グラフ演算による最適な故障診断可能システムの構成

荒木 徹

柴田 幸夫

Toru Araki

Yukio Shibata

群馬大学工学部情報工学科

Department of Computer Science, Faculty of Engineering, Gunma University

アブストラクト

ネットワークシステム上の故障を自動的に見つける ためのモデルとして、PreparataらによるPMCモデ ルが知られている.また、ネットワークのトポロジを 与えるための方法の一つとして、グラフの演算が広 く用いられている.本論文では、故障を局所的な情 報から診断できる特徴を持つ highly structured シス テムの理論を用いて、グラフの直積、Kronecker 積、 ラインダイグラフ演算による最適なシステムの構成 について述べる.また、その結果を用いていくつか の最適なネットワークを示す.

Key Words: 故障診断可能システム, PMC モデル, 同時 *t* 診断可能システム, highly structured システム, グラフ演算.

1 はじめに

大規模コンピュータネットワークやマルチプロセッ サシステムのグラフモデルとして、ハイパーキュー ブ, de Bruijn グラフ, Kautz グラフ, バタフライグ ラフ等が注目されている [4,9]. それら相互結合網に 関する研究の進展に伴い, ネットワークの信頼性, 安 全性を保持するための耐故障性の研究が重要となっ ている.大規模システムにおいて、その中のすべて のコンピュータユニット(プロセッサ)の状態を検 査するホストを設置することは、実用上困難である. そのため、システム内の各ユニットが互いの状態を 検査しあい、それらの検査結果の集合(これをシン ドロームと呼ぶ)から故障ユニットを特定する方法 が有効となる、こうした自己診断可能なシステムの 研究の発端は、Preparata ら [10] による研究にある. Preparata らは、システム内に発生する故障ユニット の数に上限を仮定し、システムのユニットと検査を それぞれグラフの頂点と有向辺に対応させることに より、故障診断の問題を定式化した. このグラフモ デルは現在 PMC モデルと呼ばれている. この研究

の中で,同時 t 診断可能システム,逐次 t 診断可能シ ステムの二つの基本モデルが提案された.システム が同時 t 診断可能であるためのグラフ的な特徴付け は Hakimi and Amin[5] によって示された. 具体的 なネットワークに関する研究としては,これまでに ハイパーキューブ[2,14] や de Bruijn グラフ, Kautz グラフ [12,8] に関する結果が報告されている.

香田 [6] は,同時 t 診断可能システムの解析法として highly structured システムを提案した.このシステムは,局所的な検査結果から非常に単純な方法で 故障ユニットを識別できる特徴を持っている.

本論文では、ハイパーキューブ、de Bruijn グラフ 等のネットワークがグラフの演算を用いて構成され ていることに着目し、グラフの積やラインダイグラフ 演算で構成されるグラフと前述の highly structured システムとの関連について論じる.さらに、得られ た結果を用いていくつかの最適なネットワークを示 す.我々は[1]において、グラフの直積で構成できる ネットワークの故障診断について考察を行った.本 論文の結果は[1]で与えた結果よりも、より強い結果 を与えるものである.

2 グラフの演算

本論文で扱うグラフは全てダイグラフ(有向グラ フ)とする.ダイグラフGの頂点集合,辺集合をそ れぞれV(G), E(G), 頂点uからvへの有向辺euvのように表す.特にuからuへの有向辺uuを自己 ループという.uへ向かう有向辺の数をuの入次数 いい $d_{G}u$ で表す.Gにおける最小の入次数を $\delta(G)$ で表す.

グラフG, Hの**直積**G×Hとは、 $V(G) \times V(H)$ を 頂点集合として持ち、頂点 (u_1, v_1) から (u_2, v_2) へ有 向辺が存在するのは、 $u_1 = u_2$ かつ $v_1v_2 \in E(H)$ であ るか、または $v_1 = v_2$ かつ $u_1u_2 \in E(G)$ であるグラ フである. グラフG, HのKronecker 積 G \otimes H とは, V(G) × V(H) を頂点集合として持ち,頂点 (u_1, v_1) から (u_2, v_2) へ有向辺が存在するのは $u_1u_2 \in E(G)$ かつ $v_1v_2 \in E(H)$ であるグラフである.

