ON AN ABSTRACT RADIATION CONDITION

Ingrid Beltiță
Institute of Mathematics of the Romanian Academy

INTRODUCTION

We shall present an abstract radiation condition in terms of the Mourre theory of conjugate operator method.

Let \mathcal{H} be a Hilbert space and A be a self-adjoint operator in \mathcal{H}. For $s \geq 0$ consider the Hilbert space $A^s = D((A^*)^s)$ with the graph norm, and if $s < 0$, $A^s = (A^{-s})^*$. Then, if $s \geq 0$, $A^s \subseteq \mathcal{H} \subseteq A^{-s}$ continuously and densely, and the scalar product of \mathcal{H} extends to a natural duality $(\cdot, \cdot)_{s,-s} : A^s \times A^{-s} \to \mathbb{C}$ for all $s \in \mathbb{R}$. We denote by P_\pm the spectral projectors of A associated to the half-lines $[0, +\infty)$ and $(-\infty, 0]$, respectively.

We recall now some (Besov) spaces of operators (see [ABG]). Let S be a bounded operator on \mathcal{H}. We say that $S \in C_k^s(A)$, k positive integer, if the application $\mathbb{R} \ni \tau \to \mathcal{W}(\tau)[S] = e^{i\tau A} S e^{-i\tau A} \in \mathcal{B}(\mathcal{H})$ is strongly C^k; in this case $\text{ad}^s S$ can be extended as a bounded operator on \mathcal{H}. Consider $\theta \in (0,1], p \in [1, \infty]$; we say that $S \in C^\theta,p(A)$ if $(\tau \to (\mathcal{W}(\tau) - I)^m[S]||/|\tau|^{\theta + 1/p}) \in L^p((0, \infty))$, where $m = 1$ if $\theta < 1$, and $m = 2$ if $\theta = 1$. (If $p = \infty$, this condition should be read as $\sup_{\tau > 0} ||(\mathcal{W}(\tau) - I)^m[S]||/|\tau|^\theta < \infty$.) For general $\theta > 0$, we say that $S \in C^\theta,p(A)$ if $S \in C^l(A)$ and $\text{ad}^s S \in C^{\theta-l,p}(A)$, where l is the largest integer $l < \theta$.

Let L be a self-adjoint operator in \mathcal{H}. Then $L \in C^\theta,p(A)$ (or $C^k(A)$) if $(L - z)^{-1} \in C^\theta,p(A)$ (or $C^k(A)$) for some (and hence all) $z \in \mathbb{C} \setminus \sigma(L)$.

If L is a self-adjoint operator of class $C^1(A)$, then the commutator $i[L,A]$ is defined as a continuous form on the domain of L. Then one can define the strict Mourre set $\mu^A(L)$ of L with respect to A as the set of $\lambda \in \mathbb{R}$ with the property that there exists $J = (\lambda - \delta, \lambda + \delta) \neq \emptyset$ and $d > 0$ such that

$$E_L(J) i[L,A] E_L(J) \geq d E_L(J).$$

We recall that if L has a spectral gap and $L \in C^{1,1}(A)$, then there exist $R_L(\lambda \pm i0) = \lim_{\epsilon \to 0} (L - \lambda \mp i\epsilon)^{-1}$ uniformly in $\mathcal{B}(A^s, A^{-s})$, whenever $s > 1/2$.

The following theorem was given in [BGS1] (for the proof see [BGS2]; see also [J] for some earlier results).

THEOREM 1. Let $s > 1/2$ be a real number and L be a self-adjoint operator with a spectral gap and of class $C^{s+1/2,1}(A)$. Then we have $P_\mp R_L(\lambda \pm i0)A^s \subseteq A^{s-1}$ for each $\lambda \in \mu^A(L)$.

It turns out that in some stronger hypotheses this condition characterizes $R_L(\lambda \pm i0)$. Namely, we prove the following theorem, extending some results of [B2], [M].

THEOREM 2. Let $1 \geq \theta > 1/2$ be a real number, $L \geq -M$ be a bounded from below self-adjoint operator of class $C^{1+\theta,\infty}(A)$ such that $i[L,A] \in \mathcal{B}(G,G^*)$, where G is the form domain of L, and $\lambda \in \mu^A(L)$. Suppose $u \in A^s$, $s \in (1/2, \theta)$ satisfies:

a) $(u,(L - \lambda)\varphi)_{s,-s} = 0$ for all $\varphi \in (L + M)^{-1}A^s$,

b) there exists $\alpha < \theta/2$ such that $\langle A^{-\alpha}P_-(A)u \in \mathcal{H}$ (or $\langle A^{-\alpha}P_+(A)u \in \mathcal{H}$).

