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1Introduction
Awell known problem in geometry is the title of M. Kac’s celebrated paper,

’Can one hear the shape of adrum?’

This is the question whether the spectrum of the Laplacian determine the
geometry of the underlying manifold. It is known that in general the an-
swer is negative even in the 2-dimensional case and the possible answer at
present is essentially one-dimensional. From this situation, there seems to
be aconsideration as follows; The information on the spectrum is on real
line, i.e. essentially one dimensional and thus, to obtain information in mul-
tidimensional case we need to have more spectral information. The rigorous
definition of this type is given by Gel’fand. Its original form is the detemi-
nation of the potential of the Schr\"odinger operator on abounded domain in
$\mathrm{R}^{l}’$ . In the case of aRiemannian manifold with boundary $M=(M, \partial M,g)$ ,
it is modified to the following;

Problem (Generalized Gel’fand inverse spectral problem): Let Bound-
ary spectral data (BSD)

$\{\partial M, \lambda_{j},\phi_{j}|_{\delta M}, j=1,2, \ldots\}$

be given where $\lambda_{j}$ and $\phi_{j}$ are the eigenvalues and the $L^{2}(M)$-orthonormal
eigenfunctions of the Neumann Laplacian $-\Delta_{\mathit{9}}$ . Do these data determine
$(M,g)$?

The answer of this question is already known
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Theorem 1(Belishev-Kurylev[l]+Tataru[7]) There exists a reconstruction
method of $M$ and $g$ from $BSD_{:}$

The method of proof is so called ’Boundary Control (BC) method’, which
is invented by Belishev and developped in the paper of Belishev and Kurylev.
Their paper state in the real analytic category. They need to use Holmgrem-
John unique continuation theorem. In later, this can be subtituted by
Tataru’s result to the case of smooth manifold. Concerning to our result,

it should be remarked that their method need to all BSD even in approxi-
mation of manifold.

The natural question that rises in the study of the Gel’fand problem is
the stability.

Problem 1: If BSD’s of $M$ and $M’$ are close, then are $M$ and $M’$ themselves
close?
Problem 2: Let the Finite part of Boundary Spectral Data (FBSD)

$\{\partial M, \lambda_{j}, \phi_{j}|_{\partial M}, j=1, \ldots, N\}$

be approximately given. Do these data determine an approximation of $(M,g)$

in astable way?

However it is well known that inverse problems are generally ill-posed.
In our case this implies that even the topological class of the manifold can
not be stably reconstructed for FBSD without some additional assumption.
For example, adding asmall handle essentially does not change the small
eigenvalues or eigenfunctions at the boundary. Thus we need to consider the
conditional stability, which is arestriction of aclass of manifolds in our case.
Our results are answering to the above questions, which are roughly stated
as follows;

Theorem 2(i) There exist a class $\mathrm{M}$ of manifolds such that if $M$, $M’\in \mathrm{M}$

have a large number of similar eigenvalues and similar boundary restrictions

of eigenfunctions, then $M$, $M’$ are diffeomorphic and have similar Rieman-
nian metrics.

(ii) If we know sufficiently large number of $BSD\{(\lambda_{i}, \phi|_{\partial M})\}$ of $M\in$

$\mathrm{M}$ with sufficiently small error, then there exists a discrete metric space
approximating $M$ .

(iii) Under more restriction of a class, explicit estimate in approximation
is possible
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Note that our class $\mathrm{M}$ is in some sense “compact” and it is known that a
kind of compactness argument and uniqueness implies astability. However,
there are two defects; NO ALGORITHMS and NO ESTIMATES. We answer
these points here.

More precise form of our results are given by introducing several notions.
Our class $\mathrm{M}=\mathrm{M}(\partial M;m, \Lambda, D, i_{0})$ is usually called the class of bouned
geometry. It consists of $m$-dimensional manifolds $M$ with fixed boundary
$\partial M$ satisfying

$|K_{M}|<\Lambda$ , $|k_{\partial M}|<\Lambda$, diam $(M)<D$ , $i_{M}>i_{0}$

where $K_{M}$ is the sectional curvature, $k_{\delta M}$ is the principal curvature of $\partial M$ ,
diam (M) is the diameter and $i_{M}$ is the minimum of the injectivity radiuses
and the boundary injectivity radius. Here the injectivity radius (resp. the
boundary injectivity radius) is the largest radius $s$ of neighborhood such that
for any point $p\in M$ (resp. $\partial M$), the exponential map (resp. the boundary
exponential map) is diffeomorphism to its image.