直積は最も良く知られたグラフの演算の一つであ る.ハイパーキューブ,メッシュ,トーラスは直積で 定義されるグラフの代表的なものである.Kronecker 積はこれまで理論的な研究が広く行われてきた積で あり,特にグラフの分解や埋め込みに関連する問題 で良く研究されている.また後述するライングラフ 演算と関連が深い.

ダイグラフGの**ラインダイグラフ**L(G)とは、E(G)を頂点集合として持ち、頂点 uv から xy へ有向辺が 存在するのは v = x であるグラフである. ラインダ イグラフ演算で定義されるグラフの代表的なものと して、de Bruijn グラフ、Kautz グラフが知られてい る [4].

3 故障診断可能システムと highly structured システム

Preparata ら [10] が提案した PMC モデルは、故 障診断可能システムをダイグラフを用いてモデル化 する.システムの各ユニットはグラフの頂点に対応 し、ユニット u がユニット v を検査するとき、頂点 uからvへ有向辺が存在する.ユニットの検査結果 は有向辺の重みw(u,v)で表し、uがvを検査した結 果,正常と判断したならばw(u,v) = 0,故障と判断 したらw(u,v) = 1とする.ただし、その検査結果は ユニット u が正常であるときのみ信頼できると仮定 する.システム内の各ユニットの検査結果の集合を シンドロームという.シンドロームを解析すること により故障ユニットを特定することが故障診断の目 的である. 故障ユニット数が t を超えないという仮 定のもとで、任意のシンドロームから全ての故障ユ ニットを識別可能であるとき,システムは同時 t 診 断可能であるという.

PMC モデルでは、各ユニットが自分自身を検査す ることはないため、ダイグラフにおける自己ループ は除いて考える. 頂点 $u \, \epsilon \, \phi \, \Delta t$ する頂点の数を $\gamma_{\overline{G}} u$ で表す. 明らかに u が自己ループを持つなら $\gamma_{\overline{G}} u = d_{\overline{G}} u - 1$, 自己ループを持たないなら $\gamma_{\overline{G}} u = d_{\overline{G}} u$ であ る. G の全ての頂点における $\gamma_{\overline{G}} u$ の最小値を $\gamma^{-}(G)$ で表す.

Hakimi and Amin[5] は、システム G が同時 t 診 断可能であるための必要十分条件を示した.その中

図 1: 部分グラフ H(v; µ, v).

で, n 個のユニットを持つシステムが同時t診断可能 であるならば,

 $\begin{cases} (H1) & n \ge 2t+1, \\ (H2) & \gamma^{-}(G) \ge t \end{cases}$

となることが示されている.与えられたシステムに 対し,それが同時t診断可能となるtの最大値を,そ のシステムの故障診断度という.すなわち,故障診 断度とは,システムが正しく故障を識別することを 保証する故障数の上限である.よって,システムの 信頼性を高めるためには,故障診断度がなるべく大 きくなるネットワークを構成することが必要になる. 条件(H2)は,故障診断度がグラフの最小の次数を超 えることができないことを示している.

香田 [6] は、Preparata らの理論に基づき、より効率的な同時 t 診断を可能にする highly structured システムを次のように提案した.

定義 3.1 グラフ*G* の各頂点 v に対して,図1で表 される部分グラフ $H(v; \mu, \nu)$ が構成できるとき,グ ラフ*G* は highly structured システムであるという. $H(v; \mu, \nu)$ の形式的な定義は以下のように表される:

 $V(H(v;\mu,\nu)) = \{v, x_1, \dots, x_{\mu}, y_1, \dots, y_{\mu}, z_1, \dots, z_{\nu}\}$ $E(H(v;\mu,\nu)) = \{y_i x_i, x_i v | 1 \le i \le \mu\} \cup \{z_j v | 1 \le j \le \nu\}$

頂点 $v \in H(v; \mu, \nu)$ のカーネルと呼ぶ.

highly structred システムに関して, 次のことが証明 されている.

