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1Introduction
Model checking[l] have been recognized as one of

very useful and effective methods for designing reli-
able hardware/software systems. Especially, in recent
years, real-time systems must be developed for the areas
that high reliability is required, such as $\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{r}\mathrm{a}\mathrm{y}\mathrm{f}\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{n}/\mathrm{c}\mathrm{a}\mathrm{r}$

controlling, nuclear reactors, medical devices and other
real-time systems which may be produced alot and
hard to modify in later (e.g. hardware chips or embed-
ded syste $\mathrm{m}\mathrm{s}$). Model checking techniques for real-time
systems may be very useful for developing such arcli-
able real-time system to ensure that the system’s design
written in asome formal model satisfies the required
properties such as safety, liveness, or fairness.

The classical model checking method is not para-
metric, that is, to check whether abehavioral specifi-
cation written in some state model, satisfies some re-
quirement specification (p10ffi1Cy) written in temporal
logic, all the parameters in the specification must be
fixed to some concrete values. [2] proposed ascmi-
decision procedure to derive asymbolic representation
of states of a(parametric) hybrid automaton (an exten-
sion of timed automaton) which satisfy agiven temp0-
ral property written in a(parametric) real-time temporal
logic formula. They adopt first-0rder theory with addi-
tion on real-numbers[3] as symbolic representation of
state-sets. Althoug the satisfiability of the first-0rder
theory with addition on real-numbers is decidable, fix-
point calculation is very costly and generally undecid-
able. On the other hand, [4] proposed an algorithm
to obtain the condition of parameters in order that the
given non-parametric state model on dense time do
main satisfies the given parametric temporal logic for-
mula. However, they only allow to write parameters to
temporal logic formulas, not in atimed automaton. In
arealistic system design process, we usually want to
choose parameter values of models (implementations)
rather than in temporal logic (specifications).

Thus, we propose adecision algorithm to derive a
set of parameters of asubclass of atimed automa-
ton model which may contain parameters (parametric
tirrged automata[5]$)$ and satisfies aformula of areal-
time extension of CTL[I]. In our method, parameters
are allowed in both amodel and atemporal logic for-
mula. We adopt formulas of first-0rder theory with ad-

dition on real-numbers[3] as symbolic representation
of sets of parameter values. It is known to be decid-
able to check satisfiability and mechanical quantifier-
elimination is also possible. In order to reduce the size
of the intermediate symbolic representation, we take an
on-the fly approach, that is, we decompose the given
problem on-the-fly to several subproblems, and recur-
sively solve the subproblems to construct the entire con-
dition for parameters. In this approach, we need not en-
code symbolically the entire state space (it tends to be
very long), and only the necessary part of the tree is
traversed. Specifically, we compute the weakest condi-
tion $WPC(s,$ $f\grave{)}$ of parameters in order that the state $s$ of
the given model satisfy the given temporal property $f$.
First, we define $WPC(s,f)$ as arecursive function such
as

$WPC(s,f\tilde{)}=F(WPC(s_{1},f\ \mathrm{f}i), \cdots, WPC\{skJk))$,

where $F()$ is afunctional on first-0rder formulas, each
$s_{i}$ is some next state of $s$, and each $f_{i}$ is some derived
formula of $f$. Basically, we can compute the weakest
condition $WPC(s,f\gamma$ if the application of the recursive
definition of $WPC(s, f^{\sim})$ is ensured to terminate. How-
ever, that is not the case in general. If the model con-
tains some loops, such arecursive application does not
terminate. To cope with the problem, we find some sub-
class of the timed automaton such that we need not to
explore the infinite computation tree. When the model
is periodic timed automaton, that is, after some fixed
time period it returns to its initial state and continues
its behavior, we have only to check some finite part of
the infinite computation tree and output the result. In
our method, $WPC(s,f)$ is ensured to be obtained af-
ter afixed steps of recursive computations, thus we can
avoid costly fixpoint calculations of first order theory
on real-numbers.

2Periodic Timed Automata
In this section, we formally define our model, peri-

odic timed automata. To begin with, we define a(non-

periodic) parametric timed automaton model. Our def-
inition of timed automata is essentially the same but
slightly different from the traditional definition in [6],

since we generally allow timing constraints to be first-
order formulas with addition on real-numbers.

