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Absence of eigenvalues of time harmonic Maxwell equations

FERRFR ISR KB4 MT] (Takashi Okaji)

1 Introduction

It is well known that the eigenvalue problem for the Lapalce operator
(1.1) —Au=ku, k>0

in an exterior domain U of R? has no positive eigenvalue. Indeed,

Theorem 1.1 (Rellich (1943)) Let u be a solution to (1.1) belonging to L*(U).
If k > 0, then u is identically zero.

T. Kato (1959) extended this result to the Schrodinger equation
(1.2) — Au+g(z)u = ku,z € U,

where £ > 0 and
q(z) = o(|z| ™), |z| — oo.

In addition, his result is generalized to a class of second order elliptic equations
(Agmon, Simon, Jéager, Ikebe-Uchiyama).

On the other hand, an analogue to Rellich’s theorem holds for symmetric elliptic
systems. This result was shown by P.D.Lax and R.S.Phillips when d is odd and by
N. Iwasaki when d is even. It is natural to ask whether an analogue to Kato’s result
holds for such systems or not. As for Dirac operators, many works are devoted to
the study of this problem ([8], [21], [18] and [9]).

In this paper, we focus our attention to optical systems in general inhomogeneous
media. We do not use the usual second order approach found in the works of [4],
[13] and [17]. The second order approach is to convert such system into a system
of second order, so that it requires that the coefficients belongs to the C? class.
Contrary to this, the first order approach we shall take requires only C! regularity
for the coefficients. Our strategy for proving absence of eigenvalues is similar to
Vogelsang’s one. Namely, we shall use weighted L? estimates to prove absence
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of eigenvalues while T. Kato used differential inequalities of surface integrals of
solutions to show the nonexistence of positive eigenvalues. As a result, we can
greatly improve the known result ([4]).

We would like to mention that our problem is local one around infinity because
it bears no relation to boundary conditions. In fact, as Kato has pointed out, if we
transform the variables by inversion wih respect to the unit sphere according to

y= .’l:/i:L‘|2, ’U(y) = |m|n‘2’u,(:l:),

(1.2) is transformed into

Ay + ™ {alw/lyP) — Kyu=o0.

The potential of the above equation has stronger singularity than the usual one
appeared in the strong unique continuation theory.

Finaly, as an important consequence of results on absence of eigenvalues, we can

show local decay property of nonstatic solutions U(t) = e~ *4uy to the corresponding

time evolution equation ([12]).

2 Maxwell operators

Let € and p be 3 x 3 real symmetric matrices defined in an exterior domain U of R3.
They are supposed to be uniformly positive definite in U: There exists a positive
constant &y such that

(2.1) (e(@)¢,0) 2 6lCl? ((2)6,€) 2 &l¢P?, Ve CP Vzel.

Let us define two 6 X 6 matrices as follows:

A:( 0 curl) and F:<£(x) 0 )
—curl O 0 u=)

The Maxwell equations are written as
oMu = Au, u="(E,H),

where E and H are C3-valued unknown functions. We are concerned with existence
of their particular solutions of the form

u(z, t) = eMu(z), X e R\{0}.



The new unknown function u(x) should satisfy the time harmonic Maxwell equation:
(2.2) Au = iA\lu.
We define new unknown functions i as

| i =t (2B, V2 H)

and set

Qe 0 e~ V2curly~1/2
| —pY2cyrlem /2 0 '

Then, it is easily verified that (2.2) is equivalent to the standard form of eigenvalue
problems:
A = i),

To describe our conditions, we introduce the function space M(U) as the set of all
real positive symmetric matrices of third order whose components are continuously
differentiable functions in U satisfying that there exist a symmetrix matrix Fo(z) €
C'(U)* and a positive constant Fy such that as |z| — oo

(2.3) F(z) — Foo(z) = 0o(|2|™), Folz) — FoI = o(|z|7/?)
and
(2.4) VF(z) = o(|z|™).

Theorem 2.1 Suppose that € and p belong to M(U) and there exists a positive
constant Kk such that

Eoo() = Khteo(2),

for all z in a neighborhood of inﬁhity. Ifu € HL (U)NL*(U) is a solution to (2.2),
then u has a compact support.

Corollary 2.2 In addition to the assumptions of Theorem 2.1, we assume that there
exists a scalar function k € C'(U) such that e(z) = k(z)pu(z). Ifu € HL (U)NLA(U)
is a solution to (2.2), then u is identically zero in U.

