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On solutions of the wave equation with
homogeneous Cauchy data

Jun Kato (I# #), Department of Mathematics, Hokkaido University
Tohru Ozawa (/& ), Department of Mathematics, Hokkaido University

1 Introduction

This is based on our recent paper [4].
We consider the Cauchy problem of the free wave equation

up —Au=0, ()€ (0,00) x R* =RM",
ult:O = ¢a ut't-—-p = ¢1 T € Rn)

(FW) {

with the initial data given by homogeneous functions such as

¢(z) = |2|?,  ¥(z) = ||, (1.1)

These initial data are of special interest in view of the applications for self-similar
solutions of wave equations with power type nonlinearity:

ug — Au=[ul*, (tz)e RI™. (1.2)

In this paper we study explicit behavior of solutions to FW with special attention
on the propagation of singularity.
Precisely, a typical estimate to be shown takes the form

u(t,z)| < C(t+ |z|)~"T |t — |z -p+%, t,z) € RM™, 1.3
+

for the initial data such as (1.1), where p > "—;—1 This estimate shows that the
singularity of the initial data at the origin propagates along the light cone with
specific order there. Moreover, we observe that the order of singularity of solutions
is less than that of the corresponding initial data for each t > 0. Below we also
prove the optimality of these estimates. Estimate (1.3) also implies the following

integrability
u(t,)e L'(R™), t>0 (1.4)

for some r. This fact has an interest because u(0,-) = ¢ ¢ L™(R™) for any r.
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Estimates of the form (1.3),(1.4) for solutions of FW with homogeneous initial
data such as (1.1) have been used to construct self-similar solutions to (1.2). We
call u a self-similar solution of (1.2) if u satisfies

u(t, z) = Ae=Tu(M, Az), (¢, z) € RL™ (L.5)

for all A > 0. By the condition (1.5) initial data of self-similar solutions must be
homogeneous functions such as (1.1).
In fact, Pecher [6] proved (1.4) when n = 3 to construct self-similar solutions
satisfying
sup t*||u(t)]|zr < oo
£>0

for suitable u, r. The case n > 2 is treated by Ribaud-Youssfi [8], where they
showed (1.4) for a class of initial data in terms of some homogeneous Besov spaces
containing homogeneous functions such as (1.1). Pecher [7] also proved (1.3) when
n = 3 to construct self-similar solutions satisfying

2
1

sup(t+ |z|) |t — |z| =T y(t, z)| < 0.

lal ¢ »

Our estimate (1.3) seems to give a foundation to generalize the last result for higher
dimensions.

Our method to obtain the estimate like (1.3) is based on Fourier representation
of solutions of FW and some results on oscillatory integrals. More precisely, we
divide the representation into high freqency part and low frequency part. As we
shall see below, the high frequency part contributes to the formation of singularity
along the light cone and the low frequency part to the decay rate as |z| — oo.

To investigate the behavior of high frequency part of solutions we use the asymp-
totic expansion of oscillatory integrals over the unit sphere. This consideration has
been used in Miyachi [5] to prove the boundedness, together with unboundedness,
of some Fourier multipliers associated with the wave equation. Concerning the low
frequency part, we also consider an oscillatory integral over the sphere as above and
derive its decay estimate via stationary phase method.

2 Main Estimates

In this section we give the estimates such as (1.3), (1.4) for solutions of FW with
homogeneous functions as initial data. We consider the solution of FW given by

u(t) = cos[(—A)?t]¢ + (—A) T sin[(—A) 2]y,
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cos[(~A)Ft)p = F [ cos ti¢] $(£)],
(=A)~7 sin(—A) ]y = F{|¢| " sintfé] $(2)).

Here F and F~! denote the Fourier transform and its inverse, respectively and
qS F¢. Our main results are as follows.

Theorem 2.1 Letn > 2 andlet0 < p < ”T*'l We assume that ¢, 9 € C*°(R™\{0})
are homogeneous of degree —p, —p — 1, respectively. Then we have for anyt >0

cos[(~A)*e]g, (—A)~F sin[(-A)}eyp € COR™\ {|z] = t}).
Moreover, we have the following estimates:

(1) For"—;—1<p<%l,

|cosl(~A)HI$()] < Ot + )" |t — Jaf| 7T,
I(_A -3 Sln[(—A)%t]’l/J(x)l < Ct(t + le)—&';_llt _ |.’B||_p+nT—1.

