
A Universal Self-Stabilizing
Mutual Exclusion Algorithm*

広島大学 角川 裕次

九州大学 山下 雅史

(Hirotsugu Kakugawa)
Hiroshima Univ.

(Masafumi Yamashita)
Kyushu Univ.

Abstract
Adistributed system consists of aset of processes
and aset of communication links. Adistributed sys-
tem is said to be self-stabilizing if it converges to
acorrect system state from arbitrary initial system
states. Aself-stabilizing system is considered to be a
fault tolerant system, since it tolerates any kind and
any finite number of transient failures.

In this paper, we investigate aclass of networks
on which the leader election and mutual exclusion
problems can be solved. We show graph theoretical
characterization of networks on which these prob-
lems assuming central and distributed daemons for
execution scheduling model and registers for commu-
nication model.

1Introduction
Adistributed system consists of aset of processes
and aset of communication links, each connecting
apair of processes. The leader election and mutual
exclusion problems are fundamental problems in dis-
tributed systems, and they have been investigated
extensibly.

The concept of self-stabilization is introduced by
Dijkstra in [3]. Adistributed system is said to be
self-stabilizing if it converges to acorrect system
state from arbitrary initial system states. Aself-
stabilizing system is considered to be afault toler-
ant system, since it tolerates any kind and any fi-
nite number of transient failures. The self-stabilizing
leader election and mutual exclusion problems are
also fundamental problems in self-stabilizing dis-
tributed systems, and have been studied extensively.

Breaking symmetry is essential to solve these
problems, since exactly one process must be elected
as aleader or granted to enter acritical section.
Thus, algorithms for these problems assume unique

“This work is supported in part by the Ministry of Edu-
cation, Science and Culture under grant No. 11780229 and
10205221.

process identifiers, randomization, or special net-
work topology. Study on self-stabilizing leader elec-
tion and mutual exclusion problems have been fo
cused on mainly the space complexity of processes
and convergence time.

In [7], Yamashita and Kameda introduced acon-
cept of view and discussed apossibility of leader
election on anonymous networks. View is atree-
structures data that aprocess can obtain at best
by communicating with other processes. It is shown
that the leader election problems can be solved on
anetwork if and only if each process has aunique
view[7]. We use view to investigate possibility of
self-stabilizing leader election and mutual exclusion.
In [2], Boldi et al. discusses symmetry breaking with
graph fibrations. In [1], Boldi proposes universal self-
stabilizing algorithm based on graph fibrations.

In this paper, we investigate aclass of networks
on which the leader election and mutual exclusion
problems can be solved assuming register communi-
cation model under central and distributed daemons.
We show graph theoretical characterization of net-
works on which these problems assuming central and
distributed daemons for execution scheduling model
and registers for communication model.

This paper is organized as follows. In section 2,
network model, computational model and view are
defined. In section 3, we propose aself-stabilizing
view computation algorithm is proposed. This algo
rithm will be used as abuilding block to form leader
election and mutual exclusion algorithms. In sec-
tion 4, we investigate possibility of leader election
and mutual exclusion of networks under distributed
daemon. We give acharacterization of aclass of net-
work on which the problems can be solved in terms
of views, and show an algorithms for these problems.
In section 5, we investigate possibility of leader elec-
tion and mutual exclusion of networks under central
daemon. In section 6, we summarize the results in
this paper and refer to th future task

数理解析研究所講究録 1205巻 2001年 107-112

107

2Preliminary

2.1 Network Model
Asystem $N=(G, id)$ is apair of graph $G=(V, E)$,
where $V=\{v_{1}, \ldots,v_{n}\}$ is aset of processes and $E\subseteq$

$V\mathrm{x}V$ is aset of bidirectional links, and id is aprocess
labeling function.

