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Abstract

We consider the Schr\"odinger operator $L=-\triangle+V$ with non-negative potentials $V$

on $\mathrm{R}^{n}$ , $n\geq 3$ . We assume that the potential $V$ belongs to the reverse Holder class
which includes non-negative polynomials. We show the If estimates for the operators
$V^{k}L^{-k}$ and $V^{k-1/2}\nabla L^{-k}$ , where $k$ is apositive integer.

1Introduction

In this paper we consider the Schr\"odinger operator $L=-\triangle+V$ on $\mathrm{R}^{n}$ , $V\geq 0$ , $n\geq 3$ .
When $V$ is anon-negative polynomial, Zhong ([Zh]) proved that the operators $V^{k}L^{-k}$

and $V^{k-1/2}\nabla L^{-k}$ , $k\in \mathrm{N}$ , are bounded on $L^{p}$ , $1<p\leq\infty$ . For the potential $V$ which
belongs to the reverse Holder class, which includes non-negative polynomials, Shen
([Sh]) generalized Zhong’s results. Actually, he proved that the operators $VL^{-1}$ and
$V^{1/2}\nabla L^{-1}$ are bounded on $L^{p}(\mathrm{R}^{n})$ , $1\leq p\leq\infty$ .

For the operator $L$ with potentials $V$ which belong to the reverse Holder class,
Kurata and the author generalized Shen’s results as follows. In [KS1], we replace $\triangle$ by
the second order uniformly elliptic operator $L_{0}=-\Sigma_{\dot{l},j=1}^{n}(\partial/\partial x_{i})\{a_{ij}(x)(\partial/\partial x_{j})\}$ and
assume certain assumptions for $a_{\dot{l}j}$ . Then we showed that the operators $V(L_{0}+V)^{-1}$

and $V^{1/2}\nabla(L_{0}+V)^{-1}$ are bounded on weighted $L^{p}$ space $(1 <p<\infty)$ and Morrey
spaces. Moreover, in [Su], the auther showed weighted U-L estimates of the operators
$V^{\alpha}L^{-\beta}$ and $V^{\alpha}\nabla L^{-\beta}(\alpha,$ $\beta\in(0,1])$ and their boundedness on Morrey spaces.

The purpose of this paper is to show the $IP$ boudedness of the operators $V^{k}L^{-k}$ and
$V^{k-1/2}\nabla L^{-k}$ , $k\in \mathrm{N}$ , where $V$ belongs to the reverse H\"older class.

We shall repeat the definitions of the reverse Holder class (e.g.[Sh]). Throughout
this paper we denote by $B_{r}(x)$ the ball centered at $x$ with radius $r$ , and the letter $C$

stands for aconstant not necessarily the same at each occurrence
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Definition 1(Reverse H\"older class) Let V $\geq 0$ .
(1) For $1<p<\infty$ we say V $\in(RH)_{p}$ , if V $\in L_{lo\mathrm{c}}^{p}(\mathrm{R}^{n})$ and there exists a constant

$C$ such that
$( \frac{1}{|B_{r}(x)|}\int_{B_{r}(x)}V(y)^{p}dy)^{1/p}\leq\frac{C}{|B_{r}(x)|}\int_{B_{r}(x)}V(y)dy$ (1)

holds for every $x\in \mathrm{R}^{n}$ and $0<r<\infty$ .

(2) We say $V\in(RH)_{\infty}$ , if $V\in L_{loc}^{\infty}(\mathrm{R}^{n})$ and there exists a constant $C$ such that

$||V||_{L^{\infty}(B_{\mathrm{r}}(x))} \leq\frac{C}{|B_{r}(x)|}\int_{B_{r}(x)}V(y)dy$ (2)

holds for every $x\in \mathrm{R}^{n}$ and $0<r<\infty$ .

Remark 1If $P(x)$ is apolynomial and $\alpha>0$ , then $V(x)=|P(x)|^{\alpha}$ belongs to $(RH)_{\infty}$

([Fe]). For $1<p<\infty$ , it is easy to see $(RH)_{\infty}\subset(RH)_{p}$ .

In [Zh], Zhong proved the If estimates of the operators $V^{k}L^{-k}$ and $V^{k-1/2}\nabla L^{-k}$ with

non-negative polynomials $V$ by using the $k$ times composition of the Hardy-Littlewood

maximal operator $M$ . In [KS1] we considered the uniformly elliptic operators $L_{0}$ and

proved apointwise bound $|Tf(x)|\leq CM(|f|)(x)$ where $Mf$ is Hardy-Littlewood max-

imal function and $T$ is either $V(L_{0}+V)^{-1}$ or $V^{1/2}\nabla(L_{0}+V)^{-1}$ . Pointwise estimates are

also used by Zhong in the polynomial case. Once we have these pointwise estimates the

boundedness of these operators in any spaces on which the Hardy-Littlewood maximal

operator is known to be bounded. Examples are weighted $LP$ space and Morrey spaces.