Then $u = 0$.
The proof follows Isozaki's proof of some type of radiation conditions which are strongly related to those presented here. (See [I1], [I2], [I3].) We only remark here that Theorem 2 provides some useful results in the study of the layered media.

One of the tools needed here is the functional calculus using almost analytic extensions of symbols. Let \(m \in \mathbb{R} \). We denote by \(S^m \) the set of symbols \(f \in C^\infty(\mathbb{R}) \) that satisfy

\[
p_k(f) = \sup_{x \in \mathbb{R}} \langle x \rangle^{m-k} |f^{(k)}(x)| < \infty.
\]

Then \(S^m \), endowed with the seminorms \(p_k \) is a Fréchet space. The following result can be found in [B2], [M] (see also [DG] for the main idea).

PROPOSITION 3. Consider a bounded family of symbols \(\{f_\epsilon\} \subset S^m \). Then there exists a family of functions (the almost analytic extensions) \(\{\tilde{f}_\epsilon\} \subset C^\infty(\mathbb{C}) \) such that:

1. \(|Imz| \leq |Rez|\) on \(\text{supp} \tilde{f}_\epsilon \),
2. \(|\overline{\partial}\tilde{f}_\epsilon(z)| \leq C_N(z)^{m-N-1}|Imz|^{N-1} \) for all \(N \geq 0 \) and all \(z \in \mathbb{C} \), where the constants \(C_N \) do not depend on \(z \) and \(\epsilon \).

This construction provides an useful representation for the functional calculus of a self-adjoint operator, due to Helffer- Sjöstrand ([HS]): Let \(A \) be a self-adjoint operator on \(\mathcal{H} \) and \(f \in S^{-\delta}, \delta > 0 \). Then

\[
f(A) = \frac{1}{\pi} \int_{\mathbb{C}} \overline{\partial}\tilde{f}(z)(A - z)^{-1} \, dx \, dy,
\]

where \(z = x + iy \) and \(\tilde{f} \) is an almost analytic extension of \(f \). If \(B \) is a bounded operator with \(ad_A^n \) is a bounded form on the domain of \(A \), and \(ad_A k f^{(k)}(A) \) (respectively \(f^{(k)}(A) ad_A k \)) \(k = 1, \ldots, n - 1 \), are bounded operators, then

\[
[B, f(A)] = \sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k!} ad_A^k(B) f^{(k)}(A) + R_0^n(A, B)
\]

where

\[
R_0^n(A, B) = \frac{1}{\pi} \int_{\mathbb{C}} \overline{\partial}\tilde{f}(z)(A - z)^{-1} ad_A^n(B)(A - z)^{-n} \, dx \, dy,
\]

\[
R_0^n(A, B) = \frac{(-1)^n}{\pi} \int_{\mathbb{C}} \overline{\partial}\tilde{f}(z)(A - z)^{-n} ad_A^n(B)(A - z)^{-1} \, dx \, dy.
\]

For a proof, see for instance [M].

1. **COMMUTATORS**

LEMMA 1.1. Let \(B \in C^{\theta,\infty}(A) \), \(0 < \theta < 1 \), be a bounded operator and \(\alpha_1, \alpha_2 \) positive numbers such that \(0 < \alpha_1 + \alpha_2 < \theta \). Then

\[
\|(A)^{\alpha_1}[B, (A - z)^{-1}](A)^{\alpha_2}\| \leq C(|Imz|^{-\theta-1} + |Imz|^{-1} + \langle z \rangle |Imz|^{-2} + \langle z \rangle^2 |Imz|^{-3})
\]
whenever $|Imz| \neq 0$.

Proof. Consider $0 < \alpha < \theta$. We consider first the operator $\langle A \rangle^\alpha [B, (A - z)^{-1}]$. Suppose $Imz > 0$; the case $Imz < 0$ is similar.