定理 3.2 (香田 [6]) システム *G* が, $\mu + \lfloor \nu/2 \rfloor \ge t$ を満たす μ, ν に対してhighly structured システムな らば, *G* は同時 *t* 診断可能である.

$$P_{1}: \bigvee e^{0} (x_{i}) e^{0} (y_{i}) \qquad P_{5}: \bigvee e^{0} (z_{i})$$

$$P_{2}: \bigvee e^{1} (x_{i}) e^{1} (y_{i}) \qquad P_{6}: \bigvee e^{1} (z_{i})$$

$$P_{3}: (\bigvee e^{0} (x_{i}) e^{1} (y_{i})$$

$$P_{4}: (\bigvee e^{1} (x_{i}) e^{0} (y_{i})$$

図 2: $H(v; \mu, \nu)$ の6種の検査結果のパターン P_k .

定理 3.3 (香田 [6]) 定理 3.2 が成立するシステム G の任意の頂点 v において

 $p_1 + \left\lfloor \frac{\nu}{2} \right\rfloor - (p_4 + p_6) \ge 0$

が成り立つとき、かつそのときに限りvは正常である. ここで p_k は図2に示すような部分システム $H(v; \mu, \nu)$ の検査結果のパターン P_k の数とする.

この解析法により, n 個のユニットを持つ highly structured システムでは,各ユニット v に対する部 分システム $H(v; \mu, \nu)$ が与えられていれば,任意の シンドロームに対して O(nt) で故障を識別すること が可能である [7].

4 グラフの演算と highly structured システム

本節では、グラフ演算を用いて構成されたグラフ上 に、定義3.1の部分グラフを構成することについて述 べる.ここで扱うグラフは $\gamma^-(G) \ge 1$ を満たすもの とする. このとき, どのようなグラフ G とその任意 の頂点 v に対しても, ある μ, ν について部分グラフ $H(v; \mu, \nu)$ を構成できる(例えば $\mu = 0, \nu = \gamma^{-}(G)$). しかしながら、故障診断度を引き上げるために、μの 値を出来る限り大きく取ることに興味がある(定理 3.2). そこで以下の関数を定義する. グラフ G の各 頂点vに対し、 $\mu_{C}v$ をv以外の頂点を共有しないよ うなvへ向かう長さ2のパスの最大数と定義する. さ らに $\nu_{G}v$ を, v へ向かう長さ2のパスが $\mu_{G}v$ 本ある ときの、それらと v 以外の頂点を共有しない、v へ 向かう長さ1のパスの最大数とする.全ての頂点 v において $\mu_{G}v = \gamma_{G}^{-}v$ が成立するとき,そのシステム は局所的に最適であると呼ぶ.3節の条件(H2)は, 同時t診断可能システムでは、全てのユニットvに 対してvを検査するユニットが少なくともt個なけ ればならないことを示している. 検査数が nt である

図 3: Case 1. G × H における (u,v) をカーネルと する部分システム H((u,v);k,1).

システムを最適なシステムと呼ぶ. 局所的に最適な システムが,任意の頂点 $v ~ \sigma_{G} v = t$ を満足すれば, それは最適なシステムである.

4.1 直積と highly structured システム

ダイグラフ $G, H \ge u \in V(G), v \in V(H)$ が与 えられたとき、 $G \ge H$ の直積 $G \times H$ の頂点 (u, v)をカーネルとする部分グラフを構成する. ここでは G, Hに自己ループは存在しないと仮定する. すなわ ち任意の頂点 $v \subset d_{G} v = \gamma_{G} v \subset b$ る. 以下の 3 通り の場合を考える.

1. $\mu_G u = \mu_H v = 0$, $\nu_G u = 1$, $\nu_H v = k \ge 1$ の場合.

