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Abstract. Schoning [Sch99] proposed asimple yet efficient randomized algorithm for solving
the $k$-SAT problem. His analysis showed that for 3-SAT, finding asatisfying assignment of any
satisfiable formula $F$ with $n$ variables can be achieved in Poly(n) $\cdot$ $(4/3)^{n}(=\mathrm{p}\mathrm{o}1\mathrm{y}(n)\cdot(1.3333)^{n})$

expected time, which is optimal up to now. In this paper, we improve this expected time bound
by using acombination of adeterministic algorithm for 3-SAT and an improvement of the above
randomized algorithm. Our new bound for the above task is poly(n) $\cdot$ $($ 1.3303$)$ .

1Introduction and Preliminaries

We present arandomized algorithm for 3-SAT that improves the efficiency of the known fastest
randomized algorithm of Sch\"oning [Sch99].

The $k$-satisfiability problem (in short, $k$-SAT) is to determine whether agiven Boolean
formula $F$ in the $k$-CNF is satisfiable. This problem has been studied by many researchers,

and various algorithms have been proposed. Some algorithms indeed have aworst-case time
complexity much better than the trivial exhaustive search algorithm; see, e.g., [MS85, Sch99,

DGHSOO]. In particular, the algorithm proposed by Sch\"oning [Sch99], which is for the fc-SAT
problem in general, has so far the best worst-case time bound for 3-SAT. His analysis showed
that for 3-SAT, finding asatisfying assignment of any satisfiable formula $F$ with $n$ variables can
be achieved in poly(n) $\cdot$ $(4f3)^{n}(=\mathrm{p}\mathrm{o}1\mathrm{y}(n)\cdot(1.3333)^{n})$ expected time, which is optimal up to now.
(By poly(n), we mean some polynomial over $n$ . We may assume that the number of clauses is
bounded by $O(n^{3})$ ;hence, we estimate the time bound in terms of $n.$ ) In this PaPer, we improve
this expected time bound by using acombination of anew simple deterministic algorithm for
3-SAT and an improvement of the above randomized algorithm. Our new combined algorithm
finds asatisfying assignment (if exists) in poly(n) $\cdot$ $($ 1.3303$)$ expected time.

Here we review Sch\"oning’s randomized algorithm for $k$-SAT. First recall some basic defini-
than$\mathrm{s}$ on $k$-SAT. Aformula $F$ is in the $k$ -conjunctive normal $fom$ (in short, k-CNF) if $F$ is a
conjunction of clauses which contain at most $k$ literals, i.e., $F$ is of the form $C_{1}\Lambda C_{2}\Lambda\cdots\wedge C_{m}$ ,

where $C_{i}=l_{j_{1}}\vee l_{j_{2}}\vee\cdots\vee lj_{k}$ and $lj_{h}$ is either avariable or its negation. Throughout this
paper, we will use $n$ and $m$ to denote the number of variables and that of clauses of agiven
input formula. An assignment of aBoolean formula is a0/1 assignment to every variable of the
formula; in this paper, we will regard an assignment as an element of $\{0, 1\}^{n}$ , abinary sequence
of length $n$ . The problem $k$-SAT is to determine whether agiven formula in the $k$-CNF has a
satisfying assignment, an assignment that makes the formula true. Throughout this Paper, we
consider 3-SAT, and by “formula” we always mean a3-CNF formula.
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Program Search(input F); % F is a3-CNF formula with n variables.
repeat

select an initial assignment $a$ uniformly at random from $\{0, 1\}^{n}$ ;

for $3n$ times do
if $F(a)=1$ then accept (and halt);
$Carrow \mathrm{a}$ clause of $F$ that is not satisfied by $a$ ;

end-for;
end-repeat.

Figure 1: Schoning’s randomized local search algorithm

Now we state the bound obtained by Schoning.

Theorem 1. For any formula $F$ with $n$ variables, if it is satisfiable, then the success probabil-

ity of one repeat-iteration is at least $($3/4$)^{n}$ . Thus, the expected number of repeat-iterations

executed until some satisfying assignment is found is at most $($4/3$)^{n}$ .

Akey for proving this theorem is the following lemma, which will also play akey role in our
discussion.

Lemma 2. For any satisfiable formula $F$ , consider the execution of the above algorithm on $F$ ,

and assume that $a$ is selected as an initial assignment in some repeat-iteration. The probability

that asatisfying assignment is found from this $a$ is at least $($ 1/2 $)^{\mathrm{d}}$ , where $d$ is the Hamming

distance between $a$ and some satisfying assignment $a_{*}$ of $F$ .

2Independent Clauses and ASimple Deterministic Algorithm

Here we propose one simple deterministic algorithm for 3-SAT. We begin with introducing some
notions.