Let Act denote aset of actions, $Var$ denote aset of
variables, and Pred(Var) denote aset of formulas of
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first order theory with addition on real-numbers over
War. We also denote aset of real-numbers by $\mathrm{R}$ and a
set of nonnegative real-numbers by $\mathrm{R}^{+}$

Definition 2.1 A parametric timed automaton is a tuple
$\langle S, C, Var, E, Inv(), s_{ini},\rangle$, where $S$ is afinite set ofcon-
trol states, $C\subseteq Varis$ finite set ofclocks, $PVar\subseteq Var$

is finite set ofparameters, $E\subseteq S\mathrm{x}$ Act $\mathrm{X}$ Pred(Var) $\mathrm{x}$

$2^{C}\cross S$ is a transition relation, InvQ : $S\vdasharrow Pred(Var)$

is an invariant conditionfor each state, $s_{init}$ is the initial
state. We write $s_{i}arrow s_{j}a,P.r$ if $(s_{i},a, P, r, s_{j})\in E$. $\square$

Informally, atransition $s_{i}arrow a,P,r$

$s_{j}$ means that the ac-
tion $a$ can be executed from $s_{i}$ when the values of both
clocks and parameters satisfy the formula $P$ (called a
guard condition), and after executed, the state moves
into $s_{j}$ and clocks in the set $r$ are reset to 0. In any state
$s$ , values of all clocks always increase continuously at
the same speed, representing the time passage. Note
that the values of clocks (and parameters if any) can
never violate the invariant condition $Inv(s)$ . Intuitively,
$Inv(s)$ represents the range of values (e.g. minimum and
maximum values) allowed for clocks (and parameters).
Thus, time passage at state $s$ will stop when the value
of some clock will exceed the maximum value specified
by $Inv(s)$ . When time passage stops, some executable
action is forced to execute, representing urgency of the
action. Also, if $Inv(s’)$ will be violated, any transition
into the state $s’$ is not allowed to execute.

Example 2.1 Fig. 7is a simple example of a para-
metric timed automaton. In Fig. 1, a set of parame-
ters is $\{x, y,z\}$ , a set of clocks is $\{c, c’\}$ , the initial state

is $s$, and the transition $s[c\leq x]$ $a.[c\leq x-2],[]arrow s_{1}$ [true]
means that in state $s$, for a given value of the param-
eter $X$, some time may be elapsed (i.e. the clock $c$ in-
creases) while $c$ satisfies the invariant $[c \leq x]$ , and
when $c$ $\leq X$ $-2$ holds, the action $a$ can be executed,
no clocks are reset to 0, and the state changes to $s_{1}$

(the invariant of $s_{1}$ is [true]). Similarly, the transition
$s[c \leq x]$ $b,[c>x-3],|c’|arrow s_{2}[c\leq x]$ means that some time
may be elapsed while $c$ satisfies the invariant $[c \leq x]$ ,

and when $c$ $>x-3$ holds, the action $b$ can be executed,
the clock $c’$ is reset to 0, and the state changes to $s_{2}$ . In

the transition $s_{2}[c\leq x]$
$d,[c\geq y\wedge c’\leq \mathrm{z}1,\mathfrak{l}\mathrm{I}arrow s_{3}$ [true], a guard

condition for both clocks $c$ and $c’$ are specified using
parameters $y$ and $\mathrm{z}$ . $\square$

Formal semantics of timed automata is defined as fol-
lows. The values of clocks and parameters are given by
afunction $\rho$ : $(C\cup PVar)$ $\mapsto \mathrm{R}$. We refer to such a
function as avalue-assignment. We represent aset of
all value-assignments by $Val$. We write $\rho\models P$ if afor
mula $P\in Pred(Var)$ is true under avalue-assignment
$\rho\in Val$ . The semantic behavior of aparametric timed
automaton is given as asemantic transition system on
concrete states. concrete state is represented by $(s,\rho)$ ,
where $s$ is acontrol state and $\rho$ is avalue-assignment.

Fig. 1: Example of Parametric Timed Automata

Let $CS\mathrm{d}\mathrm{e}\mathrm{f}=\{(s,\rho)|s\in S,\rho\in Val\}$ be aset of concrete
states. The semantic transition system consists ofdelay-
transitions and action-transitions. Adelay transition
represents time passage and an action transition repre-
sents an execution of an action. Formally, the semantic
transition system is defined as follows.

Definition 2.2 $A$ semantic transition system apara-
metric timed automaton $\langle$ $S$ , $Cf$ PVar, $E$, $Inv()$, $s_{init}\rangle$ is $a$

labelled transition system on concrete states $CS$ , where
the transition relation is defined by thefollowing rules:. $(s,\rho)-^{t}(s,\rho+t)$ if $t\in \mathrm{R}^{+}and$ $(\rho+t)$ @ $Inv(s)$,. $(s,\rho)\underline{a}(s’,\rho[rarrow 0])$ if $sa,P.rarrow s’$, $\rho\models$ $P$ and

$\rho[rarrow 0]$ $\models Inv(s’)$,

where $\rho+t$ and $\rho[rarrow 0]$ are the functions from vari-
ables to real-numbers, defined as follows:

$(\rho+t)(x)=\mathrm{d}\mathrm{e}\mathrm{f}\{\rho(x)+t\rho(x)otherwiseifx\in C$

$(\rho[rarrow 0])(x)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\{\begin{array}{l}0\rho(x)\end{array}$ $otherwiseifx\in r$.
$\square$

The major difference of periodic timed automata
from normal parametric timed automata is that it checks
the elapsed time since it is started, and if it is equal to
the specified period $T$ , then it resets to its initial state.
Moreover, it is assumed that only finitely bounded ac-
tions can be performed before returning to the initial
state. To ensure the above properties, we define ape-
riodic timed automaton as one obtained by adding re-
set transitions to aparametric timed automaton with no
loops (we refer to such aparametric timed automaton
as finite parametric timed automaton). Formally it is
defined as follows.

Definition 23 $A$ finite parametric timed automaton is
a parametric timed automaton whose transition graph
has no directed cycles, (i.e. it is a Directed Acyclic
Graph(DAG)$)$. $\square$

Example 2.2 The parametric timed automaton in Ex-
ruple 2.7 is finite parametric timed automaton since
its transition graph is a tree (so it is also a $DAG$). $\square$

Definition 2.4 $A$ periodic timed automaton is a para-
metric timed automaton which is obtained by adding to
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Fig. 2: Example of Periodic Timed Automata

$f::=true$ (universally valid)
$|$ false (universally invalid)
$|$ $\neg f$ (negation)
$|f\wedge f$ (conjunction)
$|$ $f\vee f$ (disjunction)

1 $f\Rightarrow f$ (implication)

1 $\langle a\rangle_{\sim p}f$ (existential ’next’ oPerator)

1 $[a]_{\sim p}f$ (universal ’next’ operator)

$|fEU_{\sim p}f$ ($\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}.\mathrm{u}\mathrm{n}\dot{\mathrm{u}}1’$operator)

1 $fAU_{\sim p}f$ (universal.until. operator)

1 $EG_{\sim p}f$ (existential.always’ operator)
$|AG_{\sim p}f$ (universal.always’ operator)

$|EF_{\sim p}f$ (existential.eventually’ operator)

1 $AF_{\sim p}f$ (universal ’eventually’ operator)

Fig. 3: Syntax of RPCTL

$(s,\rho)\mathrm{F}$ rrue.
$(s,\rho)\mathrm{F}$ $\neg f$

$\mathrm{d}\mathrm{e}\mathrm{f}=$

$(s.\rho)\mu f$.
$(s.\rho)\mathrm{F}$ $\mathrm{f}\mathrm{i}\wedge \mathrm{A}$ &f= $(s,\rho)\mathrm{F}$ A and $(s,\rho)\mathrm{F}$ $f_{2}$ .
$(s,\rho)\models$ $\langle a\rangle_{\sim p}f$

$\mathrm{d}\mathrm{e}\mathrm{f}=$

there exists some transition sequence
$(s.\rho)arrow(s.\rho+t)arrow(s’.\rho’)\iota a$

such that $t$
$\sim\rho$ and $(s’,\rho’)\mathrm{F}f$.

$(s,\rho)\mathrm{F}$ $fiEU_{\sim p}f_{2}$
$\mathrm{d}\mathrm{e}\mathrm{f}=$

there exists some transition sequence
$(s.\rho)=(s_{1},\rho_{1})arrow(s_{1}.\rho_{1}\prime_{1}+t_{1})arrow a_{1}$ . ..
$arrow(s_{k-1},\rho\iota-1+tk-1l_{k-1}a_{l-1})arrow(s_{l},\rho_{k})$

and some non-negative real-number $t’$ .
$\mathrm{s}.\mathrm{t}$. $(s\iota,\rho’+t’)\models$ $f_{2}$ and ’1 $+\cdots+\iota’\sim p$

and for any $i(1\leq i\leq \mathrm{k})\mathrm{a}\mathrm{n}\mathrm{d}$ for any $t_{i}’(0\leq\acute{i}<t_{i})$ ,

$(s_{i}.\rho_{i}+)\acute{i}\models$ $f_{1}$

$(s.\rho)\mathrm{F}^{\mathrm{i}}f_{1}AU_{\sim p}f_{2}$

$\mathrm{d}\mathrm{e}\mathrm{f}=$

for any transition sequence such that
$(s,\rho)=(s_{1}.\rho_{1})arrow(s_{1}.\rho_{1}\prime_{1}+\prime_{1})arrow a_{1}$ ..,

$arrow(s\iota-1,\rho_{l-1}+t_{k-1})arrow(s\iota\cdot\rho_{l})|l-1a_{(-\mathrm{l}}$

and for any nonnegative real-number $’\iota$ .
$(s\iota\cdot\beta k+\alpha)\mathrm{F}h$ and $’ 1+\cdots+n$ $\sim p$

and for any $i(1\leq i\leq k)$ and for any $\prime_{i}’(0\leq\prime_{i}’<t_{i})$,

$(s_{i},\rho_{i}+t_{i}’)\mathrm{F}$ $f_{1}$ .