(2) Forp= 121,

| cos[(~A)2t]g(z)| < C(t+ |)~"F (1 + log™ |1 — |z/¢]|),
|(=A)~#sin[(—A) 2 tp(z)| < Ct(t + jz]) = (1 + log™ |1 — |z/t]),

where log™ s = max(— log s, 0).

(3) For0<p< 21,

|cos[(—A)%t]¢(x)] <C(t+|z))7?,
|(=4)"% sin[(-A)}u(z)| < Ct(t + |z]) P,

Remark 2.1 (1) The condition p < 22 "+1 is related to local integrability in space of
solutions.

(2) In the case of 0 < p < '—‘5‘—1, we further obtain continuous differentiability and
Hélder continuity of the above Fourier multipliers near the light cone. In fact, they

belong to the class
C[l;—l'—P]—v"%l"‘P_[n_;l'p]‘_e(Rn),

for € >0, where [s]- = [s] if s € Ry \N, [s]- = [s] =1 if s € N, and [s] is an
integer part of s. Here N = {1,2,--.}.



Theorem 2.2 Letn > 2 and let 0 < p < 2. We assume ¢, % € C®°(R™\ {0}) are
homogeneous of degree —p, —p — 1, respectively. Lett > 0. Then:

(1) For 221 <p < %, we have

cos[(—m%t]cbev(m) if p-2l<lce,
(—=A)"Zsin[(-A)2tlp € L'(R™) if p— nlclcoetd

(2) For 0 <p < 25, we have

cos[(-A)7t]¢ € L'(R) N L®(R") if 0<i<?,
(~A)"%sin(—-A)2 ]y € L(R*) NLP(R™ if 0< i<t

Remark 2.2 (1) The condition p < % is necessary for the existence of 1/r over
the intervals above.

(2) For the conculusion of Theorem 2.2(1) we need not assume the regularity on
o, ¥ so much. In fact, we really need

¢ € C"R*\{0}), ¥ e C™(R™\{0}).

To prove this, we decompose the above Fourier multipliers into high frequency part
and low frequency part as in the proof of Theorem 2.1 below.

As for high frequency part, an application of Hormander-Mihlin multiplier the-
orem for the multiplier (€/|€]), V(E/|€]) reduces the problem to the radially sym-
metric case, where necessary calculatzons are carried out explicitly and everything is
smooth. On the reqularity of qS, 1/), see Lemma 2.1. As for low frequency part, the
Hardy-Littlewood-Sobolev inequarity enables us to obtain the desired result.

We see that Theorem 2.2 follows from Theorem 2.1. Thus, we devote this section
below to the proof of Theorem 2.1. We first collect the elementary lemmas.

Lemma 2.1 Let0 < p <n andletk € N satisfyp—n+k > 1. If f € CK(R™\{0}) is
homogeneous of degree —p, then ]?, Fourier transform of f in S'(R™), is homogeneous
of degree —n + p and

f e cbHi-(Rm\ {0}),

where S’ is the space of tempered distributions.

Proof. 1t is Well known that fis homogenious of degree —n + p. So we show the
regularity of f away from the origin. We set p be a smooth cut of function such
that p(z) = 1if |z] <1, p(z) =0 if |z| > 2, and divide £ using p: '

F=@N+(1-pf)"
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It is clear that (pf)~€ C*°(R") and therefore we consider the regularity of

(1-p)f)" | ,
We first consider the case p ¢ N. For multi-indices o, 8 with

|a|5[p"n+k], |ﬂl=ka
we have
| £20%((1 = p)f) = Ca,p{(1 = p)3(°f)} + ga,:
for a suitable constant Cy, g and go, 5 € S(R"), the space of smooth functions of

rapid decrease. Then, we observe that 8°(z*f) is a homogeneous function of degree
—p + |a| — k. This implies that (1 — p)8°(z*f) € L'(R™), since

—p+la|—k<-p—k+[p-n+kl<—n.

Therefore, we conclude that ¢° 6“((1 —p)f)" is identified with a continuous function
as long as |a| < [p— n + k] and thus f € Clp-n+H (R™\ {0}).

In the case of p € N, we conclude that f € CP—m+k=1(R™ \ {0}) in the same
manner as above. The regularity is determined by the range of o that is to be
lo| <p-n+k—1sothat —p+ja|—k< -n-1.0

Now we define the dilation operator D, , by
D), pu(t,z) = NWu(Mt,A\z), t>0,z€R"

for A\, p > 0.