Remark 2.1 Ifu € L*(U) is a solution to (2.2), then u € HL (U).
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For the isotropic case, we can show a sharper result. To state it, we prepare

some notations. Let I, be an interval [a, 00) for a > 0. We denote the positive part
and the negative part of a real-valued function f defined in I, by [f]+ and [f]-,
respectively:

[fl+ = max(0, £(r)), [f]- = max(0, —f(r)).

In what follows, f’ denotes the derivative of f(r). Define the subset m(l,) of C*(I,)
as

(2.5) m(Ls) = {g(r) € C'(L; R); lim g(r) = goo > O,
¢(r) = o(r™%), ld]- = o(r™"), }-

For a > 0, define D, = {z € R?; |z| > a}. Henceforth, we always choose a so large
that D, C U. We shall use the polar coordinates, r = |z|, w = z/|z|. For ¢ € m(I,)
with a > 0, we say that f(z) € C1(U)3*® belongs to the class S(q) if

(2:6) B (f(z) = q(r)) = o=V, j=0,1.

Theorem 2.3 Suppose that e(z) and p(z) are positive scalar functions such that
(2.7) e€S(@m), neS(@), geml), ¢g=o(r™), j=12

Ifu € HL (U)N L*(U) is a solution to (2.2), then u is identically zero in U.

When ¢, is equal to g2, we can improve the previous result.

Theorem 2.4 Suppose q € C%(1I,) satisfies

2.8) infq(r) >0, [{(r)]- =o(r"'q), (d) ig(r) = o(r~3%q119/2), j =1,2.
Ia
If e(z) and p(x) are positive scalar functions belonging to C'(D,) such that
. . +
104(e(x) — g(r))| + |8 (u(z) — Ba(r)| = o((r~/2¢"*)’""), Vz € Day j=0,1
for some positive number (3, then the conclusion of Theorem 2.3 is still true.

Remark 2.2 D. FEidus has studied the same problem by the second order approach.
He has obtained an analogous result (Theorem 4.4 of [4]) for U = R® under the
assumption that € and p belong to C%(R3) and they satisfy a faster asymptotic
property

le — eol + |1 — pol + |Ve| + [Viu| = o(jz|™).
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Remark 2.3 A similar result for Dirac operators with the potential growing at in-
finity has been obtained ([9]).

We remark that each hypothesis of Theorems 2.1, 2.3 and 2.4 implies that if a
is taken to be so large, there exists a positive number  such that

(2.9) (rV) >k, VzeD,.
If U = R? and there exists a positive constant B such that the virial condition
(2.10) o (rT')(z) > BI,

holds for all z € R3, we can easily show the absence of nonzero eigenvalues. Let
B'(U) be the subset of C*(U) consisting of all functions f satisfying

If1+ V£l € L=(U).

Theorem 2.5 Let U = R® and ¢, p € B'(R®)® satify (2.1). Suppose (2.10). If
u € L*(R?®) satisfies (2.2), then u = 0 in R3.

Remark 2.4 Theorem 2.5 also improves Theorem 4.4 of [4).

3 The Polar coordinates
Let r = |z| and w = z/|z|. It holds
6,,:1. = U.Jja,- + T_IQJ',

where Q is a vector field on S?. Define respectively two important matrices J,, and
Ja as Jyu =wAu and Jou = Q A u: It is easily seen that

0 —Ww3 W2 0 —Q3 Qz
Jw = w3 0 —Ww1 y JQ = Q3 0 —Ql
—Wo wq 0 —Qz Ql 0

Lemma 3.1
curl = J,0, + r1Jg

and .
Jocurlu = —8,u +r~1Gu + (divu)w,

where G is a selfadjoint operator in L2(S%1).
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Remark 3.1 G is given explicitly as

0 —-L3 L,
G = L3 0 —L1 ’

—Ly I, 0

where
L) = 2903 — 2305, Lo =130 — 2103, L3 =110 — z20;.
Let
0 I Jo O
a_(—u 0 )"7“’"< 0 Jw)'

Define

. Jo O G+1 0
Jo=Jda—Jdo, Ja= . |, 6= .
Ve Ja (o J9> g ( 0 G+1)

Then we can show the following lemmata.