このとき $d_G^-u = 1$, $d_H^-v = k$ である. $\Gamma_G^-u = \{u_1\}$, $\Gamma_H^-v = \{v_1, \dots, v_k\}$ とする. 関数 μ の定義から $\Gamma_G^-u_1 = \{u\}$ である. これより, $G \times H$ 上に図3の部 分システム H((u, v); k, 1) を構成できる. 図3より

$$\begin{cases} \mu_{(G\times H)}(u,v) = d_{(G\times H)}(u,v) - 1\\ \nu_{(G\times H)}(u,v) = 1. \end{cases}$$

2.
$$\mu_G u = \mu_H v = 0$$
, $\nu_G u \ge 2$, $\nu_H v \ge 2$ の場合.
 $d_G^- u = k$, $d_H^- v = p \ge 0$, $\Gamma_G^{-1} u = \{u_1, \dots, u_k\}$,
 $\Gamma_H^{-1} v = \{v_1, \dots, v_p\} \ge t = 3$. これより $G \times H$
 H において $(u, v) \ge b - \pi N \ge t = 3$ 部分グラフ
 $H((u, v); k + p, 0) \ge 0$ 4のように構成できる. こ
れより $\mu_{(G \times H)}(u, v) = k + p = d_{(G \times H)}(u, v)$.
3. $\mu_G u \ge 1$ の場合.
 $G \perp v u \sim h v \rightarrow 0$ このパスのうち一つを選び,
それを $(y \rightarrow x \rightarrow u) \ge t = 3$. また

$$\begin{cases} d_{G}^{-}u = k & \Gamma_{G}^{-1}u = \{x, u_{1}, \dots, u_{k-1}\} \\ d_{H}^{-}v = p & \Gamma_{H}^{-1}v = \{v_{1}, \dots, v_{p}\} \end{cases}$$

とする. G×Hにおいて (u, v) をカーネルとする部

図 4: Case 2. *G* × *H* における (*u*,*v*) をカーネルと する部分システム *H*((*u*,*v*); *k* + *p*,0).

図 5: Case 3. G×Hにおける (u,v) をカーネルと する部分システム H((u,v); k + p,0).

分グラフ H((u,v);k+p,0) を図 5 のように構成できる. これより $\mu_{(G\times H)}(u,v) = k + p = d_{(G\times H)}^-(u,v)$.

定理 4.1 $G, H \delta(G) \ge 1, \delta(H) \ge 1$ を満たす自 己ループを持たないダイグラフとする. 任意の $u \in V(G), v \in V(H)$ に対し

(1) $\mu_G u = \mu_H v = 0$ かつ min{ $\nu_G u, \nu_H v$ } = 1 なら ば、 $\mu_{(G \times H)}(u, v) = d^-(u, v) - 1$, $\nu_{(G \times H)}(u, v) = 1$. (2) $\mu_G u = \mu_H v = 0$ かつ min{ $\nu_G u, \nu_H v$ } ≥ 2, または max{ $\mu_G u, \mu_H v$ } ≥ 1 ならば $\mu_{(G \times H)}(u, v) = d^-(u, v)$.

系 4.2 *G*, *H* を $\delta(G) \ge 1$, $\delta(H) \ge 1$ を満たす 自己ループを持たないダイグラフとする. 任意の $u \in V(G)$, $v \in V(H)$ に対し $\mu_G u = \mu_H v = 0$ か つ min{ $\nu_G u, \nu_H v$ } ≥ 2 または max{ $\mu_G u, \mu_H v$ } ≥ 1 ならば, *G* × *H* は局所的に最適なシステムである.

4.2 Kronecker 積と highly structured システム

4.1 節と同様に, Kronecker 積*G*⊗*H*における部分 グラフの構成について述べる.ここで考えるダイグ ラフは自己ループを持つものも含めて考える.グラ フ*G*の頂点*u*が自己ループを持つなら $\mu_{G}u + \nu_{G}u = d_{G}^{-}u - 1$ であり,自己ループを持たないなら $\mu_{G}u + \nu_{G}u = d_{G}^{-}u$ である. $\mu_G u \ge 1$ かつ $\mu_H v \ge 1$ とする. $\mu_G u = k$ かつ G 上で u へ向かう長さ 2の k本のパスを $(y_i \to x_i \to u)$ (i = 1, ..., k)とし、 $\mu_H v = p$ かつ H 上で v へ向かう 長さ 2の p 本のパスを $(y'_i \to x'_i \to v)$ (j = 1, ..., p)とする. このとき、任意の i, j $(1 \le i \le k, 1 \le j \le p)$ に対して、G \otimes H 上に長さ 2のパス

$$(y_i, y'_i) \to (x_i, x'_i) \to (u, v) \tag{1}$$

が存在する. uがG上で自己ループを持つならば,

$$(u, y'_j) \to (u, x'_j) \to (u, v) \tag{2}$$

で表されるp本のパスが存在する. 同様にvがH上 で自己ループを持つなら,

$$(y_i, v) \to (x_i, v) \to (u, v) \tag{3}$$

という k本のパスが存在する.