For any clauses $C$ and $C’$ , we say that $C$ and $C’$ are independent if no Boolean variable

appears in both $C$ and $C’$ . For any formula $F$ , amaximal independent clause set $\mathrm{C}$ is aset of

clauses of $F$ such that all clauses in $\mathrm{C}$ are (mutually) independent and every remaining clause

of $F$ shares some variable with some clause of C.
Consider any formula $F$ , and let $\mathrm{C}$ be any of its maximal independent clause set. Consider

any partial assignment of $F$ that assigns all and only variables in (clauses of) $\mathrm{C}$ so that all clauses

in $\mathrm{C}$ are satisfied, and simplify $F$ after fixing values of some variables by this partial assignment.

(That is, we remove satisfied clauses from $F$ and some false literals from some clauses of $F.$ )

Let $\tilde{F}$ be the obtained formula. ( $F\sim$ may become trivial, i.e., either constant 0or 1, but in the

following discussion, we assume that it is not trivial.) Then it is easy to see that each clause of
$\tilde{F}$ has at most two literals. This is because every remaining clause $C’$ of $\tilde{F}$ is obtained from some
clause $C$ not in $\mathrm{C}$ , but $C$ has some variable appearing in (some clause of) $\mathrm{C}$ that is assigned a
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value by the partial assignment. That is, $\tilde{F}$ is a2-CNF formula. Note, on the other hand, that

2-SAT is polynomial-time solvable; that is, there is apolynomial-time algorithm for checking

the satisfiability of a2-CNF formula. This observation leads to asimple deterministic algorithm

for 3-SAT stated as Figure 2. (For simplifying our later analysis, our algorithm is designed to

choose clauses having exactly three variables for C.)

Program Deterministic $3\mathrm{S}\mathrm{A}\mathrm{T}$ Solver(input $F$);

starting from the first clause of $F$ , search for aclause $C$

with three variables that is independent with any clause in $\mathrm{C}$ ,
and add it to $\mathrm{C}$ until no such clause is found;

for each satisfying assignment to clauses in $\mathrm{C}$ do
$\tilde{F}arrow \mathrm{a}2$-CNF formula obtained by simplifying $F$

according to the assignment to variables in $\mathrm{C}$ ;

if $\tilde{F}$ is satisfiable then accept (and halt);

end-for.

Figure 2: Asimple deterministic algorithm

We can bound the computation time of this algorithm as follows.

Theorem 3. For any formula $F$ with $n$ variables and $m$ clauses, consider the execution of the
algorithm of Figure 2. Let $\hat{m}$ be the number of independent clauses collected as C. Then the

algorithm runs in poly(n) $\cdot$

$7^{\hat{m}}$ steps.

Clearly, the algorithm terminates faster if $\hat{m}$ is smaller. But unfortunately, $\hat{m}$ could be as
large as $n/3$ . In the next section, we propose an improvement of Sch\"oning’s algorithm that runs
better for the case of $\hat{m}$ being large. Then we will obtain our improved time bound by combining

these two algorithms.

3Our Improvement

In Schoning’s algorithm, an initial assignment is computed by selecting each bit uniformly at

random. Then roughly, the expected Hamming distance of the obtained initial assignment from a
satisfying assignment (if it exists) becomes $n/2$ . Intuitively, the success probability $\mathrm{P}\mathrm{r}\{\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\}$ of

one repeat-iteration gets better if we can improve the probability of starting from an assignment

closer to asatisfying assignment. Here we propose abetter way to compute an initial assignment,

which assigns better values on variables in the maximal independent clause set.
Consider any satisfying formula $F$ with $n$ variables and $m$ clauses, let it be fixed in the

following discussion. Let $\hat{m}$ be the number of independent clauses in $\mathrm{C}$ computed from $F$ by

our deterministic algorithm, and let $\hat{n}$ be the number of variables (appearing) in (clauses of)

C. Since each clause in $\mathrm{C}$ has exactly three variables, we have $\hat{n}=3\hat{m}$ . By changing the sign
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of variables systematically, we can modify $F$ to an equivalent one for which no negative literal
appears in any clause of $\mathrm{C}$ ;that is, every clause $C$ of $\mathrm{C}$ is of the form $C=(X_{i_{1}}\vee X_{i_{2}}\vee X_{i_{3}})$ . In
the following discussion, we assume the formula is modified in this way.