Lemma 3.2 If 4 = ru, then it satisfies
{-T.0, — 7 *Ja}ai = AT

Proof: The equation (2.2) is equivalent to

curl 0 au = —A[u.
0 curl

O

Lemma 3.3 Suppose that the hypothesis of Theorem 2.3 is fulfilled. Let v=ru. It
holds that

(3.1) {-T0r — 7 Ja}av = ATw
and
(3.2) {6, — r71G — Q}av = AT, T,

where Q) satisfies that

(3.3) Q € C%(Da; R)®*¢, Q = o(r™/%).
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Proof: We see that

0 J4 - 0 Ja
3.4 A= Or !

and

J, 0 01 0 G 0 wdiv
3.5 ¢ A=— O, + 7171 .
( )(o —Jw) (1 o) tr <G 0)+(wdiv 0 )

Define Q = Q; + @, with
) vy \ _ [ @ (Va,v4)w
1 - -1 )
v_ g2 (Vgo,v-)w

Qs ( vy ) _ ( w{e™}(Ve, U+)'— @ (Var,ve)} )

v w{p™H(Vp,v-) — ¢ (Vage,v-)}
Then, it follows that @} = Q1, Q2 = o(r~'/2) and 8,Q, = o(r~1). 0
In what follows, we denote the inner product and the norm of L*(S%)8 by (-, )
and || - ||, respectively. Then, we note that

(Jav, v) = (v, Jav)

and

[(&v,v)rzdr = /((6, +r Y, v)rldr = /(3,v,v)dr.

4 The virial theorem

Note that
(@*=a, o?=1I.

Define
Fy(r) = —ArRe(J.06,av,v).

First of all, we need the following property on regularity of solutions.

Lemma 4.1 Suppose that F € M(R3). There erists a positive constant Cy > 0
such that :

(4.1) / |Vol?dz < Cr / {|curlv|? + |divFo|? + [v[2}dz

for all v € C§(R3)3.
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Proof: Let {0j(z)}3., be the set of all eigenvalues of F(z). Define a diagonal
matrix S as

Sz = diag(o1(z0), 72(20), 03(20)]-
For every xo € U, one can find an orthogonal transformation 77, such that
Se 2T, F (20) T So2 = 1
Define
F(z;m0) = S;OU2T$OF (xo + T_lSigzz) T;,ls;)l/z.

Then, making a change of variables

(4.2) r=1x0+T718YV%2, a(z) = SV*Tu,

we see that

(4.3) divg(F(z)u) = div,(F(2; o)1)

and

(4.4) curlu = L SY2curl, @
\/o1(20)02(20)05(w0)

We note that
(4.5) / ValPdz = / |curld|?dz + / \div|2dz
for all @ € C°(R3). Combining (4.5) with (4.3) and (4.4) and using
F(zz0)—1=0(l2]), as [2|—0,
one can find a small neighborhood Uy, of zy such that
(4.6) /|Vu|2da: < C{/ |cur1u|2dz+/ldivF(m)u|2dx+/|u|2dx}

for all u € C}(Us,). Here the positive constant C' can be chosen independent of z.
By use of a partition of unity, the inequality (4.1) follows from (4.6). O
The next is a kind of the virial theorem.

Lemma 4.2 Let v =ru. Then,

¥ [ (B [rV]v, v)dr = Fy(t) — F(s).
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Proof: From Lemma 4.1, it follows that the solution u € L2(R?)® to (2.2) belongs
to H!(R3), Hence, -
/0 IV|%dr < oo.

We approximate v by {v,}32, such that

> [ 108unlitdr < oo

181<2

and -
lima, " {190, = 0| + v — vl[?}dr = 0.

n—o00

Let X, = {z € R3; |z| = r}. Since the trace operator on the sphere is continuous
from H'/?(R3) to L*(X,), we see that for every r € (0, 00),

lim (1™ Jaawn, va) (r) = (r~ Jaow, v)(r).
Indeed,

(™ Facvn, va) (r) = (1 Taaw, v)(r)|
< (™ Faovn, v =) (r)] + (™ Tac(v — ), )(r)
< C [ {IVoall + IenlPHIV (wn = I + 100 ~ o]}

+C [TV n = 0)I + lloa = oIPHIVoI? + o]}
On the other hand, an integration by parts implies

4.7 /tRe()\l"'v, 2Xr8,v)dr = —)\2 /t Re((rT) v, v)dr + X2 [(rTv, )]},

(4.8) ZRE/t(r‘ljnavn, Ar(vn)r)dr = ARe [(TaatUn, vn)]'
and
(4.9) ARe(iJ, Draw, 2rv,) = 0.

