCallum の数値実験によると、p < 400 と 3600 の範囲の irregular primes のうち約 <math>3/4 が条件 (1) と (2) を共に満すそうである.

(満たす例) p = 37,59,67,101,103,131,149,...(満たさない例) p = 157,353,...,691,...

注意. $k(p)^{ab}/k$ の最大不分岐部分拡大、即ちkの Hilbert p- 類体を k^H/k とするとき、(1)(2) はそれぞれ

- (1)' $Gal(k^H/k) \cong \mathbb{Z}/p$,
- (2)' $Gal(k(p)^{ab}/k^H)^{tor} \cong \mathbb{Z}/p$

と同値. (1)' より $h^1(G_k(p)) = \frac{p+1}{2} + 1$, $h^2(G_k(p)) = 1$, 従って $G_k(p) = Gal(k(p)/k)$ は階数 $\frac{p+1}{2} + 1$ の自由 pro-p 群を 1 つの関係式で割った群になっています。尚この場合, $Gal(k^H/k)$, $Gal(k(p)^{ab}/k^H)$ それぞれが p-torsion をもつが, $Gal(k(p)^{ab}/k)$ は $\frac{p+1}{2} + 1$ 個の生成元と 1 つの関係式をもち,従って (1)'(2)' と合わせると $Gal(k(p)^{ab}/k) \cong \mathbb{Z}_p^{\frac{p+1}{2}} \times \mathbb{Z}/p^e$ (e=1 または 2) .

$oldsymbol{5}$ k 上の自由 \mathbf{pro} -p 拡大の階数との関係について

5.1

一般に階数 $d \ge 1$ の自由 pro-p 群 $F_d^{(p)}$ をガロア群とする k のガロア拡大があると、それは k(p) に含まれる (§1.3) ので、そういう拡大がある事と $G_k(p)$ が $F_d^{(p)}$ を商群に持つことは同値です。ではこういう d の最大値 $\rho_k(p)$ は何でしょうか? $F_d^{(p)}$ のアーベル化が \mathbb{Z}_p^d ですから、当然 $\rho_k(p) \le r$ です。山岸氏は [Y]§4 で K. Wingberg の結果を用いて、 $\rho_k(p) < r = r_2 + 1$ なる実例を与えています。

まず $G_k(p)$ 自身が自由 pro-p 群,即ち $\S1.1$ の記号で $h^2(G_k(p))=0$ となる為の条 件は(例えば [NSW] Th8.7.3 参照; 我々はp > 2 としていることに注意):

 $h^2(G_k(p)) = 0 \leftrightarrow 次の (i)(ii)$ が成り立つ.

- $\begin{cases} (\mathrm{i}) & \mu_p \not\subset k \text{ ς ς $\mu_p \not\subset k_{\mathfrak{p}}$} \quad (\forall \mathfrak{p} \in S_p), \\ & \mu_p \subset k \text{ ς ς $|S_p| = 1$}. \\ (\mathrm{ii}) & \alpha \in k^\times \text{ \acute{r}}, & k \text{ σ r \sim r σ f 限素点 v に対して $\mathrm{ord}_v(\alpha) \equiv 0 \pmod{p}$ を満し, \\ & \mathbb{E} [v \in S_p] [c] \text{ ς r \sim $r$$

特に $\mu_p \subset k$ のとき(ii)は

(ii)' $Cl(\mathcal{O}_F[\frac{1}{n}])^{(p)} = 0$

と同値です.

