gobooboooboo 120560 2001 0 160-165

160

LA Symposium Winter 2001

Deriving Parameter Conditions for Periodic Timed Automata
Satisfying Real-Time Temporal Logic Formulas

KBRAHE KERERTEWAR WHRKER FH K (Akio Nakata)
Department of Informatics and Mathematical Science, Osaka University

1 Introduction

Model checking[1] have been recognized as one of
very useful and effective methods for designing reli-
able hardware/software systems. Especially, in recent
years, real-time systems must be developed for the areas
that high reliability is required, such as aircraft/train/car
controlling, nuclear reactors, medical devices and other
real-time systems which may be produced a lot and
hard to modify in later (e.g. hardware chips or embed-
ded syste ms). Model checking techniques for real-time
systems may be very useful for developing such a reli-
able real-time system to ensure that the system’s design
written in a some formal model satisfies the required
properties such as safety, liveness, or fairness.

The classical model checking method is not para-
metric, that is, to check whether a behavioral specifi-
cation written in some state model, satisfies some re-
quirement specification (property) written in temporal
logic, all the parameters in the specification must be
fixed to some concrete values. [2] proposed a semi-
decision procedure to derive a symbolic representation
of states of a (parametric) hybrid automaton (an exten-
sion of a timed automaton) which satisfy a given tempo-
ral property written in a (parametric) real-time temporal
logic formula. They adopt first-order theory with addi-
tion on real-numbers[3] as symbolic representation of
state-sets. Although the satisfiability of the first-order
theory with addition on real-numbers is decidable, fix-
point calculation is very costly and generally undecid-
able. On the other hand, [4] proposed an algorithm
to obtain the condition of parameters in order that the
given non-parametric state model on dense time do-
main satisfies the given parametric temporal logic for-
mula. However, they only allow to write parameters to
temporal logic formulas, not in a timed automaton. In
a realistic system design process, we usually want to
choose parameter values of models (implementations)
rather than in temporal logic (specifications).

Thus, we propose a decision algorithm to derive a
set of parameters of a subclass of a timed automa-
ton model which may contain parameters (parametric
timed automata[5]) and satisfies a formula of a real-
time extension of CTL[1]. In our method, parameters
are allowed in both a model and a temporal logic for-
mula. We adopt formulas of first-order theory with ad-

dition on real-numbers[3] as symbolic representation
of sets of parameter values. It is known to be decid-
able to check satisfiability and mechanical quantifier-
elimination is also possible. In order to reduce the size
of the intermediate symbolic representation, we take an
on-the-fly approach, that is, we decompose the given
problem on-the-fly to several subproblems, and recur-
sively solve the subproblems to construct the entire con-
dition for parameters. In this approach, we need not en-
code symbolically the entire state space (it tends to be
very long). and only the necessary part of the tree is
traversed. Specifically, we compute the weakest condi-
tion WPC(s, f) of parameters in order that the state s of
the given model satisfy the given temporal property f.
First, we define WPC(s, f) as a recursive function such
as

WPC(s, f) & F(WPC(s1, f), - -+, WPC(sk, fi)),

where F() is a functional on first-order formulas, each
s; is some next state of s, and each f; is some derived
formula of f. Basically, we can compute the weakest
condition WPC(s, f) if the application of the recursive
definition of WPC(s, f) is ensured to terminate. How-
ever, that is not the case in general. If the model con-
tains some loops, such a recursive application does not
terminate. To cope with the problem, we find some sub-
class of the timed automaton such that we need not to
explore the infinite computation tree. When the model
is a periodic timed automaton, that is, after some fixed
time period it returns to its initial state and continues
its behavior, we have only to check some finite part of
the infinite computation tree and output the result. In
our method, WPC(s, f) is ensured to be obtained af-
ter a fixed steps of recursive computations, thus we can
avoid costly fixpoint calculations of first order theory
on real-numbers.