Let n be the number of processes in N , and by
$deg_{G}(v:)$, we denote the degree of V{. Each pro
cess v:has an identifier id_{i} , which may or may not
unique. Processes are distinguished by number such
as v_{1},v_{2} , \ldots but it is used in discussions of this paper.
Each process cannot use such number in algorithms
they execute, but they can use id_{\ddagger} .

Registers
Alink is formed by apair of incoming and outgo

ing registers. Processes use registers to communicate
each other. When aprocess v:sends data to process
v_{j} (when there is alink between them), process v_{i}

write data into aregister, and then process v_{j} read
from the register. In this paPer, we use two terms
“link” and “register” interchangeably. Aregister can
be thought as ashared variable of single writer and
single reader.

For each link $(v:,v_{j})\in E$, there is apair of incom-
ing and outgoing registers, denote by $Re \oint_{j}^{\mathrm{n}}$, $Rq_{j}^{\mathrm{O}\mathrm{u}\mathrm{t}}$,
respectively. Each pair of registers is labeled by a
positive integer, arbitrarily from one to $deg_{G}(v:)$.
Register labeling is aset of labeling functions f_{v} for
each process $v:\mathrm{f}=\{f_{v}|v\in V\}$, where f_{v} is abijec-
tive function from the set of incident link $(v, v_{j})\in E$

to aset of integers $\{1, 2, \ldots, deg_{G}(v)\}$. Note that in-
coming and outgoing registers connecting the same
neighbor process are labeled by the same number.

Information given to processes
Each process v:is given identifier id_{t} , which may

or may not unique. As alocal information, aPro-
cess known the degree, i.e., the number of neighbor
processes. In this paper, we consider following two
cases:

. Each process knows the total number of processes
in anetwork, denoted by n . This information can
be used in algorithms to be executed.

. Each process does not know n .

contents of incoming registers. In this paper, we as-
sume algorithms are deterministic, i.e., next local
state is determined uniquely. When there is aguard
evaluated to true at process v_{i} , then we say that
process v:is privileged.

Scheduler
We assume distributed daemon and central dae-

mon. Ascheduler called distributed daemon selects
arbitrary nonempty set of privileged processes to ex-
ecute. Ascheduler called central daemon selects only
one privileged process to execute. We also assume
execution of processes is fair, i.e., any privileged pr0-

cess is executed eventually.

Execution
State of adistributed system N is called

configuration, which is defined by atuple of
local state of processes and contents of reg-
isters. Formally, aconfiguration c is atuple
$\langle q_{1}, q_{2}, \ldots, q_{n}, Reg_{1}^{\mathrm{O}\mathrm{u}\mathrm{t}}, Reg_{2}^{\mathrm{O}\mathrm{u}\mathrm{t}}, \ldots Reg_{\mathrm{l}}^{\mathrm{I}\mathrm{n}}, Reg_{2}^{\mathrm{I}\mathrm{n}}, \ldots\rangle$,
where q: is alocal state of process v_{i} ,
$Reg_{1}^{\mathrm{O}\mathrm{u}\mathrm{t}}$, $Reg_{2}^{\mathrm{O}\mathrm{u}\mathrm{t}}$, \ldots is contents of each outgoing
register, and $Reg_{\mathrm{l}}^{1\mathrm{n}}$, $Reg_{2}^{\mathrm{O}\mathrm{u}\mathrm{t}}$, \ldots is contents of each
incoming register.

Execution of N is asequence of atomic steps. An
atomic step is asequence of following three actions:

1. read contents of incoming registers,
2. compute next value local state and outgoing reg-

isters based on current value of local state and
contents of input registers, and

3. write values to outgoing registers

Let $c=\langle q_{1}, \ldots, q:, \ldots, q_{n}, \ldots Reg_{j}^{\mathrm{O}\mathrm{u}\mathrm{t}}, \ldots\ldots Reg_{j}^{\mathrm{I}\mathrm{n}}, \ldots\rangle$be
aconfiguration of N Then, configuration $c’$ followed
by c is (q_{1} , \ldots , $q_{\dot{1}}’$, ... q_{n} , \ldots