Topology on $\mathrm{M}$ is defined by an approximation of discrete metric spaces
(nets), which is induced from the following Gromov-Hausdorff distance $d_{GH}$ .
For $M$, $M’\in \mathrm{M}$ , $d_{GH}(M, M’)<\delta$ if and only if there exist $\delta_{1}$-nets $\{m:\}\subset M$ ,
$\{m_{\dot{1}}’\}\subset M’$ and $\delta_{2}>0$ satisfying

$\frac{1}{1+\delta_{2}}<\frac{d(m_{\dot{l}}’,m_{j}’)}{d(m_{\dot{1}},m_{j})}<1+\delta_{2}$ ,

where $\delta$ $= \min(\delta_{1}, \delta_{2})$ .
Our result based on the “Gromov compactness” theorem. The following

version is due to Kodani.

Theorem 3(Kodani) (i) $\mathrm{M}$ is precompact with respect to $d_{GH}$ .
(ii) If $M$, $M’\in \mathrm{M}$ is sufficiently close in Gromov-Hausdorff topology,

thenthey are diffeomorphic and the Lipshitz constants between them are suf-
fictently close to one.

Moreover we need astricter result that the closure of $\mathrm{M}$ is compact in
$C^{1,\alpha}$-topology, which is proven by elliptic thoery. In fact, the arguments in
[2] can be extended to the case of manifolds with boundary.

We also need to introduce topology of the set of BSD
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Definition 1A collection $\{\mu_{j}, \psi_{j}|_{\partial M}\}$ and the collection $\{\lambda_{j}, \phi_{j}|_{\partial M}\}$ satisfy

$d_{BSD}(\{(\mu_{j}, \psi_{j})\}, \{(\lambda_{j}, \phi_{j})\})<\delta$

if there eist disjoint intervals $I_{p}\subset[0, \delta^{-1}]$ , $p=1$ , $\ldots$ , $P$ such that

$i$ . All $\lambda_{j}$ , $\mu_{j}<\delta^{-1}-\delta$ belong to $\bigcup_{p=1}^{P}I_{p}$

$ii$ The length $|I_{p}|$ satisfy $|I_{p}|<\delta$

$iii$ . $d(I_{p}, I_{q})>\delta^{b}$ where $b= \frac{m}{2}+2$ . $(m=dimM)$

$vi$ . On interval $I_{p}$ the number $n_{p}$ of the points $\mu_{j}$ is equal to the number of
points $\lambda_{j}$ .

$v$ . There are unitary matrices $(a_{jk})\in \mathrm{C}^{n_{p}\mathrm{x}n_{p}}$ such that

$|| \sum_{\lambda_{\mathrm{j}},\lambda_{k}\in I_{p}}a_{jk}\phi_{k}-\psi_{j}||_{H^{1/2}}(\partial M)<\delta$
.

The proof of Theorem 2consists of analytic part and geometric part.
Analytic part is based on BC method. Geometric part is an argument in
Riemannian geometry.

2Anaytic part
The BC-Method gives the information the distance function $r_{p}(y):=d(p, y)$

from points $p\in M$ to each points $y$ on the boundary, which we call the
boundary distance function. We devide into two steps.

2.1 Recongnization of the domain of influence
Main point here is to obtain the information of the domain of influence of
the following wave equation from BSD. Consider the hyperbolic initial value
problem

$u_{tt}-\triangle u=0$ in $M\cross[0, T]$

$\partial_{\nu}u=$ $f$ on $\partial M\cross[0,T]$

$u|_{t=0}$ $=$ $u_{t}|_{t=0}=0$
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for $f\in \mathrm{H}\mathrm{x}([0, T], L^{2}(\partial M))$ . We will denote its solution by $u^{f}(x, t)$ and define

$W_{T}$ : $H^{1}([0,T], L^{2}(\partial M))arrow L^{2}(M)$

by $Wp(/)=u^{f}(\cdot,T)$ . Take the eigenfunction expansions

$u^{f}(x, t)= \sum_{j=0}^{\infty}u_{\mathrm{j}}^{f}(t)\phi_{j}(x)$

where
$u_{j}^{f}(t)=(u^{f}, \phi_{\mathrm{j}}):=\int_{M\mathrm{x}\{t\}}u^{f}(x,t)\phi_{j}(x)dx$ .