2 Periodic Timed Automata

In this section, we formally define our model, peri-
odic timed automata. To begin with, we define a (non-
periodic) parametric timed automaton model. Our def-
inition of timed automata is essentially the same but
slightly different from the traditional definition in [6],
since we generally allow timing constraints to be first-
order formulas with addition on real-numbers.

Let Act denote a set of actions, Var denote a set of
variables, and Pred(Var) denote a set of formulas of

first order theory with addition on real-numbers over
Var. We also denote a set of real-numbers by R and a
set of nonnegative real-numbers by R*

Definition 2.1 A parametric timed automaton is a tuple
(S,C,PVar,E, InW), sinis), where S is a finite set of con-
trol states, C C Var is a finite set of clocks, PVar C Var
is a finite set of parameters, E C S X Act X Pred(Var) x
2€ x S is a transition relation, Inv() : S — Pred(Var)
is an invariant condition for each state, s;n;; is the initial

. aPr .
state. We write s; — s; if (si,a, P,r,5;) € E. (]

Informally, a transition s; i sj means that the ac-
tion a can be executed from s; when the values of both
clocks and parameters satisfy the formula P (called a
guard condition), and after executed, the state moves
into s; and clocks in the set r are reset to 0. In any state
s, values of all clocks always increase continuously at
the same speed, representing the time passage. Note
that the values of clocks (and parameters if any) can
never violate the invariant condition Inv(s). Intuitively,
Inv(s) represents the range of values (e.g. minimum and
maximum values) allowed for clocks (and parameters).
Thus, time passage at state s will stop when the value
of some clock will exceed the maximum value specified
by Inv(s). When time passage stops, some executable
action is forced to execute, representing urgency of the
action. Also, if Inv(s") will be violated, any transition
into the state s’ is not allowed to execute.

Example 2.1 Fig. I is a simple example of a para-
metric timed automaton. In Fig. 1, a set of parame-

ters is {x,y,2}, a set of clocks is {c, '}, the initial state

. .. a,fc<x-2],{)
is 5, and the transition s[c < x] — si[true)

means that in state s, for a given value of the param-
eter x, some time may be elapsed (i.e. the clock c in-
creases) while c satisfies the invariant [c < x), and
when ¢ < x — 2 holds, the action a can be executed,
no clocks are reset to 0, and the state changes to s,
(the invariant of s, is [true}). Similarly, the transition

b,[c>x=3],{c") .
sle € x] — s2lc < x) means that some time
may be elapsed while c satisfies the invariant [c¢ < x],
and when ¢ > x — 3 holds, the action b can be executed,

the clock ¢’ is reset to 0, and the state changes to s,. In

.. d,[czyAc’<z] i)
the transition s;[c < x] — s3[true), a guard

condition for both clocks ¢ and ¢’ are specified using
parameters y and z. o

Formal semantics of timed automata is defined as fol-
lows. The values of clocks and parameters are given by
a function p : (C U PVar) — R. We refer to such a
function as a value-assignment. We represent a set of
all value-assignments by Val. We write p |= P if a for-
mula P € Pred(Var) is true under a value-assignment
p € Val. The semantic behavior of a parametric timed
automaton is given as a semantic transition system on
concrete states. A concrete state is represented by (s, p),
where s is a control state and p is a value-assignment.

161

paramters: X,y,z

clocks: c,c’ s1 [true]

a, [c<=x-2], ()
g [C<=x]

b, [e>x-3], {c’} 4, [c>ay and c’<=z],{}

82 [c<=x] 83 [tru

Fig. 1: Example of Parametric Timed Automata

Let CS % {(s,p)ls € S,p € Val} be a set of concrete
states. The semantic transition system consists of delay-
transitions and action-transitions. A delay transition
represents a time passage and an action transition repre-
sents an execution of an action. Formally, the semantic
transition system is defined as follows.