Letting n — oo in (4.8), we obtain

(4.10) 2Re /t(r‘ljgav, Arv,)dr = ARe [(Jaaw, v)]%.



A+ r Y Jqav + iJ,Drav = 0,

we see that

@)  o=-x " (B,[rT v, v)dr + X2 [(rTw, )]} + ARe [(Tnav, )]
From (3.1), it follows that

(412)  N(rTu,u)(r) + ARe(Jaaw, v)(r) = —ARe(riJDrow, v)(r).

In view of (4.11) and (4.12), we arrive at the desired identity.

5 Proof of Theorem 2.5
Theorem 2.5 follows from the virial theorem. Since u € H'(R?), we see that
/:o r Y F,|dr < oo.
Thus, it holds that
lim ring|F,,|('r) =0, lim inf |Fy(r)| = 0.
Performing s = s; — 0 and ¢ = t; — 0o in (4.2), we obtain
A2 /0 > (@[T, v)dr <0,
which implies v = 0 since &,[rT'] > 0.
Remark 5.1 From Lemma 4.2 and the fact that
tim inf |F(r)| =,

it follows that F,(r) < 0 for every sufficient large .

The essential difficulty arises when the virial condition (2.9) is valid only in a

neighborhood of infinity.
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6 Isotropic cases

In this section we shall consider the isotropic case.
Define

0 q2 I

1( gl 0
Q3 = _5 -1 1 :
0 q qf

Lemma 6.1 Let v =I''/2ru. Then,

0(r) = Vaia, rm(r)=(‘“ 0)

(6.1) {-Ju0r — 17 Ja — JuQs}av = AV
and
(6.2) {0, —r7'G - Q — T2Qs3}av = A\J, Vv,

where V € CY(D,) satisfies that
(6.3) V=V, V=q(l+V), &V =0o(r-0+12) j=12

Proof: Let
Vo =TV — T )TZV2,

Multiplying (3.4) and (3.5) by I';!/? from the left and by I';}/2 from the right, we
observe that if u is a solution to (2.2), % = I'}/2y satisfies

- 0 J - 0 Ja\.
6.4 1 “ 10, 1971
( ) % (—Jw 0) u+r q (—Jg 0 )u
0 A& Y N
_ _ =iXMa + Voul.
(“I2 me(‘h 1/2)' 0 u=iMa 2t}

Multiplying the last identity J.,, we obtain

01 0 G 0 wdiv
_ 1 8, + r~1qg-1 S 1 -
65) - (1 0) Ut % (G 0)"“" (wdiv 0 )u

0 q—l/z(q_l/z)’ - J, 0 - -
72 1 2 w
“ ( ‘12_1/2(41—1/2)' 0 ' 0 —-J { 2 }



If V = qo(1+ Vo), then

(6.6) {(-Tu@ 1Y) =17 Ja — TQs}ai = AV
and |
(6.7) (8, — 171G — Q= T2Qs}ou = ATV -

Since v = ri satisfies ' :
Ov=r(0, +r7")a,
we arrive at the conclusion. N ‘ .
Let 6 be a small rionnegative integer which will be chosen later. Define

G.(r) = —XrRe(J.8,av,v) + 8¢5 (v, 7 1Gu).

Lemma 6.2 Suppose that (6.8) and (2.9). Then, it holds that
L o1/2 ~ ' .

22 / l/20|[2dr < Go(t) — Gu(s), t>s> 1.

Proof: In the same manner as in the proof of Lemma 4.2, we see that .
t ' t

(6.8) )\2/ (Or[rV]v,v)dr — 2)\Re/ (rJ.Qzav, 8v) = Fy(t) — Fy(s).
Since Q3 = o(r~1), it holds that 4 |

(69) 21ARe [*(rT.Qsav, Buddrl <N [ lo(1)alllgo™ara]ldr

t
8

¢ ¢ o
< [ oXalolfdr + [ o(Vllgs"*dronl’dr.