Note that the Stokes theorem implies the following.
Proposition 1

$(u^{f}, \phi_{j})=(f, S_{j}^{t}):=\int_{0}^{t}(\int_{\partial M}S_{j}^{t}(y,x)f(y, s)dS_{y})ds$

where
$S_{j}^{t}(y, s)= \frac{\sin(\sqrt{\lambda_{j}}(t-s))}{\sqrt{\lambda_{j}}}\phi_{\mathrm{j}}(y)$.

Take an open subset $\Gamma\subset\partial M$ and consider the domain of influence

$\mathrm{M}(\mathrm{r},\mathrm{t})=\{x\in M=M\mathrm{x}\{T\}|d(x, \Gamma)<t\}$ .
The finite propagation property of the wave equation implies

$W_{T}(H^{1}([T-t,T], \Gamma))\subset M(\Gamma, t)$ ,

where

$H^{1}([T-t,T],\Gamma)=\{f\in H^{1}([0,T],L^{2}(\partial M))|\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}f\subset[T-t,T]\cross\Gamma\}$ .

Moreover the following holds.

Theorem 4 (Tataru[7])

$Cl_{L^{2}}(W_{T}(H^{1}([T-t,T], \Gamma)))=L^{2}(M(\Gamma, t))$ ,

where we identify $L^{2}(M(\Gamma, t))$ with the set offuctions in $L^{2}(M)$ whose support
are contained in $M(\Gamma, t)$ .
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The above property is called approximate controllability. We can read
Proposition 1and Theorem 4as follows; If we know all information of BSD,
then we know all coefficients of $u$ in the dense subset $W_{T}(H^{1}([T-t, T], \Gamma))$ of
$L^{2}(M(\Gamma, t))$ . Then we can recongnize $M(\Gamma,t)$ . For example, the emptiness
of the set

$M(\Gamma_{1}, t_{1}, t_{2})\cap M(\Gamma_{2}, t_{3}, t_{4})$ ,

with
$M(\Gamma_{1}, t_{1}, t_{2})=M(\Gamma_{1}, t_{2})\backslash M(\Gamma_{1}, t_{1})$

is nothing but that of the intersection of sets

$\{u_{j}^{f}|f\in(H^{1}([T-t_{2}, T], \Gamma_{1})\backslash H^{1}([T-t_{1}, T], \Gamma_{1}),j=1,2, \cdots\}$

and

$\{u_{j}^{f}|f\in(H^{1}([T-t_{4}, T], \Gamma_{2})\backslash H^{1}([T-t_{3}, T], \Gamma_{2}),j=1,2, \cdots\}$.

In our case, we only know the finite information of BSD containing some
errors. We have the following two results in this moment;

(a) Aresult under less assumption using compactness arguments (no esti-
mate); First, we note that the wave operator and BSD are continuous with
respect to the Gromov-Hausdorff distance $d_{GH}$ in M. In fact, if $d_{GH}$ ( $M$, Af’)
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is small, then, by Theorem 3, M and $M’$ are diffeomorphic and these Rieman-
nian metrics are similar and thus we consider quantities on fixed manifold,
Then, the usual perterbation arguments can be applied to imply the conti-
nuity.

Put

$S_{\mathrm{r}i}^{T}(y,t)=\mathcal{X}_{\Gamma}(y)S_{j}^{T}(y,$t)

for the characteristic function $\mathcal{X}_{\Gamma}$ of $\Gamma\subset\partial M$ .

Proposition 2Given $m$ , $\Lambda$ , $D$ , $i_{0}>0$ and $\Gamma\subset\partial M$ , $t$ , $\epsilon$ $>0$ , there exist
$\delta>0$ and $a_{j}$ $(j=0,1, \cdots j_{0}=[1/\delta-\delta])$ such that if $M\in \mathrm{M}(\partial M;m,\Lambda, \mathrm{D},\mathrm{i}\mathrm{O})$

with $BSD\{(\mu_{j}, \psi_{j}|_{\partial M})\}$ and $d_{BSD}(\{(\mu_{j}, \psi_{j}|_{\partial M})\},$ $\{(\lambda_{j}, \phi_{j}|_{\partial M}\})<\delta$ , then

$|| \mathcal{X}_{M(\Gamma,t)}\phi_{0}-W_{T}(\sum_{j=0}^{j\mathrm{o}}a_{j}S_{\Gamma,j}^{T})||_{L^{2}(M)}<\epsilon$ ,

where $\mathcal{X}_{M(\Gamma,t)}$ is the characteristic function of $M(\Gamma, t)$ . Moreover, we have
an algorithm to find $\{a_{j}\}$ .