Lemma 2.2 Let n>2andlet 0 < p <n—1 We assume that o, v € S are
homogeneous of degree —p, —p — 1, respectively. Then we have in S'(R"),

D, p cos[(—A)2t]p = cos[(—A)zt]¢
Dj,»(~A) ¥ sin[(~A)3t} = (—A) F sin[(-A) ]y
for-eacht > 0.
Remark 2.3 In particular if we take A = 1/t, then we obtain
cos{(~A)3t)(z) = 7 cos[(~A)](</1),
(—A)"%sin|(~A)3thp(z) = t7(~A) "F sin[(-A) el (a/2).

Proof. This lemma follows by the relation with dilation operators and Fourier trans-
form, together with the homogeneity of ¢, 9. We only prove the latter, since the
‘former follows similarly. We first notice that

Dy, p(=A) ¥ sin[(—A) ey = XDy F[|€] sin Atlg| D(8)], (2.1)
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where D, f(z) = f(Az). The right hand side of (2.1) equals to

NP F A" Dy (1€ sin Xel€] $(6))],

by the relatlon with dilation operators and Fourier transform. This completes the
proof, since ¢ is homogeneous of degree —n +p+ 1. O

Lemma 2.3 Let0 < a < 1. If (1 + |z|)®f € L}(R™), then we have f € C®*(R™).

Proof. Since |e‘“"5 — e~ < min{|z||€ — 7|, 2}, we obtain

17 = Fn)l _ ipy-p [l =]
S E-nl nl“ ‘(2) / € — nle |f(z)ldz
< (ot [ERLEEZILEE oy o)

|z|*|€ — n|e
< (@m)mE2 1+ |z fllp. O
Now we consider the behavior of the Fourier transform of functions associated

with solutions of FW. Its precise form is the following. Let a € C(R™\ {0}) be
homogeneous of degree —A. We set

KZ(z) = F' e Kin(&)a(e)e*™ ] (z),
Ky(z) = F'[p(&)a(¢) sin [¢]] (z),
Ko(z) = F'[p(€)a(€) cos |€])(z),

where 7 € C*°(R™) is a radial function satisfying n(§) = 0 if |¢] < 1, n(§) =
if |¢] > 2, and p = 1 — 7. We notice that Kf = lim. ;o K correspond to a high
frequency part of solutions to FW and K, K, a low frequency part.

Proposition 2.1 Let A > 0 and let K§ = lim. ;o K. Then Ki € C®(R"™\ §™1)
and the following holds.

(1) For 0 <X < 2,

n _ntl
K () = Afa(~/lz))(1 - [a] + 0 +o(|1 - =l F)  (22)
(2) For A=12H,

K (z) = —A%a(—z/|z|) log(1 — |z| +30) + O(1), (2.3)

as |z| — 1, where AT = (27r)“%e("_+)"i



(3) For x> 21 &> 0,

K§ € CO-F-A=21 =Dt —(g ),

(4) For N > 1, Kf = o(|z| ™) as |z| — .
Remark 2.4 A similar result holds for Ky = lim¢jo K. In particular, we have

K>(2) = | Axa@/I)(1 =1zl = 0P 4 o(|1 - [z ifo<a<2p,
0 — A”a(z/|z|)log(1 - |z] - i0) + O(1) if A= n%,

as |z| — 1, where A5 = (2m)~7e~Fi-MmD(=) + ), A- = (2m) 3T,

For the proof of this proposition we refer to Miyachi [5](Proposition 2). The Holder
continuity follows from Lemma 2.3.

Proposition 2.2 For 0 < A < n, we have K, € C*(R") and
Ky =O0(Jz]*™ 1) as |z| — oo. (2.4)
Remark 2.5 For K., we have
K, =0(z]>™) as |z| — oo. (2.5)

The difference of asymptotic behavior with K, comes from that of the behavior be-
tween sin |§| and cos || near €| = 0.

Proof. The regularity of K, follows from the fact that K, is the inverse Fourier
transform of an integrable function with compact support. Thus, we prove the
asymptotic behavior of K in the proposition.

Representing the integral by polar coordinates, we have

Ky(z) = (2m)"% /02 p(s)s" *lsins (/Sﬂ-1 ei”“"oa(G)do(é?))ds
(27r)" A-n-1 ‘/0~2r p(s/r)s"*~1rsin(s/r) (/

- e*w-oa(o)da(e))ds
= (2m)~ Tty § w(T),

where we set £ = rw with r > 0, w € S®~1, and denote by do the surface measure
on S™~1. Thus, it is sufficient to show

supsupII (r)| < oo. (2.6)

w r>l

102



103

For the proof of (2.6), the behavior of the oscillatory integral

/S e 2%(9)do(6) 2.7)

as s — oo plays an important role. For that purpose we use the stationary phase
method. Since the stationary points of the phase function w - § are +w, we divide
(2.7) using partition of unity {¢, ¢* ¢~} and then divide I, as follows.