$Reg_{j}^{\mathrm{O}\mathrm{u}\mathrm{t}’}$, $Reg_{j}^{\mathrm{I}\mathrm{n}’}$, $\ldots\rangle$,
where $q_{\dot{1}}’$, $Reg_{j}^{\mathrm{O}\mathrm{u}\mathrm{t}}$ and $Reg_{j}^{\mathrm{I}\mathrm{n}}$ are local state, outgoing
register, and incoming register, respectively, whose
contents are changed by an atomic step. Note
that the number of processes that are executed
at atime depends of daemon. When we assume
central daemon, exactly one process is selected to be
execute, and when we assume distributed daemon,
more than one processes may be executed.

An execution of N is described by a(possibly infi-
nite) sequence of configurations c_{1} , c_{2} , c_{3} , \ldots ., where
c_{1} is an initial configuration and $c:+1$ follows c_{t} by
execution of some processes.

Description of algorithms
An algorithm executed by processes is described

by aset of guarded commands. Aguard is aboolean
function on local state of process and contents of
incoming registers. Acommand is an assignment
statement to change local state of aprocess and con-
tents of outgoing registers, based on local state and

2.2 Self-stabilization
Let Z be apredicate on configuration of adistributed
system N . Asystem N is called self-stabilizing (SS
for short) with respect to Z if and only if the follow-
ing conditions hold: There exists ainteger k such
that $Z(c_{k})$ is true for any fair execution c_{1} , c_{2} , c_{3} , \ldots

108

starting from initial configuration c_{1} {convergence).
In addition, $Z(C_{i})$ is true for each $i\geq k$ (closure).

Intuitively, asystem configuration of N is guar-
anteed to transit to “correct” configuration (defined
by property Z), and system configuration remains
correct forever once it becomes correct.

Aself-stabilizing system is considered to tolerate
any kind of and any finite number of transient faults.
Suppose aconfiguration c just after transient faults
finished. Condition of self-stabilization guarantees
that any execution starting from c eventually reaches
to acorrect configuration and configuration remains
correct forever. Therefore, self-stabilization is one of
theoretical frame works for fault-tolerant distributed
systems.

2.3 The SS leader election problem

The leader election problem (or LE, for short) is a
problem such that exactly one process is elected as
aleader. The leader process must know that it is
the leader and non-leader processes must know that
they are not.

Formally, let $Z_{\mathrm{L}\mathrm{E}}^{i}$ be aboolean function of process
$v_{i}\in V$ on local state of v_{i} . Let q_{i} be alocal state
of process v_{i} . Aprocess v_{i} is aleader if and only if
$Z_{\mathrm{L}\mathrm{E}}^{i}(q_{i})$ holds.

An algorithm is said to solve the SS leader elec-
tion problem if and only if following conditions hold:
For any initial configuration c_{1} and any execution
c_{1} , c_{2} , c_{3} , \ldots , there exists aprocess v_{ℓ} and an integer
k such that $Z_{\mathrm{L}\mathrm{E}}^{\ell}(q\ell)$ and $\neg Z_{\mathrm{L}\mathrm{E}}^{i}(q_{i})$ for each $i\neq\ell$

holds for each c_{k} , child c_{k+2} , \ldots .

2.4 The SS mutual exclusion problem

The mutual exclusion problem (or $\mathrm{M}\mathrm{X}$, for short) is
aproblem such that each process enters its critical
section one after another and the number of process
which is in its critical section is at most one at a
time.

Formally, let $Z_{\mathrm{M}\mathrm{X}}^{i}$ be aboolean function of process
$v_{i}\in V$ on local state of Vi. Let q_{i} be alocal state
of process v_{i} . Aprocess v_{i} is in its critical section if
and only if $Z_{\mathrm{M}\mathrm{X}}^{i}(q_{i})$ holds.