Key point here is uniformity of $\delta$ in the class $\mathrm{M}$ and computability of
$\{a_{j}\}$ . Since the proof of this propositon is rather technical, we present here
only typical arguments used in the proof. For fixed $M\in \mathrm{M}$ and $t>0$ , there
exists afunction $f$ such that

$||\mathcal{X}_{M(\Gamma,t)}\phi_{0}-W_{T}(f)||<\epsilon/10$

by Theorem 4and thus, there exist $j_{1}>0$ and $b_{j}$ such that

$|| \mathcal{X}_{M(\Gamma,t)}\phi_{0}-W_{T}(\sum_{j=0}^{j_{-}^{-}j_{1}}b_{j}S_{\Gamma,j}^{T}||<\epsilon/10$ .

by the density of $S_{\Gamma \mathrm{j}}^{T}$ . Then, by the continuty of $d_{GH}$ , we may assume the
above $j_{1}$ can be chosen uniformly in some neighborhood of $M$ and thus,
uniformly in whole $\mathrm{M}$ by the compactness in Theorem 3.

To obtain an algorithm, we need to transform the problem of finding $\{a_{j}\}$

into the minimizing problem of anonlinear functional on afinite dimensional
space. This is done by approximating the space spanned by the all function$\mathrm{s}$
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appearing the above inequalities by the boundary objects like $!\ovalbox{\tt\small REJECT} \mathrm{j}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ etc. and
reduce everything into the computaion on the boundary. But we omit it
here.

(b) Aresult with explicit estimate; Here we recongnize $M(\Gamma,$t) by the fol-
lowing stabiliy estimate. Assume $\mathrm{t}\mathrm{h}\mathrm{a}s_{1}>s_{0}>0$ .

Proposition 3Given $\Gamma\subset\partial M$, $t$ , $c$ , $\epsilon_{0}$ , $\epsilon_{1}>0$ , there exists $\delta>0$ such that
if $u\in Domain(\Delta)$ satisfies

$||u||_{L^{2}(M)}<1$ , $||u||_{H^{s_{1}}(M)}<c$

and the solution $U(x, t)$ of the following equation

$U_{tt}-\Delta U$ $=$ 0
$U|_{\partial M\mathrm{x}\mathrm{R}}$ $=$ 0

$U_{t}|t=0=0$ $U|_{t=0}=u$

satisfies

$||\partial_{\nu}U||_{H^{*}0^{-1}(\Gamma \mathrm{x}[-t,t])}<\delta$,

then

$||U|_{M(\Gamma,t-\epsilon 0)\mathrm{x}t}||<\epsilon_{1}$

This propostion is used to relate approximation errors of functions $M$ with
support $M(\Gamma, t)$ by $\phi_{j}|_{M(\Gamma,t)}$ and functions in $\partial M\cross \mathrm{R}$ in the support $\Gamma\cross[0, t]$

by $S_{\Gamma,j}^{T}$ , from which we obtain the information on $M(\Gamma, t)$ approximately. We
also omit the details.

Theorem 4and Propsition 2are obtained from the Carleman estimate due
to Tataru and the similar stability estimate is written in Tataru’s lecture note
in his homepage. But we believe that our proof, although similar to Tataru,
clarifies the dependence of geometric quantities more explicitly
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2.2 Reconstruction of the boundary distance.
We explain reconstruction of the boundary distance $r_{p}$ in the situation (a).
First we note that the volume of $M(\Gamma, t)$ is computable approximately. Put
$\overline{u}=\sum_{j=0}^{j\mathrm{o}}a_{j}S_{\Gamma_{\dot{O}}}^{T}$ in Proposition 2. Then we have

$\mathrm{V}\mathrm{o}\mathrm{l}(M(\Gamma,t))=\mathrm{V}\mathrm{o}\mathrm{l}(M)(\mathcal{X}_{M(\Gamma,t)}\phi_{0}, \phi_{0})\approx(W^{T}(\tilde{u}), \phi_{0})=(\tilde{u}, S_{0}^{t})$

Here we call the right hand side the approximate volume $v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma, t))$

of $M(\Gamma,t)$ .
Next, take apartition $\{\Gamma_{j}\}$ of $\partial M$ satisfying

$\bigcup_{j=1}^{L}\Gamma_{j}=\partial M$

and diam $(\Gamma_{j})<\sigma$ and the partition $\{t_{j}=j\sigma\}$ be of interval $[0, T]$ . Let $\alpha$

be amulti-indexes
$\alpha=(\alpha_{1}, \ldots, \alpha_{L})$ , $\alpha_{j}\in \mathrm{Z}$ .