I,(r)= /02r e*p(s/r)s" A" rsin(s/r) (/

Sn—1

+ /Ozr e™p(s/r)s" ™ rsin(s/r) ( /

+/O reisp(s/r)s""\‘lr sin(s/r) (/Sﬂ_1
=15(r) + 1 (r) + Ru(r),

where ot +¢~ 4+ =1 and ¢t, ¢~ are supported in small neighborhoods of w, —w,
respectively.

We see that sup,, sup,; |R.(r)| < 0o, since the corresponding oscillatory integral
over the unit sphere has a rapid decrease in s. More precisely,

eis<w-9-1><p+(e)a(o)da(a))ds

ghslwo+) )= (9)a(0)da(9)) ds

e‘sw'otp(ﬂ)a(ﬁ)da(ﬁ)>ds

l/ ) e 0p(0)a(8)do(8)| < Cn(1 +3s)7N, s>0,

for all N > 1, which follows from the fact that the support of ¢ a does not contain
the stationary points of the phase function.

To prove that sup,, sup,; |1.(r)| < oo, we first notice that (see Stein [10], Chap.
VIII)

|<%)kAZ‘ = '/n_l eis(w.o—l)e%’ii(w o— 1)k<p+d(9)da(0)
<O+ R 530,keNU {0},
where we set
AL(r) = /S _ e* I (9)a(9)do (6).
Then, we have

|15 (r)| < C’/ol s" s + ' /12r e*p(s/r)s® > 1rsin(s/r) AL (s)ds|. (2.8)

To estimate the second term on the right hand side of (2.8) we use integration by
parts several times up to obtain enough decay on s. Indeed, we have

I(%)k{p(s/T‘)sn—/\—lrsjn(s/r) A:’-(S)}l < Os—z\-i-%—k’ 0<s<2r
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for k € NU {0}. Therefore we obtain (2.6).
Finally, sup,sup,-;|/5(r)| < oo is proved in the same way as above. This
completes the proof. [J

Proof of Theorem 2.1 We only prove the estimates on (—A)~2 sin[(—A)7 ¢y here,
since the estimates on cos[(—A)2¢t|¢ follow similarly.
By Lemma 2.2, it is sufficient to show the theorem in the case t = 1. In fact,

ot + lal) " [t — 2l ™*F (-2) " sin(~4) Hu(2)
_ntl - o=l Y =
= (1+ [o/t) ™ 1 = |2/t 777 (-4) 2 sinl(-4) 2] (z/2),
if 1;—1 <p< ﬁz'—l-, for example. To prove the estimates we use cut off functions p, 7
which are defined before and decompose (—A)~% sin[(—A)2}¢ into high frequency
part and low frequency part.

Since 9 is smooth away from the origin and homogeneous of degree p — n+ 1 by
Lemma 2.1, we have

(—A) "% sin[(—A) 2 =F 1 [|€] " sin |€] B(€)]
=F 1 [|eP9(€/I€]) sin €]
=lim 7~ [e~*In(€) |gPb(¢/¢]) sin I¢]]

+ Fp(€) P h(€/1€]) sin [€]]
=%(Kg - K3) + K,

where we follow the same notation as in the preceding propositions and we regard

-~

al€) as €PBE/IED. |
The above limit is taken in the sense of tempered distributions. By the condition
p < "T“, we observe that the limiting function is locally integrable and that the
above caluculation is justified.
Therefore the above function is bounded by constant multiple of
n — n=1
(14 =)L - ol 7T, i 23t <p< g,
1+ |2))" " (1 +log™|L - |2]|), if p=25L,
(1+]z)7", if 0<p< B,
by propositions 2.1 and 2.2. The required regularity also follows from those propo-
sitions. [

3 Optimality

In this section we consider optimality of the theorems in the preceding section. In
particular, it is shown that we cannot expect better results if the initial data are
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radially symmetric.
Throughout this section, we fix

#(z) = Crlz|™®, () = Cy|z|™P?

for C1, C, € R\ {0} and p > 0. We first mention that Theorem 2.1 is optimal in
the following sense.

Theorem 3.1 Let n > 2. Then the following holds for each t > 0.