Definition 2.2 A semantic transition system for a para-
metric timed automaton (S, C, PVar, E, Inv(), sinis) is a
labelled transition system on concrete states CS, where
the transition relation is defined by the following rules:

® (5,0 LN (s,p+)ifte R* and (p + 1) | Inv(s),

o (5.0) 5 (plr = OD ifs 5 &, p = P and
plr — 0] E Inv(s’),

where p + t and p[r — 0] are the functions from vari-
ables to real-numbers, defined as follows:

+t ifxeC,
e+nx)E { gg; ol{hJerise.

Clr > | Dy Srxor,

[m]

The major difference of periodic timed automata
from normal parametric timed automata is that it checks
the elapsed time since it is started, and if it is equal to
the specified period T, then it resets to its initial state.
Moreover, it is assumed that only finitely bounded ac-
tions can be performed before returning to the initial
state. To ensure the above properties, we define a pe-
riodic timed automaton as one obtained by adding re-
set transitions to a parametric timed automaton with no
loops (we refer to such a parametric timed automaton
as a finite parametric timed automaton). Formally it is
defined as follows.

Definition 2.3 A finite parametric timed automaton is
a parametric timed automaton whose transition graph

has no directed cycles, (i.e. it is a Directed Acyclic
Graph(DAG)). o

Example 2.2 The parametric timed automaton in Ex-
ample 2.1 is a finite parametric timed automaton since
its transition graph is a tree (so it is also a DAG). 0O

Definition 2.4 A periodic timed automaton is a para-
metric timed automaton which is obtained by adding to

paramters: x,y,z
clocks: €,CucP 4, [epsT), {c.c" ep]
52 @ [true)

a, [ceax-21,(}

B, lewx-31, {c’ } d, [c>=y and c’<=z],{}

82 [cemx) 83 [true]
i, {cp=T), {c,c’,cp}

Fig. 2: Example of Periodic Timed Automata

f u=true (universally valid)
| false (universally invalid)
| =f (negation)
| fAf (conjunction)
| fvf (disjunction)
| f=f (implication)
| (@)~pf (existential ‘next’ operator)
| [al~pf (universal ‘next’ operator)
| fEU.pf (existential ‘until’ operator)
| fAU-pf (universal ‘until’ operator)
| EG.pf (existential ‘always’ operator)
| AG-pf (universal ‘always’ operator)
| EF.,f (existential ‘eventually’ operator)
| AF.pf (universal ‘eventually’ operator)

Fig. 3: Syntax of RPCTL

a finite parametric timed automaton the following spe-
cial reset transitions for every state s:

ifc,=T1.C
§ > Sini

where Sinis is a initial state, C is a set of all clocks, c, €
C is a a special clock which keeps the elapsed time from
the initial state s;;; (no other transition can reset this
clock), T € R* is a period, i € Act is a special reset
action. u]

Example 2.3 Fig 2 is an example of a periodic timed
automaton. This example is a modified version of Ex-
ample 2.2 where a special clock c, and some return

. ilcp=T)lc,c’ «cp)
transitions such as s, — s are added. Note
that we allow periodic timed automata to terminate in-
stead of returning to the initial state, such as the state
sy in Fig 2. (u]

3 Real-time CTL

In this section, we define RPCTL, a Real-
time and Parametric extension of Computation Tree
Logic(CTL)[1].

Definition 3.1 The syntax of RPCTL formula is defined
by the BNF in Fig. 3. where a € Act is an action
name, p is a linear expression which may contain con-
stant real-numbers and/or a parameter variable, and

162

(s,p) = true.
oE~f % oRf
GOEANSE ¥ (o E fiando)E f

s.p) Ea)pf def

there exists some transition sequence

(5,0) = (5,0 +1) =5 (s',0))

suchthatt ~ pand (s, 0") F f.
(P E REUfr %

there exists some transition sequence

4
(5,0) = (51,P1) == (51,91 +11) — -

-1 k-

— (Sk-1,Pk-1 + tk-1) — (Sk, Pt)

and some non-negative real-number f;,

St (Stpx+) E fpandfy +--- 4+ ~p

and for any i(1 < i < k)and for any £;(0 < ¢ <1,),

Gipi+) E fi

P E filUopfy %
for any transition sequence such that

f

!
(5,0) = (51,P1) —= (51,P1 +11) — -
- Gg-)
— (Sk-1,Pk-1 + tk-1) — (Sk. 1)
and for any nonnegative real-number #,
Grpe+t)F andty + -+t ~p
and for any i(1 < i < k) and for any (0 < 1} < £;),
Gupi+ 1 E fi.