We need to analyze the sets

$I_{\alpha}= \bigcap_{j=1}^{L}\{x\in M$:$d(x,\Gamma_{j})\in](\alpha_{j}-2)\sigma, (\alpha_{j}+2)\sigma]\}$ .

The set $I_{\alpha}$ is either asmall ’cube’ in $M$ or an empty set. In the case where
$I_{\alpha}$ is not empty, it contains apoint $x$ for which the corresponding boundary
distance function $r_{p}$ has approximately value $\alpha_{j}\sigma$ on the intervals $\Gamma_{j}$ . To
distinguish $I_{\alpha}$ is empty or not, we need to compute the approximate volume
of $I_{\alpha}$ . This is done by repetition of the following type of arguments.

$v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{1}, t_{1},t_{2})\cap M(\Gamma_{2},t_{3},t_{4}))$ $\approx$ $v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{1},t_{1},t_{2}))+v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{2},t_{3}, t_{4}))$

$v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{1},t_{1},t_{2})\cap M(\Gamma_{2},t_{3}, t_{4}))$

and

$v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{1},t_{1}, t_{2})\approx v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{1}, t_{2}))-v^{\mathrm{a}\mathrm{p}\mathrm{p}}(M(\Gamma_{1},t_{1}))$ .
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3Geometric part
There are two methods to reconstruct the interior distance. It is obtained
only from the boundary distance by the first method. The second method
uses reconstruction of the heat kernel.

3.1 Reconstruction of the interior distance from the
boundary distance

The interior distance are recongnized in the following order.

(1) If there is ageodesies from $p$ to $q$ can be extended minimally to the
boundary point $y\in\partial\Lambda f$ , then we have done by

$d(p, q)=r_{p}(y)-r_{q}(y)$

|.| $\mathbb{R}^{2}$
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(3) The real problem is finding “good” triangles. If we assume the extra
condition on the bound of the curvature derivative, we can find “good” tri-
angles satisfying the situation (2) for any sufficiently close points $p$ , $q\in M$ .
Namely, we can recongnize the approximate interior distance directly. In our
case, we replace it by constructing anet such that distances between its ele-
ments are recongnizable approximately. It is done by arguments essentially
based on the measure theory.

3.2 Reconstruction of the interior distance from the
heat kernel

First we note that, similarly to the previous section, eigenfunctions $\phi_{j}$ can
also be reconstructed from BSD. Ifwe know full data of BSD then the interior
distance can be reconstructed from the following well known equalities. We
denote $k(t, x, y)$ is the heat kernel.

$k(t,x, y)= \sum_{\dot{|}=0}^{\infty}e^{\lambda t}\phi_{(}:x)\phi_{(}y)$ ,

and

$\lim_{tarrow 0}k(t.x.y)=\frac{1}{4}d^{2}(x, y)$ .

To proceed this kind of arguments under the knowledge on FBSD, upper
and lower estimates of $k(t, x, y)$ are neccessary. Available estimates now hold
under the assumption on the Ricci curvature (weaker than assumptions on
M) but in the case of convex boundary (stronger than assumptions on $\mathrm{M}$).

Last but not least, the boundary spectral distance $d_{BSD}$ can be expressed
bya boundary version of spectral distance defined by Kasue-Kumura [3] using
heat kernel. It should be intersting to investigate to inverse problem con-
nected with spectral convergence in their sense; e.g. What conditions assure
that the boundary spectral convergence imply the spectral convergence of
manifolds themselves?
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There is survey article of BC method by Belishev in Inverse Problem
13(1997)Rl-R45. Moreover, aBook on $\mathrm{B}\mathrm{C}$-method is in progress of writing
by Katchalov, Kurylev and Lassas. The method in this book will be explained
by using the Gaussian beam in their book, which is another version of BC-
method. This is alittle bit different to here
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