An algorithm is said to solve the SS mutual ex-
clusion problem if and only if following conditions
hold: For any initial configuration c_{1} and any execu-
than c_{1} , c_{2} , c_{3} , \ldots , there exists an integer k such that
te number of process v_{i} such that $Z_{\mathrm{M}\mathrm{X}}^{i}$ is at most
one for each c_{k} , child c_{k+2} , \ldots . In addition, for each
process $v_{i}\in V$, $F_{\mathrm{M}\mathrm{X}}^{i}$ become true infinitely many
times during an infinite execution c_{k} , c_{k+1} , c_{k+2} , \ldots .

2.5 Views
Aprocess in adistributed system communicate with
other process and gather information to achieve a
task. Existence of asolution of adistributed problem
depends on information each process can obtain.

View[7] is a $\mathrm{t}\mathrm{r}\mathrm{e}\triangleright \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{d}$ information on dis-
tributed system that aprocess can obtain at best by
communicating with other processes. Each process
has its own view; view may be different on processes.

Let $T_{\mathrm{f}}(v:)$ be aview of process $v:\in V$ with register
labeling f . Each node of aview corresponds to a
process in adistributed system. For each view node
x , we denote aprocess corresponding to x by \overline{x}. The
root node x of aview $T_{\mathrm{f}}(v:)$ corresponds to process
$v_{i}(=\overline{x})$. For each view node y , j-th child node z_{j} of
anode y corresponds to the j-th neighbor process1
of $\overline{x_{j}}$ for each $1\leq j\leq deg(\overline{y})$. Thus, the number
of children of aview node x is $deg_{G}(\overline{x})$. In general,
there are more than one view node which correspond
to aprocess v for each $v\in V$.

Let x be anode of view, and y be achild of x .
View node x is labeled by $id(\overline{x})$. An edge in aview
from x to y is labeled by two labels ℓ ($x’ \mathrm{s}$ end) and
$\ell’$ ($y’ \mathrm{s}$ end) as follows: ℓ is the register label of alink
$(\overline{x},\overline{y})\in E$ at \overline{x} , and $\ell’$ is the register label of alink
$(\mathrm{x},\mathrm{y})\in E$ at \overline{y}. In other words, $\ell=f_{\overline{x}}(\overline{x},\overline{y})$, and
$\ell’=f_{\overline{y}}(\overline{x},\overline{y})$ for aregister labeling f .

By $\mathcal{T}_{\mathrm{f}}(N)$, we denote aset of views of processes,
i.e., Tr{N) $=\{T_{\mathrm{f}}(v)|v\in V\}$. By $T_{\mathrm{f}}^{d}(v)$, we denote
aview of process v truncated to depth $d\geq 0$, and
by $\mathcal{T}_{\mathrm{f}}^{d}(N)$, we denote aset of truncated views, i.e.,
$\mathcal{T}_{\mathrm{f}}^{d}(N)=\{T_{\mathrm{f}}^{d}(v)|v\in V\}$. When N are obvious
from context, we may omit N and denote aset of
views of processes by $\mathcal{T}\mathrm{r}$.

In this paPer, we use aterm process as aabstrac-
tion of computer in adistributed system, and aterm
node as agraph theoretical node in aview. In addi-
tion, we use aterm link for aabstraction of commu-
nication device in adistributed system, and aterm
edge for agraph theoretical edge in aview tree.

2.6 Universal algorithms

Let Nets(A, P) be aclass of networks N such that
algorithm A solves aproblem $P\in$ { $\mathrm{M}\mathrm{X}$, LE} on N

for any register labeling f . (Note that there may be a
network $N\not\in Nets(A, P)$ that an algorithm A solves
aproblem P for some register labeling $\mathrm{f}.$) Formally,
Nets(A, P) is defined as follows:

Nets(A, P) $=$ { $N|$ A solves P on N for
any register lebeling f}

process Zj is the end of alink labeled j at process \overline{y}, i.e.,
$f_{\overline{y}}(\overline{y}, \overline{x_{j}})=j$.

