
Application of Attribute edNCE Graph Grammars
to Syntactic Editing of Tabular Forms

冨山 聖宣 (Kiyonobu TOMIYAMA)\dagger 有田 友和 (Tomokazu ARITA)
\dagger

土田 賢省 (Kensei TSUCHIDA) \dagger \dagger 夜久 竹夫 (Takeo YAKU)\dagger

\dagger 日本大学文理学部応用数学科

Department of Applied Mathematics, Nihon University
{tomiyama, arita, yaku }@am.chs.nihon-u.ac.jp

\dagger \dagger 東洋大学工学部情報工学科

Department of Information and Computer Sciences, Toyo University
kensei@eng.toyo.ac.jp

Abstract Tabular forms such as program spec-
ification forms [7] are naturally formalized by the
attribute graphs [8], in which the attribute denotes
locations of items and while the edge labels denotes
relations between items. Documents of the tabu-
lar forms are represented by graph grammars (e.g.,
see [8] $)$. Accordingly, asyntactic formalization of
document editing provides the foundation for $\mathrm{m}\triangleright$

chanical documentation.
In this paper, we deal with particular graph

grammar HNGG [7] for program specification tab-
ular forms. We formalize syntax directed editing
methods by extension of the notion of Cornell Pro
gram Synthesizer[2] to attribute NCE graph gram-
mars (cf. [4]).

Keywords Graph Grammars, Visual Program-
ming, Software Development, Syntax Directed Ed-
items

1Introduction
Mechanical editing of tabular forms is one of the im-
portant issues in the software engineering method-
ology. The Cornell Program Synthesizer (CPS) is
well-known and is often referred to as astructured
and te$\mathrm{x}\mathrm{t}$-based editor which uses an attribute gram-
mar successfully [2]. Tabular forms are represented
by several different models (e.g., Pane represents
them by [6] $)$. We assigned each item in the tab-
ular form to an attributed node. This assignment
naturally represents the order of items and location
of items in the tabular form. Since the number of
items in the form is generally infinite and the order
of items has some valid meaning, tabular forms are
denoted by graph grammars [7]. Accordingly, the
mechanical editing of tabular forms supposed to be
executed by some syntactic editing methods.

In this paper, we consider aprogramming doc-
umentation Hiform as an example of the tabular
forms. Hiform document is acollection of 17 types
of the tabular forms and includes all items defined

in the guideline in ISO6592 $[3],[7]$. Those tabular
forms are represented by graphs. Figure 1illus-
trates aHiform form and its corresponding graph.
This graph is constructed as follows: (1) Anode
label of graph shows the type of an item of atabu-
lar form. (2) An edge label shows relations between
items. $‘ 1\mathrm{f}$

’ denotes the meaning of left of. $‘ \mathrm{o}\mathrm{v}$
’

denotes ‘over’. ‘in’ denotes ‘whitin’.
Amechanical processing of tabular forms sup-

posed to be realized effectively by syntactic ma-
nipulation of graphs. In [7], the inner structure of
each form in Hiform is defined by an attribute NCE
graph grammar.

The purpose of this paper is to extend CPS mech-
anisms to graphs using results in $[4][7]$ and to for
malize asyntactic editing mechanism for graphs, in
this connection some examples are given in consid-
eration with software documentation tabular forms.
Definition is made as to insertion in HNGG [8]
so that amanipulation is validly executed by the
confluence[5] of HNGG.

2Preliminaries
We review context-free edNCE graph grammars [5],
and an attribute NCE graph grammar [7].

2.1 edNCE Graph Grammars [5]

Let Σ be an alphabet of node labels and Γ an al-
phabet of edge labels. Agraph over alphabets Σ

and Γ is a-tuple $H=(V, E, \lambda)$, where V is afi-
nite nonempty set of nodes, $E\subseteq\{(v,\gamma, w)|v$, $w\in$

V, $v\neq w,\gamma\in\Gamma\}$ is aset of edges and A: $Varrow\Sigma$ is
anode labeling function.
2.1.1 Definition An edNCE graph grammar is a
6-tuple $G=(\Sigma, \Delta, \Gamma, \Omega, P, S)$, where Σ is the al-
phabet of node labels, $\Delta\subseteq\Sigma$ is the alphabet of
terminal node labels, Γ is the alphabet of edge la-
bels, $0\subseteq\Gamma$ is the alphabet of final edge labels, P is
the finite set of productions and $S\in\Sigma-\Delta$ is the

数理解析研究所講究録 1205巻 2001年 43-46

43

ence is very important property because it guaran-
tees the validity of the left application of the com-
posite production copies. The confluency is also
important in the case of developing efficient pars-
ing algorithms.