(1) For 253 < p < 2, we have
Jim [£2 2277 cosl(-A)Hg()| >0, i (n—p)/2¢ N,
lim [t - |22 | cos[(~A)}e)g(z)| >0, if (p+1)/2¢ N,

|z|—>t—0

Jim 162 = o7 |(-2) Esinl(-A)Hju(z) | >
if (n—p—1)/2¢N,
lim |¢? - |x|2|”‘£%*|(—A)—%sin[(-A)%t]zp(m >0, if p/2¢N.

jz|—t—0

(2) For p =251, we have

lim (log™ 1= |z/t]) ™| cos[(=2)3¢]¢(z)| >0, i (p+1)/2¢ N,

lim (log™ |1 = |/t]) 7} |(=A) "% sin[(—-A)3tlp(z)| > 0, if p/2 ¢ N.

Z|—

(3) For 0 <p < 2, we have

lim |z[?| cos[(—A)zt]¢(z)| > 0,

|z|—oc0

lim |x|p+1|(—A)'% sin[(‘—A)i’l't]w(x)| > 0.

|zl — o0

From Theorem 3.1 we obtain the following theorem which implies the intervals on
1/r in Theorem 2.2 is almost best possible.

Theorem 3.2 Letn>2 andt > 0.
(1) If cos[(—=A)zt]¢ € L™ (R™) for some p, r with0 <p<n-—1,1<7 < 0o, then

p—231<i<B whenF <p<n-1,
0<1<2 when0<p<2i
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(2) If(—A)7 sin[(—A)zt]y € L7 (R™) for somep, r with0 < p < n—1,1 < r < oo,
then
{p—-”1< Tl when®l<cp<n—1,

0<icetd when0<p<%.

Remark 3.1 (1) By the first conclusions on 1/r, we see that p must be less than
n/2 in both cases.

(2) In the case of p = (n—1)/2, it depends on the dimension n whether the interval
on 1/r contains 0 or not. See Theorem 8.1(2).

(3) In the case of %5* < p < 2 and 1 < r < 0o in Theorem 8.2(2), we can remove
the condition on v as follows: v is homogeneous of degree —p — 1 and

¥ € C™H R\ {0}), Y(w)#0 for we S,

Under the above conditions, we can reduce radially symmetric case, since
(—A)~7sin[(—A)3tlp € L™(R™) is equivalent to

- FHgP " sintl¢]] € LT(R™)

by Hormander-Mihlin multiplier theorem. In the above argument, the fact
|§[P~"sint|€| € L*(R™) is important.

To prove Theorem 3.1 we prepare a lemma below. Before stating the lemma, we
introduce some notation.
When p, v € C satisfy —Rv — 1/2 < Ru < 1, then the integral

(o]
/ s#12],(s)ds,

0

converges as an improper integral, where J, is the Bessel function of order v, and
its value is equal to

Jv, p) = 2,;_1/21-\(#’*' y )/I‘(

Lemma 3.1 Let yu, v € R satisfy u+v > % Then we have

lim J (s)s*~2r(s/R)ds

R—o0 0
(u+]-1

= H (—p+v+3/2+2)J (v + el = [ps)),

where 7 € C°(R) with 7(0) = 1 and py = max(u,0), with the convention that
[[o(—p+v+3/2+25) =1. | |



Proof. We use the recursive formula for the Bessel functions

;;(zv+1']u+l(z)) = z"+1Jy‘(z), (3'1)

as well as the asymptotic formula
J(s) = O(s") as s — 0,
O(s~Y?) ass— oo.

First we consider the case p < 1. Since

| /oo J,(s)s* Y21 (s/R)ds = J(v,p) — /oo J,,(s)s"‘l/_z(l — 7(s/R))ds,

it suffices to show that the second term on the right hand side converges to zero as
R — oo. Using (3.1) and integrating by parts we have

/ " J(s)s*Y2(1 — (s/R))ds
0
= (—p+v+3/2) /oo Jy1(8)s* %1 — 7(s/R))ds
+ /oo Jy+1(s)s* Y2’ (s/R) R ds, - (3.2)

where the boundary values vanish, since

O(s#+7+1/2) as s — 0,

O(s* 1) as § — 00.