Let
X = gg?8,av, Y = ¢ *r ' Gaw.
Then, in view of

(6.10) [ OXI2 + 1Py = [ 1P~ 2Re [ (X, V),

where

f = {TAVv +(Q+ T2Qs)ov}.
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An integration by parts implies
(6.11) 2Re/:(X, Y)dr = /at((r‘lqgi)'av,gav)dr+ [go 'av, " 1Gaw)]}
< l(g5"av, 7 *Gan)lt + [ r-lo)alolldr + 3 [ Y|P
~ On the other hand, from @ = o(r~1/2), it follows that
(612) [ 171Par < [(1 4 o0) X2 folar
As a result, from (6.10),(6.11) and (6.12), we obtain
(6.13) 6/: | X ||2dr 5 06/: Mgo||v||?dr +’6[(q0_1a'v, r'lgav)]ﬁ,

If 6 > 0 is chosen small enough, (6.8), (6.9) and (6.13) imply the conclusion. 0
As the first step, from the virial theorem we shall derive a weighted L? inequality.
Let ¢ € C%(I,;R) be a nonnegative function such that ¢’ > 0.

Lemma 6.3 Suppose G,(r) <0 for all r > 1. There e:msts a positive constant C
such that if t > s > a, then

t
3 [ el uldr < 0o [ gk olar - / 242G, (r)dr.

Proof:
t t t
L@@ [ 1 olpdrar = [0 [ j@moipar] 4 [ glfoppan
T T=8 8
From Lemma 4.2, we arrive at the conclusion. O

Let x € Cg°(R) be a nonnegative cut-off functlon supported in [s —1,¢+ 1] such
that
X(?") =1, re [S,t].

Define

w = xeqy .

Let
Q=Q+JQs.
Lemma 6.4 Under the same assumption as in Lemma 6.3, it holds
(6.14) —2x*¢'e*G, < —Re(2ro'(iAV T, + iQa)* (—id,)ow, w)
+Co{¢'rl|Brwl* + o(1) {(¢)? + ¢ + 1} llw]® + o(1)¢ X lle?v]]?}-



Proof: Since J* = —J., it holds

6.15) — 2x%¢'e*G, = 2Xr¢'Re(goJu,0r0w, w) + 26% %0 e*° g5t aw, 1 Gaw).
0

Note that :
AT = —(AV T + Qa)* + o(r™/?)
and
r1Gav = (8, — Q)av — ATV v.
Since Q = o(r~/2), we arrive at the conclusion. | a

Thus, w satisfies
(=8, +171G + ¢ + Qtaw + AT.Vw = —x'e’av.

Let f, = —x'e?av. We shall consider the integral

t+1 - t+1 ‘
(6.16) — ZRe/ . r¢' (Oraw, \T,Vw + Qow) + Re/ . " (fy, ow).
To estimate the first integral of (6.16) we use the expression

(6.17) — Re(2r¢'Oraw, \J,Vw + Qaw)
= —r/{l|8raw|? + 18raw — fyll2 = [/} + 2Re(Bromw, ¢'(G + r¢')ow)
— g {| o] + 18w — fill2 = 1 £]IP} — Relow, {#'G + (r(¢')?) Yaw)..
As a result, we obtain

Proposition 6.5 Suppose that (6.3) and (2.9) hold and Gy(r) <0 for allT > a. It
holds that

618) N(1—o(w) [ {Ia el + rlanero)}dr+ [ xPkolerolfar
<o {eno [faiPoltar+ [ e+ DIX Nlesoldr
Here, |
by = 1 {(@" + (7 = o(r))} = 3¢ = oD — 0lg D).

Lemma 6.6 Let u € L*(U)® be a solution to (2.2). Then, there exists a positive
number a such that
Gy(r) <0, Vr>a.
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Now we are going to show
(logr)™, 1", exp{nr’}v € L*(D,), VneN, Vpe (0, 1).

Choosing respectively g(r) = log'/?r, %2 and finally €™0%")? a5 the weight
function of (6.18), we obtain three kind of weighted inequalities. The first one is as
follows.

t t+1 :
619) [ ogr)lull’ar < [ o(1)(1 +n*(log ) (log r)" uldr
- t t+1 s
n 2 n—1 2

+ (logs)" [ lulf*dr + { [+ _1} n(log )" ||u||%dr.

We shall use N4l
lim inf N |lul|?dr = 0.
N—oo N

By letting ¢ — oo in (6.19), an induction procedure implies that if v € L*(D,)s,

(logr)"?v € L¥(1,)%, Vn=0,1,2,....