$$\mu_{(G\otimes H)}(u,v) = (\mu_G u)(\mu_H v) + (\ell_G u)(\mu_H v) + (\mu_G u)(\ell_H v) \\ = (\mu_G u + \ell_G u)(\mu_H v + \ell_H v) - (\ell_G u)(\ell_H v)$$

を得る.

定理 4.3 $u \in V(G)$, $v \in V(H)$ が, $\mu_G u = d_G^- u - \ell_G u$, $\mu_H v = d_H^- v - \ell_H v$ を満たすとする. このとき, $G \otimes H$ の頂点 (u, v) に対して

$$\mu_{(G\otimes H)}(u,v) = d^{-}_{(G\otimes H)}(u,v) - \ell_{(G\otimes H)}(u,v).$$

系 4.4 *G*, *H* が局所的に最適であるなら, *G* ⊗ *H* も また局所的に最適である.

4.3 ラインダイグラフ演算と highly structured システム

Gの頂点 u において部分グラフ $H(u; \mu, \nu)$ が構成 されたとする. u から接続する有向辺 e = uv に対し, L(G) において e をカーネルとする部分システムを構 成することを考える. $d_{L(G)}^{-}uv = d_{G}^{-}u$ であり, また $\mu_{L(G)}uv \ge \mu_{G}u$ は明らかである.

 $\mu_{G}u = k \ge 1$, Gにおいて $u \sim hoholowing k = 0$ 2のパスを $(y_i \rightarrow x_i \rightarrow u)$, $1 \le i \le k \ge t$ る. ま た $\nu_{G}u = p \ge 1$, $u \sim hoholowing p = 0$, $1 \le j \le p \ge t$ る. z_j は自分以外から隣 接する頂点が少なくとも一つ存在するので,その中

図 6: L(G) 上の e = uv をカーネルとした部分シス テム H(uv; k + p, 0).

の任意の一つを選び,それを w_j とする.このとき, L(G)においてe = uvをカーネルとする部分システムを図6のように構成できる.

定理 4.5 ダイグラフ G が $\gamma^-(G) \ge 1$ を満たすなら, L(G) は局所的に最適なシステムである.

5 ネットワークへの適用

5.1 ハイパーキューブ, メッシュ, トーラス

n 次元ハイパーキューブ Q_n , n 次元メッシュ $M_n(k_1,...,k_n)$, n 次元トーラス $T_n(p_1,...,p_n)$ は直 積を用いてそれぞれ次のように定義される. K_2 , P_k , C_p は, それぞれ無向グラフの2個の頂点を持つ完全 グラフ, k 個の頂点を持つパス, p 個の頂点を持つサ イクルにおいて, 隣接する2点を互いに隣接する有 向辺に置き換えたものである.

 $Q_1 = K_2, Q_n = Q_{n-1} \times K_2 \text{ for } n \ge 2$ $M_n(k_1, k_2, \dots, k_n) = P_{k_1} \times P_{k_2} \times \dots \times P_{k_n},$ $T_n(p_1, p_2, \dots, p_n) = C_{p_1} \times C_{p_2} \times \dots \times C_{p_n}.$

系 4.2 を用いることにより、これらのグラフについて以下が成り立つことがすぐにわかる.

定理 5.1

(1) Q_n は $n \ge 3$ に対して同時 n 診断可能であり, 最適なhighly structured システムである.

(2) $M_n(k_1,...,k_n), k_i \ge 2, 1 \le i \le n$ は $n \ge 3$ に 対して同時n診断可能であり、局所的に最適なhighly structured システムである.