2.3.1 Definition [5] An edNCE graph grammar
$G=(\Sigma, \Delta, \Gamma, \Omega, P, S)$ is dynamically confluent if
the following holds for every intermediate graph H

generated by G :
if H $\Rightarrow u_{1},p_{1}$

H_{1} $\Rightarrow u_{2},p_{2}$ H_{12} and H $\Rightarrow u_{2},p_{2}$

$H_{2}\Rightarrow u_{1},p_{1}H_{21}$ $(\mathrm{p}\mathrm{i},\mathrm{P}2\in P)$ are (creative) deriva-
tion of G with $u_{1},u_{2}\in V_{H}$ and $u_{1}\neq u_{2}$, $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{i}/12=$

H_{21} . \square

Figure 1. Tabular form in Hiform document and its
corresponding graph.

initial nonterminal. Aproduction is denoted by the
form $p:Xarrow(D, C)$, where $X\in \mathrm{E}-\mathrm{A}$, D is graph
over Σ and Γ , and $C\subseteq\Sigma \mathrm{x}\Gamma \mathrm{x}\Gamma \mathrm{x}V_{D}\mathrm{x}$ {in, out}
is connection relation. o

2.2 Composition of Production
Copies [4]

The composite representation of the production
copies of an edNCE graph grammar is atheoretical
and practical method for representing the graph-
rewriting rules for embedding subgraphs of desired
structures into agraph.

2.4 Attribute NCE Graph Gram-
mars [7]

We review an attribute graph grammar for the me-
chanical drawing. An attribute NCE graph gram-
mar is as follows.

2.4.1 Definition [7] An attribute NCE Graph
Grammar is a3-tuple $AGG=<G$, Att , $F>\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$

$G=(\Sigma, \Delta, \Gamma, \Omega, P, S)$ is context-free edNCE graph
grammar, called an underlying graph grammar of
AGG. Att is the set of attributes of AGG . F is the
set of semantic rules of AGG . \square

2.5 HNGG [7] [8] [9]

In this section, we consider an attribute NCE graph
grammar. The grammar is called Hiform Nested
tabular form Graph Grammar (HNGG). HNGG $=$

$<G_{N},A_{N}$, $F_{N}>\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ generates modular tabular
forms called Hiform form. Each production has at-
tribute rules for drawing information. The HNGG
includes 280 productions and 1248 attribute rules.
Figure 2illustrates apart of productions with at-
tribute rules of HNGG.

2.2.1 Definition[4] Let $G=$ $(\Sigma,\Delta, \Gamma,\Omega, P, S)$ be
an edNCE graph grammar. Let p_{1} : $X_{1}arrow(\mathrm{D}\mathrm{i}, C_{1})$

$(D_{1}=(V_{D_{1}}, E_{D_{1}},\lambda_{D_{1}}))$ and p_{2} : $X_{2}arrow(D_{2}, C_{2})$

$(D_{2}=(\mathrm{D}\mathrm{i}, E_{D_{2}}, \lambda_{D_{2}}))$ be production copies of G .
If $u\in V_{D_{1}}$, $X_{2}=\lambda_{D_{1}}(u)$, and D_{1} and D_{2} are dis
joint, then acomposite production coPy (with acon-
nection relation) $p:X_{1}arrow(D_{1},C_{1})[u/(D_{2},C_{2})]$

The composite production copy p composed by
p_{1} and p_{2} , and denoted by $p_{1}\circ p_{2}$. o

2.3 Confluence Property [5]

The confluence property guarantees that the result
of aderivation shall not depend on the order of the
left applications of the production copies. Conflu-

3Editing of Modular Tabular
Form

In this section, we deal with aformal definition for
editing manipulation using production instance of
HNGG, and we also show the validity of our defini-
tion using confluency of HNGG.

3.1 Production Instance
We introduce editing manipulations in latter part.
The editing manipulations are exactly defined by
production instance as follows. In this part, we in-
troduce production instance.

44

...
’

$(\omega_{n},p_{n}, H_{P*}’))de\mathit{4}$

S $=((\omega_{1},p_{1},H_{p_{1}}’)$, \cdot ..
’

$(\omega_{\dot{|}-1},p:-1, H_{p:-1}’)$

$(\omega,q, H_{q}’)$, $(\omega’,p_{i}, H_{p:}’)$, \cdots , $(\omega_{n},p_{n}, H_{P*}’))$

There is the instance sequence S as follows.