In view of

™ = exp{mlogr} = (mlogr)"/nl,
n=0

we can conclude that r™v € L?(1,)%. In the same manner, we see that

(620) [ z—(mr")"nun'*’dr

n—2

< F—2A1-b), 2 byn—2|[,,112
C / m Z - 2)'(mr )"=2|uf[2dr + Cpn(w)
for all N =2,3,.... Finally, we arrive at

e"'v € L¥(1)8, Vn=1,2,...

for any b € (0,1).
Applying the weighted inequality with 2 = e""'(‘°g " we can conclude that

Lemma 6.7 For everyn € N and every s > a+ 1,

o (o o]
(6.21) /a e"f"(logr)’”v“2dr < CeMa+1)’(log(a+1))? /a+1 ||| 2dr.
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Proof: To prove this, we have to show that k, > 0. Indeed, if e = {r’(logr)?}",
it holds that
¢ /n = (r*(logr)?)’ = br*(logr)? + 2r*logr,

¢" /n = b(b — 1)r*%(logr)? + 2br*~2(log r) + 2(b — 1)r*2logr + 2r%2.

Therefore,
o (¢ +171') = n2b2rb=2(log r)2brb(log r)2(1 + o(1)) = n?b*r®*(log 7)*(1 + o(1))

and
(r¢") + ¢'o(1) = nb(b — 1)%r*%(log r)? + no(r*~*(log r)?).

Let X = nrb~1(logr)2. Then, there exists a positive number oo such that

Ao + B3 X2 — o(X) — o(X?) > 0p(1 + X?), VX >0.

Now, we are in the final step for proving Theorem 2.3.
Let ¢ = r®(logr)?. From (6.21), it follows that

[7 olidr < Cexp2n(@(a+1) = g(2a+ 1)} [ olPdr.
2a+1 a+1

Since ¢(r) is monotone increasing, we see

0< e<p(a+1)—<p(2a+1) < 1.

Letting n — oo, we conclude that v = 0 in Daq41. On account of unique continuation
theorem for the time harmonic Maxwell equations, we see that v =0in U. a
7 Potentials growing at infinity

In this section we shall prove Theorem 2.4. Suppose that g € C%(1,) satisfies
(7.1) infq(r) >0, [¢(r)]- = o(r™q), (Ed,—,)jq(r) =o(r™2q"t90%), j=1,2
We say that f(z) € C1(U) belongs to the class S(g) if

¥ (f(z) — q(r)) = o (r™/?¢"/*)

7, VzeD., j=01
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2

h(r) = q(¢ + 5r7'g) 72

and ]
Gy(r) = —ArRe(J.,0,au,v) + Erh‘2(r)(v, r1Gv).

Lemma 7.1 Suppose that € and p are scalar functions belonging to S‘(q). Let v
g 2ru. Then, it holds that

t
z2 / 1420]2dr < Go(t) — Gols), t> s> 1.
Proof: First of all, we see that v satisfies
1
{Tbr + 17 T + E.Zuq‘lq'}av = \lv.
Thus, it holds that
' ¢ ¢
(7.2) }\2/ (O[T v, v)dr — 2/\Re/ (rJuq 'qdav,8,v) = F,(t) — F,(s).
Note that .
(rT) = ¢+ 74 + o(1).
] t
(7:3) 2ARe [ (rdq~d'aw, 8)dr| < N [ llg™¢r/ho| L6, 2h " av
1] t
< % [ Xerid ).l + % R CE
Let
X =872 \aw, Y = r1Gr2h 1 aw.
Then, in view of
t rt ¢
(74) JAUXIE+v1yar = ["1f1Pdr - 2Re [*(X, V),

where )
f=TJAVr2hly + {er/zh-l + g[r”‘*’h—ll} av.

t t
(7.5) 2Re / (X,Y)dr = f (r 2o, Ydr

8

t t
< (/2 0w, G ) + 0,(1) [ llg2olPdr + 5 [ v
8 8
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On the other hand, it is easily verified that

t S | t
2 2,4 ’ 2 1/2, 112
6) [ Ifdr < [ RGa+riglloldr +o() [ llg?|dr.

As a result, from (7.4),(7.5) and (7.6), we obtain

1 rt 1t .1 t
1) 5 [IXIPdr <5 [ XGa+rigllldr + o) [ g ]Pdr

Combining (7.2) with (7.3) and (7.7), we arrive at the conclusion. a

8 Nonisotropic cases

To study non-isotropic tropic cases, we shall use a scalar operator which shall play as
the radiation derivative &, in the isotropic case. This operator was firstly introduced
in [22]. For F(z) € M(U), define the scalar operator Dr as

Dpu = (w, Fw) Y w, FVu), u€ CY(U)
and
Lpu = curlu — J,Dpu, u€ {CHU)}>.