Jor(s)s* (1 — 7(s/R)) = {

Then the first term on the right hand side of (3.2) converges to zero as R — oo by
Lebesgue’s dominated convergence theorem.
Meanwhile, the second term on the right hand side of (3.2) is estimated by

1 . CR

CR™! (/ s¢t¥*ads +/ s“"lds)_<_ CR*1,

0 1

which converges to zero as R — co. This completes the proof for the case p < 1.
In what follows we consider the case p > 1. In this case we use the following

identity

Jo(s) = 5~ (s-lgg)k(s"+kJ,+k(s))
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for k € NU{0}. This follows by a succesive use of the recursive formula (3.1). Using
this and integrating by parts, we obtain, with suitable constants Ci,

/ " (s)s*V2r(s/ R)ds

= /0 ~ {(s—ldis) [#](s”+[“]J,,+[#] (s))}s"""l/ 2r(s/R)ds

[u]-1 00
= [ (-n+v+3/2+2) / W s (s)sn 7712 (s R)ds
j=0 0
{u] 00
+ Z C / s, 1 (8)s#~v 122+ £ (s R R s, (3.3)
o _

where the boundary values at s = 0 also vanish, since

{ (s‘l % ) [u]-m (s""’[“] Tyepu( s))} gh—v—1/2-m~(m~i-1) T(z)( s/R)R™

= O(s#HH1/2H) a5 5 50,

for0<m<[u-1,0<I<m-1.

As for the first term on the right hand side of the last equality of (3.3) we apply
the preceding argument since p — [u] < 1, (1 — [u]) + (v + [1]) > —1/2. So the first
term on the right hand side of the last equality of (3.3) converges to

[ul-1
I (—u+v+3/2+425) 0 + ], 1 - [u])

=0

as R — oo. _
Meanwhile, integrating by parts once more, the other terms on the right hand
side of the last equality of (3.3) are estimated by

(u]+1 1 ' CR
Z C{R" (/ gvtpr=1/2+l 4o +/ s“"[“]"'l‘zds) < CR“‘[“]‘I,
P 0 1

which converges to zero as R — oo. This completes the proof. (]

Proof of Theorem 3.1 We only prove the results on (—A)~7 sin[(—A)zt]¢ here
with ¢ = 1, as in the proof of Theorem 2.1. From the proof of Theorem 2.1, we
observe that 1

(~A) Fsin[(~A) ity = —(Ki - K;) +K,.

Here we regard a(€) as |§|‘1$(§) = Cn,pl&|P~™, where

Guy = Coer (2571 (e
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We first prove (1), (2). Applying Proposition 2.1, we obtain

lim |1 —|z]P""% (—A) 4 sin](~A) )}y (z)

|z|]—1-0
1 -
= Z(A:—p - An—p) C’":P )

lim |1 —]zl[?~"F (—~A) "} sin](~A) ey (z)

|z| 5140
_ 2%{ ePHODDm AL ot D/Amig= Y
if 231 < p < 25, since K, is bounded and
(1= J2| £40)™ = (jz] — 1),

when A € R, |z| > 1. Then, (3.5) is equal to

-1/2 _’I’L—l . P
(2r) Cn,pl"( 5 )sm 5

and (3.6) is equal to

-1/2 _n=1y . (n—-p-Drm
(2m) C’n,pF(p 5 )sm 5 .

Therefore, we obtain

lim |1 - |2|""F (~A)~F sinf(~A)Hy(z) # 0,

|z|—120

except for the case (n —p — 1)/2€ N, p/2 € N, respectively.

As for the case p = ’-‘;—1, we obtain from Proposition 2.1

|z|—1

from which we obtain the desired result.

lim (log™ [1-— |$||)(—A)_% sin[(—A)3t]yp(z) = (2n)"V2C,, sinp—%r— :
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(3.4)

(3.5)

(3.6)

On the other hand, to prove (3) we need to consider the asymptotic behavior of
K, since Ké‘ decrease rapidly by Proposition 2.1. Using the representation formula

of the Fourier transform for radially symmetric functions, we have
K(z) = Cn,p F [p(&)[€[P~" sin €] (z)
= Cuplel 7 [ Juaa(5)57 /207 (s/lel)ds,
0

where 7(r) = (p(r)/r)sinr. We notice that 7 € CP(R) and 7(0) = 1. Thus, it

suffices to show that
(o o]

lim Jnja-1(8)sP ™2+ 1 (s/|z])ds £ 0.

|:z:|—>oo 0

(3.7)
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To show (3.7) we apply Lemma 3.1, since

n—3 n 1 1
(p-=5)+(5-1)=p+3>5
Therefore, the left hand side of (3.7) is equal to

m—1

j_l:[o(n—p—1+2j)J(§—1+m,p—"7"3—m),

and its value is not equal to 0 for 0 < p < 2#}, where we set m = [(p— (n—13)/2)4].
This completes the proof. [J
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