Fig. 4: Semantics of RPCTL

~€ {<,%,>,2, =} is a comparison operator. We may
omit ‘~ p’ specifier, and in that case ‘> 0’ is assumed.O

RPCTL is a logic to specify a property of a paramet-
ric timed automaton state and its succeeding behavior
using temporal operator with timing constraints which
may contain parameters. Intuitive meaning of basic
constructs of RPCTL is as follows. ‘true’ is satisfied by
all concrete states. ‘~f” is satisfied by a concrete state
(s, p) if and only if f is not satisfied by (s, p). ‘ false’ is
never satisfied by any concrete states, which is equiva-
lent to —true. ‘fi A f5’ is satisfied if and only if both f;
and f is satisfied. ‘f} vV f2’ and ‘f; = f;’ are defined
similarly to classic propositional logic. “(a)¢,f’ is sat-
isfied by (s, p) if and only if there exists some transition
from (s, p) performing a within ¢ units of time, such that
f is satisfied by the next (control) state. Since we can
define similarly if ~ is other than < (case of >, <, >, =),
we only mention the case of < in the following expla-
nation. ‘[als,f’ is satisfied if and only if for any transi-
tion from the state performing a within ¢ units of time,
f is satisfied by the next state, which is the same as
~Aa)sp—f. ‘fiEUgpf2’ is satisfied if and only if there
exists some transition sequence such that f, eventually
holds within ¢ units of time and until then, f; is always
satisfied. ‘fiAUg,f2’ satisfied if and only if for any
transition sequence, f> eventually holds within ¢ units
of time and until then, f; is always satisfied. ‘EF¢,f",

‘AG<pf’, ‘AF<pf’ and ‘EGg, f’ are abbreviations for
trueEUc<,f, ~EF ¢p~f, trueAU<, f and -AF¢,~f, re-
spectively.

In general, we write M, (s,p) F f to mean that an
RPCTL formula f is satisfied by a concrete state (s, p)
of a parametric timed automaton M. If there are no con-
fusions, we omit M and just write (s,p) &= f. The for-
mal definition of the relation = is as follows. We only
give the definitions for six primitive constructs, true,
=f, i A fo, (a)..pf, f1EU~pf2 and, flA_U...pfz. Rest of
the constructs can be rewritten by using the above con-
structs.

Definition 3.2 The relation (s,p) | f is formally de-
fined in Fig. 4. a

Example 3.1 The RPCTL formula
[a1)<q, ((@2)true)EU»q,((a3)true))

means that for every state reachable after executed the
action a; within q\ units of time, there exists a execution
path such that the action ay is always executable until
a3 becomes executable after q, units of time elapsed.
Note that q, and q, are parameter variables. o

4 Deriving of the Weakest Condition of Pa-
rameters

Now we describe our method to derive symbolically
the weakest condition of parameters WPC(s, f) in order
that the state s of the periodic timed automaton satisfies
the RPCTL property f. Beforehand, we give the precise
definition of our problem.

Definition 4.1 Let M be an parametric timed au-
tomata, s be a state of M, and f be an RPCTL formula.
The parameter condition derivation problem is a prob-
lem to derive a first-order formula WPC (s, f) such that

pEWPC(s, /) iff (s.p) F f. o

At first, we give an algorithm to solve the parameter
condition problem for finite parametric timed automata,
and then we extend it to periodic timed automata.
4.1 Finite Model Case

As mentioned in Section 1, we define WPC(s, f) as a
recursive function such that

WPC(s, f) & F(WPC(s1, f), ..., WPC(s, fi)).