(3) $T_n(p_1,...,p_n)$, $p_i \ge 3$, $1 \le i \le n$ は $n \ge 2$ に 対して同時 2n 診断可能であり,最適なhighly structured システムである.

5.2 de Bruijn グラフ, Kautz グラフ

de Bruijn グラフ B(d, D) と Kautz グラフ K(d, D)は、次のようにラインダイグラフ演算を用いて再起 的に定義されるグラフである [4]. ここで、 K_d^* は d個の頂点を持ち、各頂点が自分以外の全ての頂点へ 有向辺を持つようなダイグラフであり、 K_d^+ はさら に各頂点に自己ループを加えたグラフである.

$$\begin{split} B(d,1) &= K_d^+, \qquad B(d,D) = L(B(d,D-1)), \\ K(d,1) &= K_{d+1}^*, \quad K(d,D) = L(K(d,D-1)). \end{split}$$

定理 4.5 の結果から, de Bruijn グラフ, Kautz グラ フについて以下が成り立つ. この結果は, 香田ら [8] によって得られた結果と一致するものである.

定理 5.2 (1) *d* ≥ 2, *D* ≥ 2 に対し, de Bruijn グラフ *B*(*d*, *D*) は同時 (*d* − 1) 診断可能であり, 局所 的に最適なhighly structured システムである.

(2) $d \ge 2$, $D \ge 2$ に対し, Kautz グラフ K(d, D)は同時 d 診断可能な最適highly structured システム である.

5.3 Extended de Bruijn グラフ, Extended Kautz グラフ

de Bruijn グラフ, Kautz グラフはその一般化 がいくつか提案されている. extended de Bruijn グラフは Shibata and Gonda[11] によって提案さ れたグラフである. extended de Bruijn グラフ $E_B(d; D_0, \ldots, D_{k-1})$ は次のように Kronecker 積を 用いて定義される.

$$E_B(d; D_0, D_1, \ldots, D_{k-1})$$

= $B(d, D_0) \otimes B(d, D_1) \otimes \cdots \otimes B(d, D_{k-1}).$

extended Kautz グラフ $E_K(d; D_0, \ldots, D_{k-1})$ も, 同様にして次のように定義される.

$$E_K(d; D_0, D_1, \dots, D_{k-1})$$

= $K(d, D_0) \otimes K(d, D_1) \otimes \dots \otimes K(d, D_{k-1}).$

ラインダイグラフ演算と Kronecker 積の間には演 算の交換法則が成り立つことが知られている [13]. す なわち,任意のグラフ G, Hに対して $L(G \otimes H) =$ $L(G) \otimes L(H)$ が成り立つ.したがって, extended de Bruijn グラフ, extended Kautz グラフに関して以下 が成り立つ.

$$E_B(d; D_0 + 1, D_1 + 1, \dots, D_{k-1} + 1)$$

$$= L(E_B(d; D_0, D_1, \dots, D_{k-1})),$$

$$E_K(d; D_0 + 1, D_1 + 1, \dots, D_{k-1} + 1)$$

$$= L(E_K(d; D_0, D_1, \dots, D_{k-1})).$$

この性質を用いることにより, 定理 5.2 と系 4.4 から 次が成り立つ.

定理 5.3

(1) $E_B(d; D_0, ..., D_{k-1})$ ($D_i \ge 2, 0 \le i \le k-1$) は同時 $d^k - 1$ 診断可能であり、局所的に最適なhighly structured システムである.

(2) $E_K(d; D_0, D_1, ..., D_{k-1})$ $(D_i \ge 2, 0 \le i \le k - 1)$ は同時 d^k 診断可能である最適なhighly structured システムである.

5.4 バタフライ

k 進 r 次元バタフライ b(k,r) は、頂点が正整数と $ベクトルの組 <math>\langle \ell; x \rangle$, $0 \leq \ell < r$, $x = (x_0, x_1, ..., x_{r-1})$, $0 \leq x_i < k$ でラベル付けされ、頂点 $\langle \ell; x \rangle$ か ら $\langle \ell + 1; x' \rangle \land x \geq x'$ が ℓ ビット目だけが異なると き有向辺が存在する.