In this paper we establish pointwise estimates (see Lemma 3) which generalize

Zhong’s estimates we mentioned above. By using them we show the $L^{p}$ boundedness

of these operators (see Theorem 1).

We denote by $\Gamma(x, y)$ the fundamental solution for $L$ . The operator $L^{-1}$ is the

integral operator with $\Gamma(x, y)$ as its kernel. Let $f\in C_{0}^{\infty}(\mathrm{R}^{n})$ . Then we have $L^{-1}f\in$

If $(\mathrm{R}^{n})$ for $1\leq p\leq\infty$ . For any integer $k\geq 2$ , we define $L^{-k}$ as follows.

$L^{-k}f(x)= \int_{\mathrm{R}^{n}}\Gamma(x, y)L^{-(k-1)}f(y)dy$.

Now we state our theorem.

Theorem 1Suppose $V\in(RH)_{\infty}$ . Then there exist constants $C$ , $C’$ such that

$||V^{k}L^{-k}f||_{L^{p}(\mathrm{R}^{n})}\leq C||f||_{L^{p}(\mathrm{R}^{n})}$ for $f\in C_{0}^{\infty}(\mathrm{R}^{n})$ , (3)
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$||V^{k-1/2}\nabla L^{-k}f||_{L^{p}(\mathrm{R}^{n})}\leq C’||f||_{L^{\mathrm{p}}(\mathrm{R}^{n})}$ for f $\in C_{0}^{\infty}(\mathrm{R}^{n})$ , (4)

there $1<p\leq \mathrm{o}\mathrm{o}$ and $k\in \mathrm{N}$ .

Remark 2In Theorem 1the case k $=1$ was shown in [Sh, Remark 2.9, Theorem
4.13].

The plan of this paper is as follows. In section 2, we recall Shen’s lemmas which we
use to prove Theorem 1. In section 3, we prove Theorem 1.

Iwould like to express my gratitude to Professor Kazuhiro Kurata for his sugges-
tions. Ialso would like to express my gratitude to Professor S. T. Kuroda for his helpful
advices.

2Preliminaries

In [Sh], Shen defined the auxiliary function $m(x, V)$ and established the estimates of
the fundamental solution of $L$ (see Lemma 1). By using the estimates he proved $L^{p}$

boundedness of the operators $VL^{-1}$ and $V^{1/2}\nabla L^{-1}$ . We also need them to prove our
theorem.

We recall the definition of the function $m(x, V)$ .

Definition 2([Sh, Definition 1.3]) Let $V\in(RH)_{n/2}$ and $V\not\equiv \mathrm{O}$ . Then it is well-known
that there exists $\epsilon>0$ such that $V\in(RH)_{n/2+\epsilon}$ ([Ge]). Then the function $m(x, V)$ is
well-defined by

$\frac{1}{m(x,V)}=\sup\{r>0$ : $\frac{r^{2}}{|B_{r}(x)|}\int_{B_{f}(x)}V(y)dy\leq 1\}$

and satisfies $0<m(x, V)<\infty$ for every $x\in \mathrm{R}^{n}$ .

Remark 3 If V $\in(RH)_{\infty}$ then there exists aconstant C such that $V(x)\leq Cm(x, V)^{2}$

([Sh, Remark 2.9]).

We recall the estimates of the fundamental solution for $L$ .

Lemma 1([Sh])
(1) Suppose $V\in(RH)_{n/2}$ . Then for any positive integer $N$ there exists a constant

$C_{N}$ such that

$(0 \leq)\Gamma(x, y)\leq\frac{C_{N}}{\{1+m(x,V)|x-y|\}^{N}}$ . $\frac{1}{|x-y|^{n-2}}$ .
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(2) Suppose $V\in(RH)_{n}$ . Then for any positive integer $N$ there exists a constant
$C_{N}$ such that

$| \nabla_{x}\Gamma(x, y)|\leq\frac{C_{N}}{\{1+m(x,V)|x-y|\}^{N}}$ . $\frac{1}{|x-y|^{n-1}}$ .

The following Lemma is also needed to prove our theorem.

Lemma 2([Sh, Lemma 1.4(c)]) Suppose $V\in(RH)_{n/2}$ . Then there exist positive

constants $C$ , $k_{0}$ such that

$m(y, V) \geq\frac{Cm(x,V)}{\{1+m(x,V)|x-y|\}^{k_{0}/(k_{0}+1)}}$ .

3Proof

Theorem 1is easily proved by the following pointwise estimates. These estimates

generalize the results in [Zh, Lemma 3.2] to the Schr\"odinger operators with reverse
H\"older class potentials.

Lemma 3Let $k$ be a positeve integer. The opeator $M^{k}$ stands for the $k$ times compO-

sition of the Hardy-Littlewood maximal operator $M$ .
(1) Suppose $V\in(RH)_{n/2}$ . Then there exist a constant $C$ such that

$\mathrm{C}\mathrm{m}(\mathrm{x}, V)^{2k}L^{-k}f(x)|\leq CM^{k}(|f|)(x)$ for $f\in C_{0}^{\infty}(\mathrm{R}^{n})$ . (5)

(2) Suppose $V\in(RH)_{n}$ . Then there exist a constant $C$ such that

$|m(x, V)^{2k-1}\nabla L^{-k}f(x)|\leq CM^{k}(|f|)(x)$ for $f\in C_{0}^{\infty}(\mathrm{R}^{n})$ . (6)

Remark 4In Lemma 3the case $k=1$ was shown in [$\mathrm{K}\mathrm{S}$ , Theorem 1.3].