Here we give a concrete definition of the function
WPC(s, f) for every construct of RPCTL formula f.

Definition 4.2 The function WPC(s, f), which takes as
arguments a state s of a parametric timed automaton,
and a RPCTL formula f, and returns a first order for-
mula, is defined as Fig 5, where P[C + t/C] (P{0/r])
represents a first order formula P whose every free oc-
currence of each variable x € C (x € r) is replaced with
x + t (0, respectively). 0

163

WPC(s, true) def true
WPC(s, ~f) % -wPCs, f)
WPC(s, fi A £3) % WPC(s, fi) A WPC(s, £2)
WPC(s, (@)~pf) % 34,0 < t5 At ~ p A (In(s) A
y (Pi A (Inv(si) A WPC(s;, £)O/rIDIC +£5/C])
iel(s.a)

L(Pi),
where I(s, a) = {ils iy sil,

WPC(s, fiEU-pf2) & 31,0 < 4, A
VL0 < £ AL, < t5) = WPC(s, f)IC +1,/C]) A
Unv(s) A(ts ~ p AWPC(s, f) V
\ (Pi AWPC(si, fi EU(c-1,y ID)IC + £5/C)
iel(s)

where I(s) = {ils albir si,

WPC(s, fiAU_pfy) ' V0 < 1, =
VL0 < £ AL S t5) = WPC(s, L)IC + £,/C]) A
(Inv(s) = (ts ~ p AWPC(s,) A

N\ (i = WPC(s:, fiAU co1 fOD)IC + £:/CD)
i€l(s)

Fig. 5: Function WPC(s, f)

Explanation of the definition of WPC(s, f) is as fol-
lows. If f is one of true or fi A f>, the definition of
WPC(s, f) is straightforward. The case of f = =f is
less obvious, but since we have defined WPC(s, f) as
the weakest condition, p ¢ WPC(s, f) immediately im-
plies p E WPC(s, —=f), and vice versa. Hence we have
WPC(s,~f) = -WPC(s, f).

Consider the case of f = (a).,f’. Suppose p is a
value-assignment such that (s, p) = (a).,f’. From the
Definition 3.2, there must exist a concrete transition se-
quence (s, p) LN (s,p+10) 5 (s, p)suchthatt ~ p
and (¢,p’) F f'. Thus, the following conditions must
also hold:

e some timed automaton transition s ke s’ must ex-
ists. .

e p+t must satisfy both Inv(s) and P (Definition 2.2).

e p’ is a value-assignment p + ¢ whose values of the
clocks in r are reset to zero, i.e. p’ = (p+2)[r — 0],
and it satisfies Inv(s’).

o (s,pYE f,ie.p E WPC(s’,f’).

Hence, we obtain a necessary condition

“there exists some non-negative real-number ¢ and

.rs a,Pr
some transition s — &, such that p = (¢ ~ p),
p+tEAInv(s) APand (p+0)[r — 0] E Inv(s’) A
WPC’(S,, fl)n

for p to make the state s satisfy f. We can rewrite
‘v +t | Inv(s) A P’ to the condition of p, such as
p E (Inv(s) A P)[C + t/C]. By the same way, we can
also rewrite (o + 9)[r — 01 E Inv(s") AWPC'(s’, f’) as
p E (nv(s") A WPC(s', f')IC + t/C,0/r]. Therefore,

the following condition holds:

pEQO<tAt~pAInv(s)AP
Anv(s"y A WPC(s', f'DI0/r])[C +¢/C].

Since it is sufficient that some non-negative real-

. aPr , .
number ¢ and some transition s — s’ exist, we can
weaken the above condition as:

pEIIO<tAt~pAlnvs)A
V (P A (nwis)
i€l(s,a)
AWPC(s;, f)[0/r]}
)C +¢/C).

where I(s, @) %' {ils “25' 5;} is a set of indices of tran-
sitions whose source node is s and action name is a.
We can easily prove that this is the weakest condition
of p such that (s,p) E f, and ¢ is some flesh variable
which does not appear in either Inv(s), P;, Inv(s;) or
WPC(s;, f').