3.1.1 Definition Aproduction instance (“in-
stance” for short) is a3-tuple $(\omega,p_{\dot{*}}, H_{p:}’)$, where
1. ω $\in V_{D}.-1$ is anode removed during the deriva-

tion $D_{i-1}\Rightarrow_{pj}D_{i}$.
2. $p_{\dot{*}}$: X_{p} . $arrow(H_{p}., C_{p}.\cdot)\in P$ is aproduction.
3. $H_{p}’.\cdot$

. is an embedded graph isomorphic to HPi
during $D_{i-1}\Rightarrow_{p}$. D_{j} .

We denote $D_{j-1}\omega H_{p}’\Rightarrow p.\cdot.\cdot D_{:}$ if D_{j-1} is directly de-
rived D_{j} by applying the instance $(\omega,p_{i}, H_{p}’:)$. \square

If there is aproduction sequence $p=(p_{1}, \cdots,p_{n})$

and instance $(\omega j,p_{\dot{l}}, H_{p:}’)$ for each production p_{i}

$(1\leq i\leq n)$, an instance sequence is asequence
of $((\omega_{1},p_{1}, H_{p_{1}}’), \cdots, (\omega_{n},p_{n}, H_{p_{n}}’))$.

3.2 Syntactic Insertion
In this part, we define the syntactic insertion, and
denote the flow of insertion manipulation. This
manipulation is based on HNGG. Syntax directed
editing is executed by sequences of production in-
stances.

3.2.1 Definition For an derivation sequence D_{0}

$\omega_{1}H_{p_{1}}’\Rightarrow p_{1}\ldots\omega.{}_{-1}H_{\mathrm{p}.-1}’\Rightarrow p.\cdot-1D_{:-1}\Rightarrow_{p}.\cdot.D:.\Rightarrow_{p+}\mathrm{i}^{+1}\omega H_{p}’.\omega.+1H_{\acute{p}}\ldots\omega_{n}H_{pn}’\Rightarrow p_{n}$

D_{n} with instance (pj : $X_{p\mathrm{j}}arrow(H_{p\mathrm{j}}, C_{p\mathrm{j}})$, $1\leq j\leq$

$n)$, we say that q is insertable (for p_{i}) if there is an
instance $(\omega, q, H_{q}’)(q : X_{q}arrow(H_{q}, C_{q})\in P_{N})$ such

that $D_{i-1}\Rightarrow_{q}Q\mathrm{t}vH_{q}’$ and if there is aderivation sequence
$D_{i-1}\omega H_{q}’\Rightarrow qQ\Rightarrow p\omega’H_{p:}’.\cdot D_{j}’\Rightarrow \mathrm{P}\cdot+\cdot 1\{v.+1H_{\acute{p}}.+1\ldots\omega_{\mathrm{n}}H_{p_{\hslash}}’\Rightarrow p_{n}D_{n}’$with
instance. \square

3.2.2 Definition For aproduction q : $X_{q}arrow$

$(H_{q}, C_{q})\in P_{N}$ which is insertable for p_{i} : $X_{p:}arrow$

$(H_{\mathrm{P}\mathrm{i}}, C_{p}.)$ and $\bigcup_{i=1}^{n}H_{pj}’\cap H_{q}’=\phi$, an instance se-
quence S is obtained by insertion of an instance
$(\omega, q, H_{q}’)$ into an instance sequence $((\omega_{1},p_{1}, H_{p_{1}}’)$,

1. $\mathrm{T}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the derivation sequence with instance D_{n}

back to $D_{:-1}$.
2. Apply the instance $(\omega, q, H_{q}’)$ to $D_{:-1}$, and ob-

tain the resultant graph Q .
3. Apply the instance sequence $((\omega’,p_{i}, H_{p:}’)$,

$(\omega:+1,p:+1, H_{\mathrm{P}j+1}’)$, \cdots , $(\omega_{n}, p_{n}, H_{p_{\hslash}}’))$ to Q ,
and get the resultant graph $D_{n}’$. o

Inserting some instances into an instance se-
quence bring anew item into existence. That is,
they correspond to amanipulation to insert anew
item into apermissible place in aHiform document.