109

Let $N_{\mathrm{L}\mathrm{E}}$ (Nux) be aclass of networks N such
that there exists an algorithm A which solves the
leader election problem (the mutual exclusion prob-
lem) on N for any register labeling f . Similarly, let
$N_{\mathrm{L}\mathrm{E}}^{\mathrm{S}\mathrm{S}}(N_{\mathrm{M}\mathrm{X}}^{\mathrm{S}\mathrm{S}})$ be aclass of networks N such that there
exists an algorithm A which solves the self-stabilizing
leader election problem (the self-stabilizing mutual
exclusion problem) on N for any register labeling f .

An algorithm A for problem P is universal if and
only if Nets(A, P) $=N_{P}$ holds. For example, an
algorithm $A_{\mathrm{L}\mathrm{E}}$ is universal if and only if following
condition holds: Nets($A_{\mathrm{L}\mathrm{E}}$, LE) $=N_{\mathrm{L}\mathrm{E}}$.

3ASelf-Stabilizing View Con-
struction Algorithm

Child (T_{i}, j) –Return asubtree rooted by the
j-th child of the root node of $T_{:}$.
Cut(T:, d) -Return a tree with cutting subtrees
of $T_{:}$ whose depth is greater than d . (The height
of obtained tree is at most $d.$)

. SetChild{Ti, j , T_{j} , $j’$) –Reconstruct atree by
substituting $T’$ for the j-th child of the root node
of $T_{:}$. Mark that v:is the $j’$-th neighbor at v_{j} ,
where v_{j} is the j-th neighbor of Vj.

. NChildren(7:)-Return anumber of children of
the root node of $T_{:}$.

The algorithm SS-View is shown in Figure 1. In
this figure, each process $v_{\dot{1}}$ writes apair of its local
view $T_{:}$ (which may under construction) and local
label of output link to aneighbor j into $Reg_{j}^{\mathrm{O}\mathrm{u}\mathrm{t}}$.

In this section, we propose aself-stabilizing view
construction algorithm under distributed daemon.
Lemma 4in [8] states that each process $v\in V$

can compute $\mathcal{T}_{\mathrm{f}}^{2(n-1)}(N)$ from $T_{\mathrm{f}}^{2(n-1)}(v)$. Based
on this property, we show aself-stabilizing algorithm
to compute $T_{\mathrm{f}}^{2(n-1)}(v)$ at each process $v\in V$. Since
truncation depth of view and register labeling is clear
from context, we denote atruncated view of v:by
$T_{\dot{0}}$.

This algorithm constructs atree at each process;
in aview tree $T_{:}$ (of height $2(n-1)$) at process $v:$,
the root node is labeled $\mathrm{i}\mathrm{d}(\mathrm{v}\mathrm{i})$ and j-th child of the
root node is neighbor process of v:which is other end
of j-th $\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{g}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ registers.

The outline of the algorithm is as follows. Apro
cess compares each subtree of view tree and view of
corresponding neighbor process. If they are differ-
ent, copy aview of neighbor process and reconstruct
asubtree of view.

3.1 The algorithm
Local variables of each process V{:

$T_{:}$: Vi’s view.
. id: : $v_{i}’ \mathrm{s}$ local information. This value may or

may not unique.

Network information of each process v::
. $N_{:}$: The number of neighbor processes of $v_{\dot{1}}$.

Note that labeling for incoming and outgoing links
for aneighbor process v_{j} of v:may different, in gen-
eral.

Functions:

GetRoot(Ti) -Return a root node of atree $T_{:}$.
. Height(T:) -The height of atree T$\{$..

4Distributed Daemon

In this section, we investigate acondition that the
self-stabilizing leader election and mutual exclusion
problems can be solved on networks when we assume
distributed daemon as aschedular.