(i) We have (weakly)

$$[B, (A - z)^{-1}] = \int_{-\infty}^{0} e^{\mu t} [B, e^{i\lambda t} A] e^{itA} dt,$$

where $z = \lambda + i\mu$. Using that $B \in C^{\theta, \infty}(A)$, we get

$$||[B, (A - z)^{-1}]|| \leq \int_{-\infty}^{0} e^{\mu t} |t|^\theta dt \leq C \mu^{-\theta-1} \int_{-\infty}^{0} e^{t} |t|^\theta dt,$$

hence

$$\tag{1.2} \quad \quad ||[B, (A - z)^{-1}]|| \leq C \mu^{-\theta-1}.$$

(ii) Denote $\nu(\lambda) = \langle \lambda \rangle^\alpha$. Helffer-Sjöstrand formula gives (first as bounded operators between A^α and $A^{-\alpha}$)

$$\tag{1.3} [B, \langle A \rangle^\alpha] = \frac{1}{\pi} \int_{C} \overline{\nu}(z) [B, (A - z)^{-1}] dx dy.$$

The norm of the integrand in (3) can be bounded by

$$\|\overline{\nu}(z) [B, (A - z)^{-1}]\| \leq C(z)^{\alpha-1-N} |Imz|^{N-\theta-1}.$$

If one takes $N = \theta + 1$ to avoid the singularities, we get

$$\|\overline{\nu}(z) [B, (A - z)^{-1}]\| \leq C(z)^{\alpha-2-\theta},$$

which is integrable if $\alpha < \theta$. Hence

$$[B, \langle A \rangle^\alpha] \in \mathcal{B}(\mathcal{H}).$$

(iii) We can write then

$$\tag{1.4} \quad \quad \langle A \rangle^\alpha [B, (A - z)^{-1}] = [B, \langle A \rangle^\alpha (A - z)^{-1}] - [(A)^\alpha, B](A - z)^{-1}.$$

The norm of the second hand in the rhs of (4) is bounded by $C|Imz|^{-1}$.

(iv) We estimate now the first term in the rhs of (4). Let g be a smooth function on \mathbb{R}, $g(t) = 1$ if $|t| \geq 1$ and $g(t) = 0$ if $|t| < 1/2$. Then

$$\tag{1.5} \quad \quad [B, \langle A \rangle^\alpha (A - z)^{-1}] = [B, g(A)\langle A \rangle^\alpha (A - z)^{-1}] + [B, (1 - g(A))\langle A \rangle^\alpha (A - z)^{-1}].$$

The second term of the rhs of (1.5) equals

$$[B, \langle A \rangle^\alpha (A - z)^{-1} + [B, (A - z)^{-1}] (1 - g(A))\langle A \rangle^\alpha,$$
and has the norm less than (using (2))

\[(1.6)\quad C(|\text{Im}z|^{-1} + |\text{Im}z|^{\theta+1}).\]

We denote \(g_z(\lambda) = g(\lambda)(\lambda)^{\alpha}(\lambda - z)^{-1}\). We shall use the following form of the Helffer–Sjöstrand form (see [BGS2], section 4):

\[(1.7)\quad [B, g_z(A)] = \frac{1}{\pi} \int_{\mathbb{R}} \left((g_z(\lambda) - \lambda g_z'(\lambda))[B, \text{Im} R_A(\lambda + i\lambda)] - \partial_\lambda(\lambda g_z(\lambda))[B, \text{Im}i R_A(\lambda + i\lambda)] \right) d\lambda \]

\[- \frac{1}{\pi} \int_{\mathbb{R}} \int_0^\lambda g_z^{(2)}(\lambda)) [B, \text{Im} R_A(\lambda + i\mu)] \mu d\mu d\lambda.\]

The norm of the integrand in the first term of (1.7) can be estimated by (using (2) and on \(\text{supp} g\))

\[C\left(\frac{\langle \lambda \rangle^\alpha}{|\lambda-z|} + \frac{\langle \lambda \rangle^{\alpha+1}}{|\lambda-z|^2}\right) \langle \lambda \rangle^{-\theta-1} \leq C \langle \lambda \rangle^{-\theta-1} (|\text{Im}z|^{-1} + \langle z \rangle |\text{Im}z|^{-2}).\]