3.2.3 Remark In the same manner as the editing
by the instance for aproduction, we can further
define insertable by composite production copy. \square

3.2.4 Definition Agraph $H’$ is obtained by syn-
tactic insertion of agraph A at an edge x in agraph
H. $d\mathit{4}^{\mathrm{e}}$

1. Acomposite production copy q for the graph A

and the edge x exists. Furthermore, there exists
an instance sequence i_{q} for q and x .

2. There exists an instance sequence i_{H} for H . An
instance sequence S is obtained by insertion of i_{q}

into an instance sequence i_{H} .
3. The graph $H’$ is derived by the instance sequence

S . \square

3.2.5 Proposition Let H be the graph obtained
from G by the insertion of nodes a and b at an
edge x and an edge y respectively in this order, in
HNGG. Let $H’$ be the graph obtained from G by
the insertion of nodes b and a at the edge y and x

respectively in this order, in HNGG. Then,
$H=H’\square$

.

3.2.6 Proposition Insertion in HNGG is executed
in linear time. \square

We illustrate an example of an insertion based
on HNGG by Figure 3. Here, we consider to insert
aform F_{2} into aform F_{1} . Let G_{1} be agraph for
F_{1} , and let G_{2} be agraph for F_{2} . Then, asyntac-
tic insertion of G_{2} at an edge e in G_{1} is done as
following:

1. By e and G_{2} , acomposite production copy
q for G_{2} is obtained. By q and e , An instance se-
quence i_{q} is also obtained.

2. An instance sequence ic_{1} is existed. If q is
insertable for p in $i_{G_{1}}$, an instance sequence i_{G} is
obtained by insertion of i_{q} into an instance sequence
$i_{G_{1}}$.

45

Figure 3. Aflow of an insertion process.

3. By this instance sequence i_{G} , agraph G is
obtained. G is anew form which is obtained by
inserting F_{2} into F_{1} .

4Conclusion
We proposed editing method for tabular forms,
based on attribute NCE graph grammar of tabu-
lar forms with ahomogenous cell size. Our editing
method also includes attribute rules for mechani-
cal drawing. By using this editing method, we can
exactly edit valid tabular forms defined by edNCE
graph grammar. Linear time editing algorithm with
attribute rules for primitive drawing exists.

These syntactic editing methods could be applied
to syntactic manipulation of spreadsheet languages.
We are reconstructing attribute rules for more s0-

phisticated drawing. We are investigating other edit
manipulations that are adivision manipulation, a
combination manipulation and so on. Furthermore
we are now developing atabular form editor system
by using this approach.

Acknowledgment
We thank Mr. S. Kanai’s advice in the course of
preparing the manuscript. We also thank to Mr. S.
Nakagawa and Mr. K. Ruise for valuable discus-
sions.

References
[1] Reinhold Franck, AClass of Linearly Parsable

Graph Grammars, Acta Infomatica 10, 175

201 (1978)
[2] Tim Teitelbaum and Thomas Reps, The Cor-

nell Program Synthesizer: ASyntax-Directed
Programming Environment, Comm. A CM,
Vo1.24,563-573, (1981).

[3] ISO6592-1985, Guidelines for the Documenta-
tion of Computer-Based Application Systems,
(1985).

[4] Y.Adachi, K.Anzai, et al. Hierarchical Pro
gram Diagram Editor Based on Attribute
Graph Grammar, Proc. COMPSA C96, 205-
213, (1996).

[5] Grsegorz Rozenberg (Ed.), Handbook of
Graph Grammar and Computing by Graph
Transformation, World Scientific Publishing,
(1997).

[6] John F. Pane, Brad A. Myers, Tabular and
Textual Methods for Selecting Objects from a
Group, Proc. 2000 IEEE Symp. on Visual Lan-
guage, 157-164, (2000).

[7] T. Arita, K. Tomiyama, T. Yaku, Y. Miyadera,
K. Sugita, K. Tsuchida, Syntactic Processing
of Diagrams by Graph Grammars, Proc. IFIP
WCC ICS $\ell 000,145- 151$, (2000).

[8] T. Arita, K. Sugita, K. Tsuchida, T. Yaku,
Syntactic Tabular Form Processing by Prece-
dence Attribute Graph Grammars, Proc.
IASTED Applied Informatics 2001,637-642,
(2001).

[9] T. Arita et al., APrecedence Attribute NCE
Graph Grammar for Hiform, $\mathrm{H}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$

art.0rg/keyaki/archive/HC00-00

46