Consider the case of f = fiEU.., f>. Similar to above,
suppose p is a value-assignment such that (s,p) E
HEU., /. From the Definition 3.2, there must exist

some transition sequence (s, p) = (s1,01) N (s1,p1+4)
a, h-) ax-1 1

— oo = (Sk-1, Pr-1 +11-1) — (Sk, Pr) — (Sk, Pr+11),

such that (sx, px+ 1) E £, 11+ - -+ ~ p, and for any j

(1< j<k)andforanyt; (0 <7, <)), (sj.pj + 1)) E fi

holds. To obtain a recursive definition of WPC(s, f),

we divide the premise of the above statement into two
cases,k =1and k > 2.

[Case k = 1): If k = 1, then there must exist a transi-
tion sequence (s, p) LN (s,p+?) such that (s, p+1) E £,
t~pandforany ¥ (0 < ¢ < 1), (s,p +) E f; holds.
Similar to the case of f = (a).,f', the weakest condi-
tion of p is obtained as follows:

pEIO<tALt~pA(Inv(s)
AWPC(s, L2)IC +¢/C]
IN/A(FS YY)
= WPC(s, f/)IC +7/C]) (1)

[Case k > 2]: If we assume k < 2, then there must ex-
ist a transition sequence (s,p) = (s1,01) LN (s1,p1 +
1) —> (s2,p2) such that (s, 02) k fiEU-c-, /2 holds,
and for any #; (0 <] < 1), (s1,,1 + 1)) F fi holds.
Considering that there may exist multiple transitions

WPy " . .
a4 s;, the weakest condition of p is obtained as

follows:

pEIMO<tA(Inv(s)A
V Pi
iel(s) '
WPC(si, fiIEU (- 2)NIC +1/C]
AVEI0 <Y AY <D)
= WPC(s, HIC+7/CIN (2

164

o GiPiri . e g .
where I(s) % {ils “=5" s,) is a set of indices of transi-
tions whose source node is s.

Therefore, the general case is (1) or (2), that is,

pEIHO<tA
YO <SP AY <)
= WPC(s, A)IC+/CN
A(Inv(s)A (t ~ p A WPC(s,) V
V {PiA
iel(s)
WPC(si, AEU(c-p 2ID)IC +t/C]

The case of f = fiAU.,f; is similar, and we omit the
detailed description due to space limitation.

If the transition graph contains no loops, there are no
cases that WPC(s, f) is recursively called during the
computation of WPC(s, f) itself. Thus, the function
call WPC(s, f) is ensured to terminate. Hence, a re-
cursive function WPC(s, f) is an algorithm to obtain
the parameter condition for DAG-formed models (i.e.
finite parametric timed automata).

Theorem 4.1 For every state s of a finite parametric
timed automaton M and every RPCTL formula f, a
recursive function WPC(s, f) always terminates and
returns a correct solution of a parameter condition
derivation problem, i.e.:

Vp.lo E WPC(s, f) iff (s.p) E f]. o

4.2 Periodic Model Case

If parametric timed automata have some loops, the
algorithm WPC(s, f) in Theorem 4.1 may not termi-
nate. In this section, we prove that if models are pe-
riodic timed automata, we have only to check a finite
fragment of the computation tree to derive the weakest
condition of parameters.

At first, we introduce the notion of unfolding. Re-
place all returning transitions of a periodic timed au-
tomaton (Fig. 6-(a)) with transitions to special terminat-
ing states. We obtain the corresponding finite paramet-
ric timed automata (Fig. 6-(b)). Then, attach the copies
of the corresponding finite parametric timed automaton
to each special terminating state of itself, once for all.
Finally, we have the timed automaton which represents
the first 2 period behavior (Fig. 6-(c)). We refer to such
a model as an unfolding of the periodic timed automa-
ton. Similarly, we can also define a k-unfolding of a
periodic timed automaton as the finite parametric timed
automaton which represents the first k period behavior.