When network is symmetric, it is easy to see that
there is no algorithm that solve the self-stabilizing
LE and MX problems. As ametric of symmetry of
anetwork, symmetricity is introduced in [7].

Definition 1[7] For register labeling f of neteoork
$N=$ $(G(V, E)$, $id)$ of size n , we define Sf by $s\mathrm{r}=$

$n/|\mathcal{T}_{\mathrm{f}}|$ The symmetricity of a network N under dis-
tributed daemon, denoted by $\sigma_{d}(N)$, is defined as
$\mathrm{a}\mathrm{d}(\mathrm{N})=\max$ { $s_{\mathrm{f}}|\mathrm{f}$ is a register labeling for G } \square

In this paper, we assume that each process knows
n (the number of processes in asystem).

Theorem 1The leader election problem can be
solved if and only if $\sigma_{d}(N)$ is 1for any register la-
beling f under distributed daemon, and there

$exists\square$

a universal algorithm.

Theorem 2The mutual exclusion problem can be
solved for any register labeling f if and only if
$\mathrm{a}\mathrm{d}(\mathrm{N})=1$ under distributed daemon when each

$pro-\square$

cess knows n .

Corollary 1The mutual exclusion problem can be
solved if and only if the leader election problem can
be solved for any register labeling f under distributed
daemon . \square

Corollary 2The leader election problem can be
solved if and only if $s_{\mathrm{f}}=1$ on a network $Nwith\square$

register labeling f .

Corollary 3The mutual exclusion problem can be
solved if and only if $s_{\mathrm{f}}=1$ on a neteoork N with
register labeling f . \square

110

5Central Daemon

macro UpdateRegisters:
for each $1\leq j\leq N$:

$Reg_{\mathrm{j}}^{\mathrm{O}\mathrm{u}\mathrm{t}}:=\langle T_{*}.,j$};

macro RegistersAreCorrect:
$\forall j(1\leq j\leq N_{*}.)[Reg_{j}^{\mathrm{O}\mathrm{u}\mathrm{t}}=(T:,j\rangle]$

$*[$

$//\mathrm{R}\mathrm{u}\mathrm{l}\mathrm{e}1$. Obtain aview of neighbor
$//\mathrm{a}\mathrm{n}\mathrm{d}$ construct aview.
RegistersAreCorrect A $(GetRoot(T_{i}) =:d:)$

A(NChildren(T:) $=N:$)
Λ (Heeght(T:) $\leq 2(n-1)$)
$\Lambda\exists j\in Ni[(Child(Ti,j)\neq Cut(T_{j}, 2(n-1)-1))$

A(Height(Tj) $\leq 2(n-1)$) $]arrow$

SetChild ($T:$, j , Cut(T_{j} , $2(n-1)-1$));
UpdateRegisters;

$//\mathrm{R}\mathrm{u}\mathrm{l}\mathrm{e}2$. Fix an incorrect view.
\square Registers $reCol\tau ect$ A $(GetRoot(T_{*}.)=id:)$

\wedge (NChildren(Ti) $=N:$)
A(Height(T) $>2(n-1)$) $arrow$

$T:=Cut(Tj, 2(n-1))$;
UpdateRegisters;

$//\mathrm{R}\mathrm{u}\mathrm{l}\mathrm{e}3$. Fix an incorrect view.
\square RegistersAreCorrect A(GetRoot(Ti)=:d:)

Λ (NChildren(Ti) $\neq N_{:}$) $arrow$

$T_{i}:=$ “a tree whose root is anode labeled $:d$:
with N:children labeled nothing”;

UpdateRegisters j

$//\mathrm{R}\mathrm{u}\mathrm{l}\mathrm{e}4$. Fix an incorrect view.
\square Registers AreCorrect A $GetRoot(T_{*}.)\neq|.d_{:}arrow$