Fig. 4: Semantics of RPCTL

finite parametric timed automaton the following spe-
cial reset transitionsfor every state s:

$sarrow s_{inil}i,[c,=T],C$ ,

where $s_{in\dot{u}}$ is $a$ initial state, $C$ is a set ofall clocks, $c_{p}\in$

$C$ is $a$ a special clock which keeps the elapsed timefrom
the initial state $s_{init}$ (no other transition can reset this
clock), $T\in \mathrm{R}^{+}is$ $a$ period, $i\in Act$ is a special reset
action. $\mathrm{o}$

Example 23 Fig 2is an example of a periodic timed
automaton. This example is a modified version of Ex-
ample 2.2 where a special clock $c_{p}$ and some return

transitions such as $s_{1}i.[c-r^{-}T],[cd.c_{p}|arrow.s$ are added. Note
that we allow periodic timed automata to temirsate in-
stead of returning to the initial state, such as the state
$s_{3}$ in Fig 2. $\mathrm{o}$

3Real-time CTL
In this section, we define RPCTL, aReal-

time and Parametric extension of Computation Tree
LOgic$(C\Gamma \mathrm{L})[1]$ .
Definition 3.1 The syntax ofRPCTLfomula is defined
by the $BNF$ in Fig. 3. where $a\in Act$ is an action
name, $p$ is a linear expression which may contain con-
stant real-numbers $and/or$ a parameter variable, and

$\sim\in 1<,$ $\leq,$ $>,$ $\geq,$ $=\rangle$ is a comparison operator. We may
omit $‘\sim p’$ specifier, and in that case $‘[succeq] 0’$ is assumed. $\square$

RPCTL is alogic to specify aproperty of aparamet-
ric timed automaton state and its succeeding behavior
using temporal operator with timing constraints which
may contain parameters. Intuitive meaning of basic
constructs of RPCTL is as follows, “true” is satisfied by
all concrete states. $‘\neg f$’is satisfied by aconcrete state
$(s,\rho)$ if and only if $f$ is not satisfied by $(s,\rho)$ . ‘false’ is
never satisfied by any concrete states, which is equiva-
lent to true. ‘

$f_{1}\wedge f_{2}’$ is satisfied if and only if both $f_{1}$

and $f_{2}$ is satisfied. ‘
$f_{1}\vee f_{2}’$ and ‘

$f_{1}\Rightarrow f_{2}$ ’are defined
similarly to classic propositional logic. ‘

$\langle a\rangle_{\leq p}f$’is sat-
isfied by $(s.\rho)$ if and only if there exists some transition
from $(s,\rho)$ performing $a$ within $c$ units of time, such that
$f$ is satisfied by the next (control) state. Since we can
define similarly if $\sim$ is other than $<$ (case of $[succeq],$ $<,$ $>,$ $=$ ),
we only mention the case of $\leq \mathrm{i}\mathrm{n}$ the following expla-
action. ‘

$[a]_{\leq p}f$’is satisfied if and only if for any transi-
than ffom the state performing $a$ within $c$ units of time,
$f$ is satisfied by the next state, which is the same as
$\neg\langle a\rangle_{\leq p}\neg f$ . ‘

$f_{1}EU_{\leq p}f_{2}$ ’is satisfied if and only if there
exists some transition sequence such that $f_{2}$ eventually
holds within $c$ units of time and until then, $f_{1}$ is always
satisfied. ‘

$fiAU_{\leq p}f_{2}$ ’satisfied if and only if for any
transition sequence, $f_{2}$ eventually holds within $c$ units
of time and until then, $f_{1}$ is always satisfied. $‘ EF_{\leq\rho}f’$ ,
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$‘ AG_{\leq p}f’$ , $‘ AF_{\leq p}f$’and $‘ EG_{\leq p}f$’are abbreviations for

true’ $U_{\leq p}f$, $\neg EF_{\leq p}\neg f$ , true’ $U_{\leq p}f$ and $\neg AF_{\leq p}\neg f$ , re-
spectively.

In general, we write $M$, $(s,\rho)\models f$ to mean that an
RPCTL formula $f$ is satisfied by aconcrete state $(s,\rho)$

of aparametric timed automaton $M$. If there are no con-
fusions, we omit $M$ and just write $(s,\rho)\models f$ . The for
mal definition of the relation $\models \mathrm{i}\mathrm{s}$ as follows. We only
give the definitions for six primitive constructs, true,
$\neg f$, $f_{1}\wedge f_{2}$ , $\langle a\rangle_{\sim p}f$, $f_{1}EU_{\sim p}f_{2}$ and, $fi$A $U_{\sim p}f_{2}$ . Rest of
the constructs can be rewritten by using the above con-
structs.