Proof of Theorem 1. Since $V(x)\leq Cm(x, V)^{2}$ , estimate (3) immediately follows from

(5) and the fact that the Hardy-Littlewood maximal operator is bounded on $U(\mathrm{R}^{n})$ ,

$1<p\leq\infty$ . The proof of (4) can be done in the same way as above by using (6). $\square$
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Proof of Lemma 3. Let fE $\mathrm{C}\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}(\mathrm{R}^{n})$ . We prove estimate (5) by induction on k. For
the proof of the case k $\ovalbox{\tt\small REJECT}$ 1, see [KS1, Theorem 1.3]. We assume it is true for k $\ovalbox{\tt\small REJECT}$

$l$

that is, there exists aconstant C such that

$|m(x, V)^{2l}L^{-l}f(x)|\leq CM^{l}(|f|)(x)$ (7)

and show the case $k=l+1$ . It follows from Lemma 1(1) and Lemma 2that

$|m(x, V)^{2(l+1)}L^{-(l+1)}f(x)|$

$\leq$ $|Cm(x, V)^{2} \int_{\mathrm{R}^{n}}\Gamma(x, y)m(x, V)^{2l}L^{-l}f(y)dy|$

$\leq$
$CC_{N}m(x, V)^{2} \int_{\mathrm{R}^{n}}\frac{\{1+m(x,V)|x-y|\}^{2lk_{0}/(k_{0}+1)}|m(y,V)^{2l}L^{-l}f(y)|}{\{1+m(x,V)|x-y|\}^{N}|x-y|^{n-2}}dy$.

Therefore we obtain the desired estimate in the same way as the case $k=1$ .
The proof of (6) can be done in the same way as the proof of (5) by using Lemma

1(2). $\square$

Remark 5Let $s\in(0, \infty)$ . We can obtain the estimate for the operator $V^{s}L^{-s}$ as
follows. Suppose $V\in(RH)_{n/2}$ and $at\in(0,1]$ . Then there exists aconstant $C$ such
that

$|m(x, V)^{2\alpha}L^{-\alpha}f(x)|\leq CM(|f|)(x)$ for $f\in C_{0}^{\infty}(\mathrm{R}^{n})$ (8)
(see [Su Theorem 1]). Combining (8) and the argument in the proof of Lemma 3, we
arrive at the following pointwise estimate:

$|m(x, V)^{2s}L^{-s}f(x)|\leq CM^{s}.(|f|)(x)$ for $f\in C_{0}^{\infty}(\mathrm{R}^{n})$ , (9)

where $s\in(0, \infty)$ and

$s^{*}=\{$
$s$ , if $s$ is an integer,
$[s]+1$ , otherwise,

where $[s]$ is the largest integer smaller than or equal to $s$ . We should remark that, for
the case $V$ is anon-negative polynomial, Zhong proved the $U$ boundedness (only for
$1<p<\infty)$ of the operator $V^{s}L^{-}’$ , $s\in(0, \infty)$ ([Zh, Corollary 1.5]).

Remark 6Zhong also showed that the $IP$ estimate of the operator $V^{k-q/2}\triangle^{q/2}L^{-k}$

with non-negative polynomials $V$ , where $q$ and $k$ are positive integers and $2\leq q\leq$

$2k$ ([Zh, Theorem 1.3]). He proved this results by using the fact that the function$\mathrm{s}$
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$m(x, V)^{2k}L^{-k}f(x)$ and $m(x, V)^{2k-1}\nabla L^{-k}f(x)$ are bounded by the $k$ times composition
of the Hardy-Littlewood maximal function and there exists aconstant $C$ such that

$|\triangle^{q/2}V(x)|\leq Cm(x, V)^{q+2}$ (10)

which holds for non-negative polynomials $V$ . Hence if we assume the inequality (10),
we can obtein the $IP$ estimate of the operator $V^{k-q/2}\triangle^{q/2}L^{-k}$ with potentials $V$ which
belong to the reverse H\"older class in the same way as for polynomial potentials by
using Lemma 3and the assumption (10).

Remark 7Shen proved that the operator $\nabla^{2}L^{-1}$ is bounded on $U$ , 1 $<p<\infty$

([Sh]). In [KS1] Kurata and the author extended this result to the uniformly elliptic

operators. They also showed that the estimate for the kernel of the opeator $\nabla^{2}L^{-1}$

$([\mathrm{K}\mathrm{S}2])$ . However, it is not known that whether the operator $V^{k-1}\nabla^{2}L^{-k}$ , $k\geq 2$ is
bounded on If or not.
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