$T_{:}:=$ “a tree whose root is anode labeled $:d$:
with $N_{:}$ children labeled nothing” ;

UpdateRegisters;

$//\mathrm{R}\mathrm{u}\mathrm{l}\mathrm{e}5$. Fix an incorrect view.
$\square _{\neg}Registers$ reCorrect $arrow$

$T_{i}:=$ “a tree whose root is anode labeled $:d\dot{.}$

with N_{*}. children labeled nothing” ;
UpdateRegisters;

$]$

When we assume distributed daemon, possibility of
solving the leader and the mutual exclusion prob-
lems is determined by symmetricity $\sigma_{d}(N)$. Since
distributed daemon may execute all the processes,
the number processes with the same view defines
symmetricity of anetwork. When we assume central
daemon, on the other hand, there may be achance to
break symmetry. Since central daemon selects only
one process to execute at atime, two neighboring
processes $v:,v_{j}$ with the same view can change their
local state to be different each other.

In this section, we introduce anotion of symmet-
ricity under central daemon denoted by $\sigma_{c}(N)$, and
discuss possibility of solving the leader election and
the mutual exclusion problems. Note that it is ob-
vious that both problems are solved under central
daemon if $\sigma_{d}(N)=1$.

Definition 2Let s_{f}^{c} for a network N $=$

$(G(V, E)$, $id)$ with register labeling f is defined
as a minimum node coloring of a graph $G=(V, E)$
satisfying the following conditions.

1. Q_{1}^{f} , $Q_{2}^{\mathrm{f}}\ldots Q_{k}^{\mathrm{f}}$ be partitions of V ,
2. Each nodes in the same partition has the same

view,
3. There is no link beteoeen nodes in the same par-

tition, $i.e.$, $E\cap(Q_{}^{\mathrm{f}}\mathrm{x}Q^{\mathrm{f}}.\cdot)=\emptyset$ for each i .
4. A subgraph induced by a node set $Q_{*,j}^{\mathrm{f}}.=Q_{\dot{\iota}}^{\mathrm{f}}\cup$

$Q_{j}^{\mathrm{f}}(i\neq j)$ foms a regular $b\dot{\iota}pahite$ graph, $i.e.$,
$G_{:,j}=(Q_{j}^{\mathrm{f}}|.$,, $E\cap(Q_{\dot{\iota},j}^{\mathrm{f}}\mathrm{x}Q_{i,\mathrm{j}}^{\mathrm{f}})$ is a regular bipartite
graph.

The symmetricity of a netrnork N under central \mathfrak{l}

daemon, denoted by $\sigma_{c}(N)$, is defined as $\sigma_{c}(N)=$

$\max_{\mathrm{f}}\{s_{\mathrm{f}}^{c}\}$. \square

We have the following property.

Property 1For any network N $=$ $(G(V,$E),
$id)\square$’

$\sigma_{c}(N)\leq\sigma_{d}(N)$ holds.

Lemma 1The leader election problem cannot be
solved for any register labeling f if $\sigma_{c}(N)>1$ un-
der central daemon, even if each process knows n .
\square

Figure 1: SS-View
Because acorrect self-stabilizing algorithm under

distributed daemon is also correct under central dae
mon, we can use algorithms in the previous section:
If $\sigma_{d}(N)=1$, which imply $\sigma_{c}(N)=1$, we can use
aleader election algorithm designed for distributed
daemon to elect aunique leader under central dae-
mon. Similarly, if $\sigma_{d}(N)=1$, we can use amutual
exclusion algorithm designed for distributed daemon

111

Macros:
$X_{:}=\{x_{\dot{\mathit{3}}}|j\in N:\}$:

aset of x_{j} of neighbor processes of process :
$d_{:}$:

the number of incoming links at process i

Variables:
integer $x:$:

range of x:is O..d:.

s $[$

$//\mathrm{R}\mathrm{u}\mathrm{l}\mathrm{e}1$. Obtain alocally unique x_{i}

$x:\in X:arrow$

$x:= \min(\{0..d:\}-x_{:})j$

$//Use$ SS-View.