Definition 3.2 The relation $(s,\rho)\models f$ is formally de-
fined in Fig. 4. $\square$

Example 3.1 The RPCTLfomula
$[a_{1}]_{<q_{1}}((\langle a_{2}\rangle true)EU_{\geq q_{2}}(\langle a_{3}\rangle true))$

means thatfor every state reachable after executed the
action $a_{1}$ within $q_{1}$ units oftime, there exists $a$ execution
path such that the action a2 is always executable until
$a_{3}$ becomes executable after $q_{2}$ units of time elapsed.
Note that $q_{1}$ and $q_{2}$ are parameter variables. $\square$

4Deriving of the Weakest Condition of Pa-
rameters

Now we describe our method to derive symbolically
the weakest condition of parameters $WPC(s,f)$ in order
that the state $s$ of the periodic timed automaton satisfies
the RPCTL property $f$. Beforehand, we give the precise
definition of our problem.

Definition 4.1 Let $M$ be an parametric timed au-
tomata, $s$ be a state of $M$, and $f$ be an RPCTLformula.
The parameter condition derivation problem is a prob-
lem to derive afirst-Orderfomula $WPC(s,f)$ such that

$\rho\models WPC(s,f)$ iff(s, $\rho$) $\models f$. $\square$

At first, we give an algorithm to solve the parameter
condition problem for finite parametric timed automata,
and then we extend it to periodic timed automata.
4.1 Finite Model Case

As mentioned in Section 1, we define $WPC(s,f)$ as a
recursive function such that

$WPC(s,f)=F(WPC(s_{1},fi)\mathrm{d}\mathrm{e}\mathrm{f}$, \ldots ,
$WPC(s_{k},f_{k}))$.

Here we give aconcrete definition of the function
$WPC(s,$ f) for every construct of RPCTL formula f.
Definition 4.2 Thefunction $WPC(s,f)$, which takes as
arguments a state $s$ of a parametric timed automaton,
and a RPCTL formula $f$, and returns first orderfor
mula, is defined as Fig 5, where $P[C+t/C](P[0/r])$
represents afirst orderformula $P$ whose every oc-
currence each variable $X\in C(x\in r)$ is replaced with
$X+t$ (0, respectively). $\square$

$WPC$($s$.trgte) &f= true
$WPC(s, \neg f)=\neg WPC(s.\overline{f})\mathrm{d}\mathrm{e}\mathrm{f}$

$WPC(s,f1\wedge f2)=WPC(s\ \mathrm{f}, fi)\wedge WPC(s, f2)$

$WPC(s, \langle a\rangle_{\sim p}f)\{\mathrm{k}=^{\mathrm{f}}\exists t_{s}(0\leq t_{s}\wedge t_{s}\sim p\wedge(Inv(s)$ $\wedge$

$i\epsilon J1s\mathrm{V}_{\beta)}^{\{P_{i}\wedge(Inv(s_{i})\wedge WPC(s_{i},f))[0/r]\})[C+r_{s}/c])}$

where $I(s,a)=[i|sarrow s_{i}|a.[P_{i}].r_{i}$,

$WPC(s, f_{1}EU_{\sim p}f2)=\exists t_{s}(0\ \mathrm{f}\leq t_{S}\wedge$

$\forall_{\acute{s}}((0\leq\acute{s}\wedge\acute{s}\leq t_{S})\Rightarrow\uparrow\gamma PC(s,f1)[C+\acute{s}/C])\wedge$

$Inv(s)$ $\wedge(t_{S}\sim p\wedge WPC(s,f\mathrm{i})$ $\vee$

$i\epsilon I(s)\mathrm{V}^{\{P_{i}\wedge WPC(s_{i\prime}f_{1}EU_{\sim(c-t_{s})}f_{2})\rangle))[C+t_{S}/c])}$

where $I(s)=[\iota\rceil sarrow s_{i}\}a_{i}.[P_{i}].r_{i}$,

$WPC$($s$, $fi$ A $U_{\sim p}f2$ ) $\mathrm{d}=\mathrm{V}t_{S}(0\mathrm{e}\mathrm{f}\leq t_{S}\Rightarrow$

$\forall t_{S}’((0\leq t_{\acute{S}}\wedge r_{s}’\leq \mathrm{r}_{s})\Rightarrow WPC(s, f1)[C+t_{S}’/C1)\wedge$