例えば $k=\mathbb{Q}$ のとき $h^1-h^2=1,\ h^2=0$ で $G_{\mathbb{Q}}(p)\cong \mathbb{Z}_p=F_1^{(p)}\quad (p>2).$ また $k = \mathbb{Q}(\mu_p)$ (且つp > 2) のときは

$$h^1 - h^2 = \frac{p+1}{2}, \quad h^2 = 0 \leftrightarrow p : \text{regular}.$$

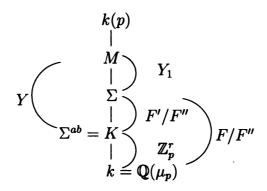
従って,p: regular のときは $G_{\mathbb{Q}(\mu_p)}(p)\simeq F_{\frac{p+1}{2}}^{(p)}$ で,p: irregular のときは $h^2>0$ です.(ちなみに,[NSW]Th8.7.3 の公式より, h^2 は $\mathbb{Q}(\mu_p)$ のイデアル類群の p-Sylow 群の最大 (p,\cdots,p) 型商群の階数と等しい。) 兎に角, $k=\mathbb{Q}(\mu_p),\,p:$ irregular のとき, $G_{\mathbb{Q}(\mu_p)}(p)$ は $F_{\frac{p+1}{2}}^{(p)}$ を商群にもつかどうかが問題の一つとなります.

5.2

定理 ([Mc]Th2). p : irregular prime とする. $(\mathbb{Q}(\mu_p),p)$ が (GGC) を満せば, $G_{\mathbb{Q}(\mu_p)}(p)$ は $F_{rac{p+1}{2}}^{(p)}$ を商群に持ち得ない.

実は,これより少し強く,同じ条件のもとで, $F=F_{\frac{p+1}{2}}^{(p)},\ F'=(F,F),\ F''=(F',F')$ とするとき, $G_{\mathbb{Q}(\mu_p)}(p)$ は F/F'' と同型な商群を持ち得ない事が示せます. ただし、(,)は位相群の交換子群. 今迄の話のつながりを理解する助けになるか と思いますので、以下その略証を述べます(上記 [Mc]Th2 の証明とは少々異る).

(略証) $r=\frac{p+1}{2},\ F=F_r^{(p)}$ とするとき,仮りにk(p)/k が (F/F'')- 拡大 Σ/k を含むとする; $Gal(\Sigma/k)=F/F''$. このとき Σ/k の最大アーベル部分体 Σ^{ab}/k はF/F'' の交換子群F'/F'' と対応する Σ/k の部分体であり, $Gal(\Sigma^{ab}/k)=F/F'\cong \mathbb{Z}_p^r$ ゆえ, $\Sigma^{ab}=K$. また $Gal(\Sigma/K)$ はアーベル群ゆえ, $\Sigma\subset M$. $Y_1=Gal(M/\Sigma)$ とおく.



さて純 (pro-p) 群論的に $F'/F''(=Y/Y_1)$ を $\Lambda = \mathbb{Z}_p[\![F/F']\!] \cong \mathbb{Z}_p[\![t_1,\cdots,t_r]\!]$ 加群とみると,既知の Blachfield-Lyndon 型定理により,

$$F'/F'' \simeq_{\overline{\Lambda}} \{(\lambda_1, \cdots, \lambda_r) \in \Lambda^r; \quad \sum_{i=1}^r \lambda_i t_i = 0\}.$$

従って Λ の商体を Λ^0 とすると、 $(F'/F'')\otimes \Lambda^0$ は Λ^0 上のベクトル空間としてr-1次元、一方、Y=Gal(M/K)についても、Jannsen、Nguyen-Quang Do の構造定理より、Yは有限生成 Λ 加群で $\dim_{\Lambda^0}(Y\otimes \Lambda^0)=r-1$ (例えば [Mc]Th10 参照)、よって $\dim\left((Y/Y_1)\otimes \Lambda^0\right)=\dim(Y\otimes \Lambda^0)$ 、よって $Y_1\otimes \Lambda^0=0$ 、即ち Y_1 は Λ -torsion、しかし(GGC)によればYは torsion-free (§4.2)、よって $Y_1=0$ 、即ち $M=\Sigma$ 、しかしM/KはK(p)/Kの最大アーベル部分体ゆえ、 $M\supset K(p)^{ab}$ 、しかし $M=\Sigma$ の中での最大アーベル部分体は $\Sigma^{ab}=K$ ゆえ、 $K=K(p)^{ab}$ 、よって $Gal(K(p)^{ab}/K)\cong \mathbb{Z}_p^r$ 、これはF:regular のときに限る。