These operators have the following useful properties (cf. [22], Lemma 3.2 and Lemma
3.3).

Lemma 8.1 Suppose that F € M(U) and Fy = 1. For any u, v € C}(D,), any
b(w) € C*(S?) and f(r) € C'(1,), it holds that

/OO(DFU, v)ridr = — /oo (u, Dpv)ridr — 2 /oo rHu, v)ridr + /oo o(r~Y)(u, v)ridr,

Dp(b(w)u) = b(w)Dru + o(r~)u,
Drf(r)=f(r), Le(f(r)u) = f(r)Lpu,
/aoo([,pu, v)ridr =/ (u, Lpv)rdr — /(u, 2r_1Jwv)r2dr+/; o(r~ ) ||lul|||lv||r3dr

a

and

3
DpLpu= LgDp —r'Lpu+ Z o(r'l)azju + o(r‘2)u.
j=1



Proof: Note that

_ -1_ -1
Op,wk = O™ — 17 Wiwj,

where ;i is equal to one if j = k and 0 otherwise. Hence,

3
Dpwy, = (v, Fw)_lzwiﬂ'kr"l —r7lup = o(r™Y).
i=1

Since VF = o(r~!) and F — Fpl = o(r~/2), we have
3 3
(8.1) Z az]. (E kakj)
j=1 k=1

3
=3 -1 Y wiwiFij+o(r™t) = 2r By + o(r7Y)
k,j=1

and

(8.2) 0n(w, Fw)™ = —(w, Fw)"“’amj (w, Fw)
= _(w1 Fw)—2azj{F0 + (w’ (F - Fo)h))} = O(T'_l)'

Thus, from (8.1) and (8.2), it follows that

3
s, {(w, Fw)™ Zkakj} =2Fyr~ +o(r™).
k=1

Lemma 8.2 Under the same assumption as in Lemma 8.1, it holds

(83) FJg,curlu = —DF(FU) + {FJFWL:F + (FJFWCF)*}
+ (divFu)Fw — 7~ (w, Fu)Fw — 7' Fu + o(r"/*)Dp Fu + o(r™")u.

The proof of Lemma 8.3 is given in [15].
Let
k 0
o= .
Making a change of coordinates @& = I‘cl,/ %u, we may assume that e, = Hoo- Define

DF =DF+1'—1, i/F =DF—7‘—1Jw,
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GF = {FJFWCF -+ (FJFwLF)*} - r‘l(w, Fu)Fw

G. 0 DI 0
prmad ,D: A .
g r(o G,‘) »(0 D,,I)

Then, from Lemma 8.1, it follows that -
3
[D,G] =3 0(1)8,,u+ o(r')u.
- =l A

In view of
Dyr = Dr, Ekr«' =Lr, Vk > 0,

we may change the notations to denote ;¢ and gy ,u by the same letters € and p,

respectively. Thus, we may assume that -

6(0) = p(0) = 1. |

In addition, we shall use the following notations.

V = k{Ts +1“‘1/"’. e—ew 0 r‘l/"".
0 4o

. . . 1/2 .
In the same manner as in the isotropic case, we see that v = Fo/ ru satisfies -

Av = {—Jch,q — Lo }av = AV.
Since
div(eE) = div(pH) =
(8.3) implies that : , _
{D-r7'G+Q}av = ATT Vv,

where

v = o(r~1?)D.e 0
B 0 o(r™Y2)D,u

) av + o(r ) aw.
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Define
Fy(r) = =ArRe(J,Deoarv, v)

and

Gy(r) = Fy(r) + v{av,r"'Gav),

where v is a sufficiently small positive number.
We consider

t t .
Re / (Av, 2rDv)dr = Re / (AVv, 2rDyv)dr.
Note that ,
Re / (JoDooaw, 2rDov)dr = 0,

[P, g)dr = =[5, Dughiir + (5,95 + [ tor)1,
and . .
Re/ (Loov, 2rDoov)dr = [(Looaw, 2rv)]t + Re/ (o(1)Vaw,v)dr.

We note that

From I' — T, = o(r™!) and L' — I = o(r~/?), it follows that
F, = —ArRe(JDawv, v) + Re(o(r'/?)Daw, v) + Re(o(1)Vav, v).

Using the same reasoning as in the isotropic case, we can arrive at the conclusion of
Theorem 2.1. We omit the detail for saving pages.
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