バタフライは de Bruijn グラフとサイクルの Kronecker 積で表すことができる [3]. すなわち, $C_r \ e$ r 個の頂点を持つ有向サイクルとすると $b(k,r) = B(k,r) \otimes C_r$ が成り立つ. したがって定理 4.4 より, 次が成り立つことがすぐにわかる.

定理 5.4 $k \ge 2$, $r \ge 3$ に対し, バタフライ b(k,r)は同時 k 診断可能な最適highly structured システム である.

6 まとめ

本研究では、多くのネットワークがグラフの演算を 用いて構成されている事実に着目し、グラフの演算 と故障診断可能システム、特に highly structured シ ステムの関係について考察した。その結果、直積、ラ インダイグラフ演算は局所的に最適なネットワーク を構成することを示すことができた。また Kronecker 積は最適性を保存する演算であることが証明できた。 これらの結果を利用することにより、いくつかの代表 的なネットワークが最適、もしくは最適に近い highly structured システムであることを示すことができた。 現在も新しい構造を持ったネットワークが次々と提 案されている。グラフの演算に代表される、ネット ワークの構成法と故障診断の関連を研究することは、 広いネットワークのクラスに適用可能な手法として 非常に有用であると考えられる.

参考文献

- T. Araki and Y. Shibata, "Diagnosability of networks represented by the cartesian product," IE-ICE Trans. Funamentals, vol.E83-A, no.3, pp.465– 470, March 2000.
- [2] J.R. Armstrong and F.G. Gray, "Fault diagnosis in a boolean n cube array of microprocessors," IEEE Trans. Comput., vol.C-30, no.8, pp.587-596, 1981.
- [3] J.-C. Bermond, E. Darrot, O.Delmas and S. Perenners, "Hamilton circuits in the directed wrapped Butterfly networks," Discrete Applied Math., 84, pp.21-42, 1998.
- [4] J.-C. Bermond and C. Peyrat, "de Bruijn and Kautz networks: a competitor for the hypercube?," in Hypercube and Distributed Computers, F. André and J.P. Verjus(eds.) Elsevier Science Publishers B.V. (North-Holland), pp.279-293, 1989.
- [5] S.L. Hakimi and A.T. Amin, "Characterization of connection assignment of diagnosable systems," IEEE Trans. Comput., vol.C-23, no.1, pp.86-88, Jan. 1974.
- [6] 香田, "t 重故障同時診断可能システム," 信学論 (D), vol.J61-D, no.9, pp.680-687, 1978.
- [7] 香田,三岡,"O(|E|)で解析可能なt重故障同時診断 可能システムの最適構成,"信学論(D),vol.J69-D, no.11,pp.1547-1555,Nov. 1986.
- [8] 香田,吉田,朱雀,"de Bruijn ネットワーク,変形 de Bruijn ネットワークおよび Kautz ネットワークに おける分散的自己診断可能システム,"信学論(A), vol.J83-A, no.5, pp.524-535, May 2000.
- [9] F.T. Leighton, "Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes," Morgan Kaufmann, 1992.
- [10] F.P. Preparata, G. Metze and R.T. Chien, "On the connection assignment problem of diagnosable systems," IEEE Trans. Electron. Comput., vol.EC-16, no.6, pp.848-854, Dec. 1967.
- [11] Y. Shibata and Y. Gonda, "Extension of de Bruijn graph and Kautz graph," Computers and Mathematics with Applications, 30, pp.51-61, 1995.
- [12] 柴田, 飯島, "de Bruijn network および Kautz network 上の故障診断システムの構成と診断アルゴリ ズム,"信学論(D), vol.J75-D-I, no.12, pp.1144-1153, 1992.
- [13] Y. Shibata, T. Hasunuma and S. Fukuda, "Isomorphic factorization of de Bruijn digraphs," Discrete Mathematics, 218, pp.199–208, 2000.
- [14] 柴田、安田、"ハイパーキューブネットワーク上の故 障診断システムの構成と診断アルゴリズム、"信学論 (D), vol.J74-D-I, no.11, pp.784-787, Nov. 1991.