$(Inv(s) \Rightarrow(t_{s}\sim p\wedge WPC(s,f_{2})\wedge$

$i\epsilon J(s)\wedge\{P_{i}\Rightarrow WPC(s_{i},f_{1}AU_{\sim(e-t_{s})}f_{2})\}))[C+t_{S}/C])$

Fig. 5: Function $WPC(s,f)$

Explanation of the definition of $WPC(s,f)$ is as fol-
lows. If $f$ is one of true or $f_{1}\wedge f_{2}$ , the definition of
$WPC(s,f)$ is straightforward. The case of $f=\neg f’$ is
less obvious, but since we have defined $WPC(s,f)$ as
the weakest condition, $\rho*WPC(s, f)$ immediately im-
plies $\rho\models WPC(s, \neg f)$ , and vice versa. Hence we have
$WPC(s, \neg f)=\neg WPC(s,f)$ .

Consider the case of $f=\langle a\rangle_{\sim p}f’$ . Suppose $\rho$ is a
value-assignment such that $(s,\rho)\models\langle a\rangle_{\sim p}f’$ . From the
Definition 3.2, there must exist aconcrete transition se-
quence $(s,\rho)arrow’(s,\rho+t)\sim^{a}(s’,\rho’)$ such that $f$ $\sim p$

and $(s’,\rho’)\models f’$ . Thus, the following conditions must
also hold:. some timed automaton transition $sarrow s’a,P.r$ must ex-

ists.. $\rho+t$ must satisfy both $Inv(s)$ and $P$ (Definition 2.2).. $\rho’$ is avalue-assignment $\rho+t$ whose values of the
clocks in $r$ are reset to zero, i.e. $\rho’=(\rho+t)[rarrow 0]$ ,
and it satisfies $Inv(s’)$ .. $(s’,\rho’)\models f’$ , i.e. $\rho’\models WPC(s’,f’)$.

Hence, we obtain anecessary condition

“there exists some non-negative real-number $t$ and
some transition $sarrow a.P.r$

$s’$ , such that $\rho\models(t\sim p)$,
$\rho+t\models\wedge Inv(s)\wedge P$ and $(\rho+t)[rarrow 0]$ $\models Inv(s)$ $\wedge$

$WPC’(s’.f’)$”

for $\rho$ to make the state $s$ satisfy $f$. We can rewrite
$‘\rho+t\models Inv(s)$ $\wedge P$’to the condition of $\rho$, such as

$\rho\models$ $(Inv(s) \wedge P)[C+t/C]$ . By the same way, we can
also rewrite $(\rho+t)[rarrow 01$ $\models Inv(s)$ $\wedge WPC’(s’,f’)$ as
$\rho\models(Inv(s’)\wedge WPC(s’,f’))[C+t/C, \mathrm{O}/r]$. Therefore
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the following condition holds:

$\rho\models(0\leq t\Lambda t\sim p\wedge Inv(s)\wedge P$

$\Lambda(Inv(s’)\wedge WPC(s’,f’))[0/r])[C+t/C]$ .

Since it is sufficient that some non-negative real-
number $t$ and some $\mathrm{f}\mathrm{f}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\dot{\mathrm{l}}\mathrm{o}\mathrm{n}$

$s$ ; $s’$ exist, we can
weaken the above condition as:

$\rho\models$ $\exists t(0\leq t\wedge t\sim p\wedge Inv(s)$ $\wedge$

$i\epsilon l(S\beta)\vee\{P_{i}\wedge(Inv(s_{i})$

$\wedge WPC(s_{i\prime}f’))[0/r]\}$

$)[C+t/C]$ .

where $I(s,a)=u\mathrm{r}\{i|sarrow a,P_{j}.r_{l}s_{i}$) is aset of indices of tran-
sitions whose source node is $s$ and action name is $a$ .
We can easily prove that this is the weakest condition
of $\rho$ such that $(s,\rho)\models f$, and $t$ is some flesh variable
which does not appear in either $Inv(s)$, $P_{i}$, $Inv(s_{i})$ or
$WPC(s_{i\prime}f’)$.

Consider the case of$f=f_{1}EU_{\sim p}f_{2}$ . Similar to above,
suppose $\rho$ is avalue-assignment such that $(s,\rho)\models$

$fiEU_{\sim p}f_{2}$ . From the Definition 3.2, there must exist
some transition sequence $(s,\rho)=(s_{1},\rho_{1})’-^{1}(s_{1},\rho_{1}+t_{1})$

$arrow a_{1}...arrow(s_{k-1\prime}\rho_{k-1}+t_{k-1})arrow(s_{k\prime}\rho_{k})arrow(s_{k\prime}\rho_{k}+t_{k})\prime_{2-1}a_{1-1}|_{l}$,
such that $(s_{k},\rho_{k} \dagger t_{k})\models f_{2}$ , $t_{1}+\cdots+t_{k}\sim p$ , and for any $j$