Our result is that without loss of generality, we have
only to check 3-unfolding of periodic timed automata
for each subformula including ‘until’ operators EU and
AU, to derive the paths whose execution times is within
3 periods,

Formally, it is proved by the following lemma:

C N

(a) . periodic model

"\

(b) . corresponding
finite model

(c). 2-unfolding of {a)

Fig. 6: Unfolding of Periodic Timed Automata

A f
/AN = /N 1/

o, s |- 218U, £2 on path >=3T L3
if and only if
s |= £1BU_£2 on path (>=2T and <IT)

£2 - .

M
H
-

£

Fig. 7: Ilustration of Lemma 4.1

Lemma 4.1 For any concrete state (s,p) of periodic
timed automata, the following condition holds:

(5.0) E fiEU s & (5,0) E fiEU-p fo

where T is the period of the periodic timed automata,
, def p — m X T and m is the minimum nonnegative
integer s.t. p —m X T < 3T. The same condition also

holds for fLAU-., f5.

(proof) Detailed proof is omitted due to space limi-
tation, but we can prove that if there exists a execution
path @ which satisfies the ‘until’ property and whose
execution time ET(a) is greater than 3 periods, there
also exists a path o’ whose execution time is less than
3 periods, and satisfy the same property, and vice versa
(illustrated in Fig. 7). o

We define another algorithm WPC3(s, f) instead of
WPC(s, f) for periodic timed automata. WPC3(s, f)
is almost the same as WPC(s, f), except that
WPC3(s, fiop-pf2) (op is one of ‘until’ operators) is
applied to 3-unfolding of the given periodic timed au-
tomaton. Specifically, for each subformula fiop-,f2,
WPC3(s, fiop-,f>) traverses the 3-unfolding where s
is assumed to be the state of the first period. Unlike
WPC(s,), WPC3(s, f) is ensured to terminate. By
Lemma 4.1, it is sufficient to consider finite paths whose
execution time is at most 37 in order to derive the weak-

165

est condition of parameters. Therefore, we obtain the
following main theorem:

Theorem 4.2 For every state s of a periodic timed au-
tomaton M and every RPCTL formula f, a recursive
function WPC3(s, f) always terminates and returns a
correct solution of a parameter condition derivation
problem, i.e.:

Vp.lp E WPC3(s,) iff (s,p) E f] o

5 Concluding Remarks

In this paper, we propose a method to derive a pa-
rameter condition for a periodic timed automaton which
satisfies a property written in a temporal logic RPCTL
formula.

Although our method applies to only restricted class
of timed automata, many real-time applications such
as audio/video streaming, time sharing task schedulers,
etc. can be specified as a periodic timed automaton.
Therefore, our method may be useful for system design-
ers choose correct parameters to guarantee the specified
correctness properties of such periodic systems.

The future works are to extend our method to handle
some internal variables, and to apply the method to a
practical application to evaluate the efficiency.

References

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla,
“Automatic verification of finite state concurrent
systems using temporal logic specifications,” ACM
Trans. on Program Languages and Semantics,
vol. 8, no. 2, pp. 244-263, 1986.

[2] R. Alur, T. A. Henzinger, and P. Ho, “Automatic
symbolic verification of embedded systems,” IEEE
Transactions on Software Engineering, vol. 22,
Mar. 1996.

[3] 1. E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[4] F. Wang, “Parametric timing analysis for real-time
systems,” Information and Computation, vol. 130,
pp. 131-150, 1 Nov. 1996.

{51 R. Alur and T. A. Henzinger, “Parametric real-time
reasoning,” in Proc. 25th ACM Annual Symp. on
the Theory of Computing (STOC’93), pp. 592-601,
1993.

[6] R. Alur and D. Dill; “Automata for modelling real-
time systems,” in Proc. of ICALP’90 (M. S. Pater-
son, ed.), vol. 443 of Lecture Notes in Computer
Science, pp. 322-335, Springer-Verlag, 1990.