6Conclusion
In this paper, we discussed conditions that self-
stabilizing leader election and mutual exclusion
problems can be solved. We proposed aself-
stabilizing view construction algorithm which can be
used to construct aself-stabilizing leader election al-
gorithm. Based on this algorithm, we showed aself-
stabilizing mutual exclusion algorithm. Symmetri-
city proposed in [7] is defined for an execution model
such that all processes are executed at each step. We
proposed asymmetricity for central daemon which
can be used to discuss possibility of leader election
by central daemon schedular.

$//\mathrm{B}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{e}$ aleader
$\square T_{:}$ is the smallest view $arrow$

process :is a unique leader
0 $T_{:}$ is not the smallest view $arrow$

process :is not a unique leader
$]$

Figure 2: Auniversal self-stabilizing leader election
algorithm

can be used for mutual exclusion under central dae
mon.

Now we consider acase when $\sigma_{c}(N)=1$ and
$\sigma_{d}(N)>1$. We show that there exists auniversal
algorithm for the leader election problem.

Lemma 2For a network N with register labeling f ,
$|Q^{\mathrm{f}}.\cdot|$ is greater than 1for each i , $if|Q_{j}^{\mathrm{f}}|>1$ for

$some\square$

j .
Lemma 3There exists a universal leader election
algorithm for any register labeling f if $\sigma_{c}(N)=1$

under central daemon when each process knows n .

Proof: See Figure 2. 口

We have the following theorem.

Theorem 3There $n\cdot sb$ a universal leader election
algorithm if and only if $\sigma_{c}(N)=1$ under central
daemon when each process knows n . \square

We can obtain following theorem by asimilar dis-
cussion.

Theorem 4The mutual exclusion problem can be
solved if and only if $\sigma_{c}(N)=1$ under central daemon
when each process knows n . \square

Corollary 4Let 4be a bidirectional ring network
of size n without sense of direction, where n is prime
number. Then, there eists a leader election algO-
rithrn and a mutual exclusion algorithm for R_{n} un-
der central daemon. \square

References
[1] Paolo Boldi. Self-stabilizing universal algorithms.

In Proceedings of the Second Workshop on Self-
Stabilizing Systems (WSS97), pages-, 1997.

[2] Paolo Boldi, Bruno Codenotti, Peter Gemmell,
and Janos Simon. Symmetry breaking in anony-
mous networks: Characterization. In Proceed-
ings of the 4th Islael Symposium on Theory of
Computing and Systems (ISTCS96), pages 16-
26, 1996.

[3] E. W. Dijkstra. Self-stabilizing systems in spite
of distributed control. Communications of the
A CM, 17(11):643-644, November 1974.

[4] Shlomi Dolev, Amos Israeli, and Shlomo Moran.
Self stabilization of dynamic systems assuming
only $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ atomicity. Distributed Cornput-
ing, $9(1):3-16$,1993.

[5] Shing-Tsaan Huang. Leader election in uniform
rings. ACM Transactions on Programming Lan-
guages and Systems, 15(3):563-573, July 1993.

[6] N. Norris. Universal covers of graphs: isomor-
phism to depth n-1 implies isomorphism to all
depth. Discrete Applied Mathematics, 56:61-74,
1995.

[7] Masafumi Yamashita and Tsunehiko Kameda.
Computing on anonymous networks: Part I:
characterizing the solvable cases. IEEE $I\vdash ans-$

actions on Parallel and Distributed Systems,
$7(1):69-89$, January 1996.

[8] Masafumi Yamashita and Tsunehiko Kameda.
Leader election problem on networks in which
processor identity numbers are not distinct.
IEEE Transactions on Parallel and Distributed
Systems, 10, 1999

112