6 $\mathbb{P}^1 - \{0, 1, \infty\}$ の \mathbf{pro} -p 基本群との関係について $[\mathbf{Sh}]$

6.1

以下は極く最近の R. Sharifi [Sh] の研究の簡単な紹介です。二,三年前に私が提出した問 [Ih] Lect I §5-6 に対して, (GGC) と関係した条件つき解答を与えているものです。基本的定義について [Ih] も御参照下さい。以下 p は素数 > 2, $k = \mathbb{Q}(\mu_p)$ とします。

 $ar{\mathbb{Q}}$ 上の射影直線を $\mathbb{P}^1_{ar{\mathbb{Q}}}$ とするとき, $\operatorname{pro-}p$ 基本群

$$\pi_1=\pi_1^{ ext{pro-}p}(\mathbb{P}^1_{ar{\mathbb{Q}}}-\{0,1,\infty\})$$

への $\mathbb Q$ の絶対ガロア群 $G_{\mathbb Q}$ の外作用を考え、それを $G_k = \operatorname{Gal}(\bar{\mathbb Q}/\mathbb Q(\mu_p))$ へ制限すると、それは $G_k(p) = \operatorname{Gal}(k(p)/k)$ を通して作用します(忠実かどうかは未知). さて π_1 の中心降下列を用いて $G_k(p)$ の filtration 及び graded Lie algebra

$$\mathfrak{g}_p = \bigoplus_{m \ge 3} gr^m \mathfrak{g}_p$$

が定義されます。各 $gr^m\mathfrak{g}_p$ は有限生成自由 \mathbb{Z}_p 加群で,一方 \mathfrak{g}_p は \mathbb{Z}_p 上の Lie 環の構造を持ち, $[gr^m\mathfrak{g}_p,gr^n\mathfrak{g}_p]\subset gr^{m+n}\mathfrak{g}_p$ $(m,n\geq 3)$ が満されます。各奇数 $m\geq 3$ に対して Soulé character と呼ばれる \mathbb{Z}_p -線形射 $(\neq 0)$

$$\kappa_m: gr^m \mathfrak{g}_p \to \mathbb{Z}_p$$

が定義されています. $gr^m \mathfrak{g}_p = \mathbb{Z}_p \sigma_m + \operatorname{Ker}(\kappa_m)$ を満す $\sigma_m \in gr^m \mathfrak{g}_p$ を各奇数 $m \geq 3$ に対して一つづつ選んでおきます. 最近, Hain-Matsumoto [HM] により, $\mathfrak{g}_p \otimes \mathbb{Q}_p$ は \mathbb{Q}_p 上の Lie 環として σ_m (m: 奇数 $\geq 3)$ 達で生成されることが示されました. 一方, Deligne は (別の定式化でですが) 次の予想を立てています.

予想 (D). σ_m (m: 奇数 $\geq 3)$ 達は $\mathfrak{g}_p\otimes \mathbb{Q}_p$ のLie 環としての <u>free</u> generators であろう.

しかし $G_k(p)$ の π_1 への作用の数論的性質の研究には, $\otimes \mathbb{Q}_p$ する前の \mathfrak{g}_p の性質がより重要です.私は [Ih] で,p=691, m=12 (このとき $p|B_m$ (ベルヌイ数))のとき, $[\sigma_3,\sigma_9]$ と $[\sigma_5,\sigma_7]$ のある一次結合が "stable derivation algebra" の 12 次の成分 $gr^{12}\mathcal{D}\otimes\mathbb{Z}_p$ の中で満すある合同式 \pmod{p} から,p が irregular なとき \mathfrak{g}_p 自身は σ_m 達では生成されない可能性が十分あることを指摘しました. Sharifi はこれに関して,次の事を示しました.

定理 (Sharifi [Sh]). 予想(D) を仮定すると次の(i) (ii) が成立つ.