$(1\leq j\leq k)$ and for any $\mathrm{t}$ $(0\leq f_{j}<t_{j})$, $(s_{j},\rho_{j}+f_{j})\models f_{1}$

holds. To obtain arecursive definition of $WPC(s,\tilde{f})$,
we divide the premise of the above statement into two
cases, $k=1$ and $k\geq 2$ .
[Case $k=1$ ]: If $k=t1$ , then there must exist atransi-
tion sequence $(s,\rho)arrow(s,\rho+t)$ such that $(s,\rho+t)\models f_{2}$ ,
$t\sim p$ and for any $f$ $(0\leq f <t)$, $(s,\rho+t)\models$ $f_{1}$ holds.
Similar to the case of $f=\langle a\rangle_{\sim p}f’$ , the weakest condi-
tion of $\rho$ is obtained as follows:

$\rho\models\exists t(0\leq t\wedge t\sim p\wedge(Inv(s)$

$\Lambda WPC(s,f_{2}))[C+t/C1$

$\wedge\forall f((0\leq f \wedge f \leq t)$

$\Rightarrow WPC(s,fi)[C+l/C]))(1)$

[Case $k[succeq] 2$]: If we assume $k\leq 2$ , then there must ex-
ist atransition sequence $(s,\rho)=(s_{1},\rho_{1})-^{1}’(s_{1},\rho_{1}+$

$t_{1})arrow a_{1}(s_{2},\rho_{2})$ such that $(s_{2},\rho_{2})\models f_{1}EU\sim(c-,1)f_{2}$ holds,
and for any $f_{1}(0\leq f_{1}\leq t_{1})$ , $(s_{1},\rho_{1}+f_{1})\models f_{1}$ holds.
Considering that there may exist multiple transitions
$sa_{i}.P_{l},r_{l}arrow s_{i}$ , the weakest condition of $\rho$ is obtained as
follows:

$\rho\models\exists t[0\leq t\wedge(Inv(s)\wedge$

$i\epsilon l(s)\vee\{P_{i}\wedge$

$WPC(s_{i},f_{1}EU_{\sim(c-,)}f_{2})\})[C+t/C]$

$\wedge\forall f[(0\leq t’\wedge t’\leq t)$

$\Rightarrow WPC(s,f_{1})[C+’/C111$ (2)

where $I(s)=\mathrm{d}\mathrm{e}\mathrm{f}\{i|sarrow a_{i}.P_{i},r_{i}s_{i}\}$ is aset of indices of transi-
tions whose source node is s.

Therefore, the general case is (1) or (2), that is,

$\rho\models\exists t[0\leq t\wedge$

$\forall f[(0\leq f \wedge t’\leq t)$

$\Rightarrow WPC(s,fi)[C +t’/C]]]$

$\wedge(Inv(s)\wedge(t\sim p\wedge WPC(s,f_{2})\vee$

$i\epsilon l(s)\vee\{P_{i}\wedge$

$WPC(s_{i},f_{1}EU_{\sim(c-,)}f_{2})\rangle))[C+t/C]$

The case of $f=f_{1}AU_{\sim p}f_{2}$ is similar, and we omit the
detailed description due to space limitation.

If the transition graph contains no loops, there are no
cases that $WPC(s,f)$ is recursively called during the
computation of $WPC(s,f)$ itself. Thus, the function
call $WPC(s,f)$ is ensured to terminate. Hence, are-
cursive function $WPC(s,f)$ is an algorithm to obtain
the parameter condition for DAG-formed models (i.e.
finite parametric timed automata).

Theorem 4.1 For every state $s$ of a finite parametric
timed automaton $M$ and every RPCTL fomula $f$, $a$

recursive $fi\ell nction$ $WPC(s,f)$ always teminates and
returns a correct solution of a parameter condition
derivation problem, $i.e.$ :

$\forall\rho.$ [$\rho\models WPC(s,f)$ iff(s, $\rho)\models f$]. $\square$

4.2 Periodic Model Case
If parametric timed automata have some loops, the

algorithm $WPC(s,\tilde{f})$ in Theorem 4.1 may not termi-
nate. In this section, we prove that if models are pe-
riodic timed automata, we have only to check afinite
fragment of the computation tree to derive the weakest
condition of parameters.

At first, we introduce the notion of unfolding. Re-
place all returning transitions of aperiodic timed au-
tomaton (Fig. 6-(a)) with transitions to special terminat-
ing states. We obtain the corresponding finite paramet-
ric timed automata (Fig. 6-(b)). Then, attach the copies
of the corresponding finite parametric timed automaton
to each special terminating state of itself, once for all.
Finally, we have the timed automaton which represents
the first 2period behavior (Fig. 6-(c)). We refer to such
amodel as an unfolding of the periodic timed automa-
ton. Similarly, we can also define a $k$ unfolding of a
periodic timed automaton as the finite parametric timed
automaton which represents the first $k$ period behavior.