We explain our way to compute an initial assignment for $F$ . For the analysis, it would be
easier to determine the value of variables locally. The simplest way is to determine the value of
each variable independently, which is actually approach taken in Schoning’s algorithm. On the
other hand, we can determine the value of variables in each clause in $\mathrm{C}$ independently, because
clauses in $\mathrm{C}$ share no variables. Furthermore, by this way, we can exclude one assignment out of
eight assignments. In fact, it is not necessary to select eight assignments with equal probability.
Here we introduce three parameters $x$ , $y$ , and $z$ to define the probability of selecting assignments
for variables in each clause in C. For variables not appearing in $\mathrm{C}$ , we again assign 0or 1with
probability 1/2.

More specifically, we propose the following selection procedure for determining an initial
assignment of $F$ .

$\bullet$ For each clause $C=(X_{i_{1}}\vee X_{i_{2}}\vee X_{i_{3}})$ in $\mathrm{C}$ , select one of the eight assignments to
$(X_{i_{1}},X_{i_{2}},X_{\dot{l}3})$ randomly according to the following probability:

assign prob. assign prob. assign prob.
(0, 0, 0) 0 (1,1,0) $y$ (0,0,1) $z$

(1, 1, 1) $x$ (1,0,1) $y$ (0,1,0) $z$

(0,1,1) $y$ (1,0,0) $z$

$\bullet$ For each variable $X_{i}$ not in in $\mathrm{C}$ , select 0or 1randomly with probability 1/2.

Note that (0, 0, 0) is excluded from our choice of an assignment for variables of any clause $C$ in $\mathrm{C}$

because it does not satisfy $C$ itself. Notice also that the parameters must satisfy $x+3y+3z=1$ .
Now we choose the values for the parameters $x$ , $y$ , and $z$ so that abetter initial assignment

is selected with higher probability. More specifically, we would like to achieve the largest suc-
cess probability. For this, we first examine how an initial assignment differs from asatisfying
assignment, from which we estimate the success probablity $\mathrm{P}\mathrm{r}\{\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\}$ of one repeat-iteration
of Schoning’s algorithm when an initial assignment is selected as above. Consider any satisfying
assignment $a_{*}$ of $F$, and let it be fixed in the following discussion.

Suppose, for example, that $a_{*}$ assigns (0, 0, 1) to variables of $m’$ clauses in C. Consider an
initial assignment $a$ that assigns (0, 0, 1) to some of such clauses. Then $a$ matches $a_{*}$ on these
clauses. On the other hand, if it assigns (0, 1, 1) to some of $m’$ clauses, then $a$ differs from $a_{*}$

by one bit on these clauses. The same situation also occurs if (1, 0, 1) is selected for some of
$m’$ clauses when determining $a$ . (Recall that (0, 0, 0) is never selected.) In general, consider an
initial assignment $a$ in which $s$ , $t$ , $u$ , and $v$ clauses of those $m’$ clauses are assigned values whose
distances from the corresponding part of $a_{*}$ are respectively, 0, 1, 2, and 3. (Let us call such an
initial assignment as a $(s, t, u, v)$ -assignment.)Note that there are $(\begin{array}{l}m’s,t,u,v\end{array})=(\begin{array}{l}m’s\end{array})(\begin{array}{l}m’-st\end{array})(\begin{array}{l}m’-s-tu\end{array})$

ways of grouping $m’$ clauses. On the other hand, we have the following probabilities
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Pr{ (0, 0, 1) is selected for $s$ clauses } $=z^{s}$ ,

Pr{ (0, 1, 1) or (1, 0, 1) is selected for $t$ clauses } $=(2y)^{t}$ ,
Pr{ (1, 1, 1), (0, 1, 0), or (1, 0, 0) is selected for $t$ clauses } $=(x+2z)^{u}$ , and
Pr{ (1, 1, 0) is selected for $t$ clauses } $=y^{v}$ .

Thus, the probability that some $(s, t, u, v)$-assignment is selected for $a$ is

$(\begin{array}{l}m’s,t,u,v\end{array})$ $z^{s}(2y)^{t}(x+2z)^{u}y^{v}$ .

For any $(s, t, u, v)$-assignment $a$ , the distance between $a$ and $a_{*}$ on $m’$ clauses is $t+2u13v$.
As we will see later, the success probability can be calculated independently on independent
clauses; that is, any $(s, t, u, v)$-assignment contributes $(1/2)^{t+2u+3v}$ to the success probability
(on $m’$ clauses). Hence, the total success probability (on $m’$ clauses) of $(s, t, u, v)$-assignments
become

$(\begin{array}{l}m’s,t,u,v\end{array})$ $z^{s}(2y)^{t}(x+2z)^{u}y^{v}( \frac{1}{2})^{t+2u+3v}$

Therefore, by considering all possible grouping of $m’$ clauses, we can estimate the total success
probability (on $m’$ clauses) as follows:

$P_{1}’$ $=$
$\sum_{s+t+u+v=m’}$

$(\begin{array}{l}m’s,t,u,v\end{array})$ $z^{s}(2y)^{t}(x+2z)^{u}y^{v}( \frac{1}{2})^{t+2u+3v}$