- (i) p: regular のとき, \mathfrak{g}_p は σ_m (m: 奇数 $\geq 3)$ で生成され, $G_k(p)$ の π_1 への外作用は忠実.
- (ii) p: irregular なとき,更に p に関するVandiver 予想と (k,p) に関する(GGC) を仮定すると, \mathfrak{g}_p は σ_m $(m: 奇数 \geq 3)$ 達では生成され得ない.
- (ii) について、更に定量的研究も進みつつあるようですが、 p=691 は (GGC) も示されておらず、微妙なようです。

証明のアイデアは次の通り、各 $gr^m \mathbf{g}_p$ は $G_k(p)$ の部分商なので, σ_m を代表する適当な元 $\tilde{\sigma}_m \in G_k(p)$ をとるのですが, $\tilde{\sigma}_3, \tilde{\sigma}_5, \ldots, \tilde{\sigma}_p$ までとると,それと $\mathrm{Gal}(\mathbb{Q}(\mu_{p^\infty})/k)$ ($\cong \mathbb{Z}_p$) の生成元の $G_k(p)$ への延長の一つ γ を用いて,残りの $\tilde{\sigma}_m$ ($m=p+2,\ldots$) 達でよい性質を満すものを群論的に構成できる,というのが一つのポイントです. (Vandiver 予想はここで使っています。)

p: regular のときは, $G_k(p)$ は $\tilde{\sigma}_3,\ldots,\tilde{\sigma}_p,\gamma$ の上の自由 pro-p 群になり,それを用いて $\mathrm{Gal}(k(p)/K)$ が $\tilde{\sigma}_m$ (m: 奇数, $\geq 3)$ で生成される自由 pro-p 群であることを示し,(D) を仮定して残りの結論を出す.

p: irregular のときは、もし \mathfrak{g}_p が σ_m 達で生成される free Lie algebra と同型とすると、 $G_k(p)$ の π_1 への外作用の核と対応する体を $k(p)^*$ と書くとき、 $\mathrm{Gal}(k(p)^*/k)$ は $\sigma_3,\ldots,\sigma_p,\gamma$ の上で自由 pro-p (階数 $\frac{p+1}{2}$) ということになり、 5.2 の結果と矛盾する、という方針です.

参考文献

[G₁] Ralph Greenberg (Thesis, Princeton University)(1971), "On some questions concerning the Iwasawa invariants".

[最近の Preprints] (2000 年のもの)

- [G₂] R. Greenberg, "Iwasawa theory, Past and Present" preprint 2000; to appear in Advanced Studies in Pure Math. http://www.math.washington.edu/~greenber/personal.html
- [LN] A. Lannuzel, T. Nguyen Quang Do, "Conjectures de Greenberg et extensions pro-p-libres d'un corps de nombres" Manuscripta math. **102**(2000), 187–209.

- [Mc] W.G. McCallum, "Greenberg's conjecture and units in multiple \mathbb{Z}_p -extensions", Algebraic Number Theory Preprint Archives, no.249, July 2000.
- [Sh] R. Sharifi, "Relationships between conjectures on the structure of Galois groups of number fields", Preprint December 2000.

[関係引用]

- [O] 尾崎 学, "Greenberg 予想について", 数理解析研 講究録 1026(1998), 20-27.
- [HM] R. Hain and M. Matsumoto, "Weighted completion of Galois groups and some conjectures of Deligne", arXiv: math. AG/0006158, June 2000.
- [Ih] Y. Ihara, "Some arithmetic aspects of Galois actions on the pro-p fundamental group of $\mathbb{P}^1 \{0, 1, \infty\}$ ", Preprint, May 1999, RIMS-1229.
- [NSW] J. Neukirch, A. Schmidt and K. Wingberg, "Cohomology of Number Fields", Springer GMW **323** (2000).
- [Y] M. Yamagishi, "A note on free pro-p extensions of algebraic number fields", J. de théorie des nombres de Bordeaux 5 (1993), 165–178.