Our result is that without loss of generality, we have
only to check 3-unfolding of periodic timed automata
for each subformula including ‘until’ operators EU and
$AUy$ to derive the paths whose execution times is within
3periods,

Formally, it is proved by the following lemma
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{ a) Periodic model

(b) $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\ln \mathrm{g}$

(c) 2-unfolding of (a)
$\epsilon$ inite model

Fig. 6: Unfolding of Periodic Timed Automata

Fig. 7: Illustration of Lemma 4.1

Lemma 4.1 For any concrete state $(s,\rho)$ of periodic
timed automata, the following condition holds:

$(s,\rho)\models f_{1}EU_{\sim p}f_{2}\Leftrightarrow(s,\rho)\models f_{1}EU_{\sim\prime}f_{2}$

where $T$ is the period of the periodic timed automata,
$p’\mathrm{d}\mathrm{e}\mathrm{f}=p-m\cross T$ and $m$ is the minimum nonnegative
integer $s.t$. $p-m\cross T<37$ . The same condition also
holds for $f_{1}AU_{\sim p}f_{2}$ .

(proof) Detailed proof is omitted due to space limi-
tation, but we can prove ffiat if there exists aexecution
path $\alpha$ which satisfies the ‘until’ property and whose
execution time ET(a) is greater than 3periods, there
also exists apath $\alpha’$ whose execution time is less than
3periods, and satisfy the same property, and vice versa
(illustrated in Fig. 7). $\square$

We define another algorithm WPC3(s, $f$) instead of
$WPC(s,f)$ for periodic timed automata. WPC3(s, $f$)
is almost the same as $WPC(s,f)$ , except that
WPC3(s, $f_{1}op_{\sim p}f_{2}$)($op$ is one of ‘until’ operators) is
applied to 3-unfolding of the given periodic timed au-
tomaton. Specifically, for each subformula $f_{1}op_{\sim p}f_{2}$ ,
WPC3(s, $f_{1}op_{\sim p}f_{2}$ ) traverses the 3-unfolding where $s$

is assumed to be the state of the first period. Unlike
$WPC(s, f)$ , WPC3(s, $f$) is ensured to terminate. By
Lemma 4.1, it is sufficient to consider finite paths whose
execution time is at most $3T$ in order to derive the weak-

est condition of parameters. Therefore, we obtain the
following main theorem:

Theorem 4.2 For every state $s$ ofa periodic timed au-
tomaton $M$ and every RPCTL fomula $f$, a recursive
function WPC3(s, $f$) always teminates and $re$ rurns $a$

correct solution of a parameter condition derivation
problem, i.e.:

$\forall\rho.[\rho\models WPC3(s,f^{-}\grave{)}$ iff $(s,\rho)\models$ fl ロ

5Concluding Remarks
In this paper, we propose amethod to derive apa-

rameter condition for periodic timed automaton which
satisfies aproperty written in atemporal logic RPCTL
formula.

Although our method applies to only restricted class
of timed automata, many real-time applications such
as $\mathrm{a}\mathrm{u}\mathrm{d}\mathrm{i}\mathrm{o}/\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{o}$streaming, time sharing task schedulers,
etc. can be specified as aperiodic timed automaton.
Therefore, our method may be useful for system design-
ers choose correct parameters to guarantee the specified
correctness properties of such periodic systems.

The future works are to extend our method to handle
some internal variables, and to apply the method to a
practical application to evaluate the efficiency.

References
[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla,

“Automatic verification of finite state concurrent
systems using temporal logic specifications,” ACM
Trans, on Program Languages and Semantics,
vol. 8, no. 2, pp. 244-263, 1996.

[2] R. Alur, T. A. Henzinger, and P. Ho, “Automatic
symbolic verification of embedded systems,” IEEE
Transactions on Software Engineering, vol. 22,
Mar. 1996.

[3] J. E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[4] F. Wang, “Parametric timing analysis for real-time
systems,” Infomation and Computation, vol. 130,
PP. 131-150, 1 Nov. 1996.

[5] R. Alur and T. A. Henzinger, “Parametric real-time
reasoning,” in Proc. 25th ACM Annual Symp. on
the Theory ofComputing (STOC’93), pp. 592-601,
1993.

[6] R. Alur and D. Dill, “Automata for modelling real-
time systems,” in Proc. of ICALP’90 (M. S. Pater-
son, ed.), vol. 443 of Lecture Notes in Computer
Science, pp. 322-335, Springer-Verlag, 1990

165