$=$
$\sum_{s+t+u+v=m’}$

$(\begin{array}{l}m’s,t,u,v\end{array})$ $z^{s}( \frac{2y}{2})^{t}(\frac{x+2z}{4})^{u}(\frac{y}{8})^{v}$

$=$ $(z+ \frac{2y}{2}+\frac{x+2z}{4}+\frac{y}{8})^{m’}$ $=$ $( \frac{1}{4}x+\frac{9}{8}y+\frac{3}{2}z)^{m’}$

Asimilar analysis yields the same result for the part that $a_{*}$ assigns (0, 1, 0) or (1, 0, 0) to
clauses in C. Thus, letting $m_{1}$ be the number of clauses in $\mathrm{C}$ to which $a_{*}$ assigns either (0, 0, 1),
(0, 1, 0) or (1, 0, 0), and $P_{1}$ be the success probability on $m_{1}$ clauses, we have

$P_{1}=$ $( \frac{1}{4}x+\frac{9}{8}y+\frac{3}{2}z)^{m_{1}}$

Similarly, we have the following analysis for the success probabilities $P_{2}$ (resp., $P_{3}$ ) on clauses
to which $a_{*}$ assigns either (1, 1, 0), (1, 0, 1) or (0, 1, 1) (resp., (1, 1, 1)). (Here we use $m_{2}$ (resp.,
$m_{3})$ to denote the number of clauses in C)

$P_{2}=$ $( \frac{1}{2}x+\frac{3}{2}y+\frac{9}{8}z)^{m_{2}}$ $P_{3}=$ $(x+ \frac{3}{2}y+\frac{3}{4}z)^{m_{3}}$

Now we summarize our discussion and obtain the following bound for $\mathrm{P}\mathrm{r}\{\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\}$. (Recall
that $\hat{m}$ is the number of clauses in $\mathrm{C}$ and $\hat{n}(=3\hat{m})$ is the number of variables in C. Also note
that $m_{1}+m_{2}+m_{3}=\hat{m}.$ )
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Lemma 4. For any satisfiable formula $F$ , consider the execution of Sch\"oning’s algorithm on $F$

with our improved initial assignment selection procedure. Then we have

$\mathrm{P}\mathrm{r}$ {sucess} $\geq$ $( \frac{3}{4})^{n-\hat{n}}\cdot(\frac{1}{4}x+\frac{9}{8}y+\frac{3}{2}z)^{m_{1}}\cdot(\frac{1}{2}x+\frac{3}{2}y+\frac{9}{8}z)^{m_{2}}\cdot(x+\frac{3}{2}y+\frac{3}{4}z)^{m_{3}}$

Lemma 5. For our improved initial assignment selection procedure, to get the largest success
probability (even in the worst-case) the parameters $x$ , $y$ , and $z$ should be set as follows:

$x= \frac{1}{7}$ , $y= \frac{1}{7}$ . $\frac{2}{3}z=\frac{1}{7}$ . $\frac{4}{3}$ .
Then we have $\mathrm{P}\mathrm{r}\{\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\}\geq(3/4)^{n-\hat{n}}(3/7)^{\hat{m}}$ .

We summarize our discussion.

Theorem 6. For any formula $F$ with $n$ variables and $m$ clauses, let $\hat{m}$ be the number of indepen-
dent clauses collected as $\mathrm{C}$ in our deterministic algorithm. If $F$ is satisfiable, then the expected
running time of our improved randomized algorithm on $F$ is at most $\mathrm{p}\mathrm{o}1\mathrm{y}(n)((4/3)^{n-3\hat{m}}(7/3)^{\hat{m}})$ .

Finally, we estimate atime bound when executing our two algorithms together. It fol-
lows from Theorem 3and Theorem 6, the expected running time of the combined algorithm is
bounded by the minimum of

poly(n) $\cdot$

$7^{\hat{m}}$ and poly(n) $\cdot$ $(4/3)^{n-3\hat{m}}(7/3)^{\hat{m}}$ .
Hence, the asymptotically worst-case is the case where $7^{\hat{m}}=$ $(4/3)^{n-3\hat{m}}(7/3)^{\hat{m}}$ , which is the
case where $\hat{m}\approx 0.146652n$ . Even in this case, the running time is bounded by $7^{0.146652n}\leq$

1.3303”. Therefore, we have the following theorem.

Theorem 7. For any formula $F$ with $n$ variables and $m$ clauses, if $F$ is satisfiable, then the
expected running time of the combined algorithm on $F$ is at most poly(n) $\cdot$ $($ 1.3303 $)^{}$ .
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