Hence the first integral in (7) can be bounded as follows

\[(1.8) \quad \| \int_{\mathbb{R}} (g_z(\lambda) - \lambda g_z'(\lambda) + 2(i+1)^{-1}\partial_\lambda(\lambda g_z(\lambda))[B, R_A(\lambda + i\lambda)] d\lambda \| \leq C(|\text{Im}z|^{-1} + \langle z \rangle |\text{Im}z|^{-2}).\]

To estimate the second integral we note first that

\[(1.9) \quad \| \int_0^\lambda g_z^{(2)}(\lambda)) [B, R_A(\lambda + i\mu)] \mu d\mu \| \leq C\langle \lambda \rangle^{1-\theta}\]

on \(\text{supp} g\). Then

\[\|g_z^{(2)}(\lambda) \int_{0}^{\lambda} g_z^{(2)}(\lambda)) [B, R_A(\lambda + i\mu)] \mu d\mu d\lambda \| \leq C\langle \lambda \rangle^{1-\theta} \left(\frac{\langle \lambda \rangle^\alpha}{|\lambda-z|^{\theta}} + \frac{\langle \lambda \rangle^{\alpha-1}}{|\lambda-z|^2} + \frac{\langle \lambda \rangle^{\alpha-2}}{|\lambda-z|} \right)\]

\[\leq C\langle \lambda \rangle^{1+\alpha-\theta} (|\text{Im}z|^{-1} + \langle z \rangle |\text{Im}z|^{-2} + \langle z \rangle^2 |\text{Im}z|^{-3})\]

Summing up:

\[\|[B, g_z(A)]\| \leq C((z)^2|\text{Im}z|^{-3}) + \langle z \rangle |\text{Im}z|^{-2} + \lambda^{\alpha+\theta} |\text{Im}z|^{-1}).\]

Then one gets

\[(1.11) \quad ||A|^\alpha [B, (A - z)^{-1}]|| \leq C((z)^2|\text{Im}z|^{-3}) + \langle z \rangle |\text{Im}z|^{-2} + \lambda^{1+\alpha-\theta} |\text{Im}z|^{-1} + |\text{Im}z|^{-\theta-1}).\]

In the same way

\[(1.12) \quad \|[B, (A - z)^{-1} A]^\alpha\| \leq C((z)^2|\text{Im}z|^{-3}) + \langle z \rangle |\text{Im}z|^{-2} + \lambda^{1+\alpha-\theta} |\text{Im}z|^{-1} + |\text{Im}z|^{-\theta-1}).\]

The general result follows by interpolation.
1.2. Let \(\{ \chi_t \} \in S^a \), \(a < 1 \) be a bounded family of symbols, and \(B \in C^{1+\theta, \infty}(A) \) a bounded operator. Then

\[
i[B, \chi_t(A)] = i[B, A] \chi'_t(A) + R_{1,t},
i[B, \chi_t(A)] = \chi'_t(A)i[B, A] + R_{2,t},
\]

where

\[
\langle A \rangle^{\alpha_1} R_{1,t}(A)^{\alpha_2} \in \mathcal{B}(\mathcal{H}) \quad \text{and} \quad \| \langle A \rangle^{\alpha_1} R_{1,t}(A)^{\alpha_2} \| \leq C
\]

\[
\langle A \rangle^{\alpha_2} R_{2,t}(A)^{\alpha_1} \in \mathcal{B}(\mathcal{H}) \quad \text{and} \quad \| \langle A \rangle^{\alpha_2} R_{2,t}(A)^{\alpha_1} \| \leq C,
\]

whenever \(\alpha_1 + \alpha_2 + a < 1 + \theta \), \(\alpha_1 + \alpha_2 < 1 + \theta \), \(\alpha_1 < \theta \). Here \(C \) stands for constants not depending on \(t \).

Proof. We have \(i[B, \chi_t(A)] = i[B, A] \chi'_t(A) + R_{1,t} \) where

\[
R_{1,t} = \frac{1}{\pi} \int_{\mathcal{C}} \overline{\partial} \chi_t i[D, (A - z)^{-1}] (A - z)^{-1} \, dz \, dy,
\]

with \(D = i[B, A] \in C^{\theta, \infty}(A) \), bounded.

We take \(\delta = \theta - \alpha_1 - \epsilon \) with \(\epsilon \) sufficiently small such that \(\alpha_2 - \epsilon < 1 \) and \(a + \alpha_2 - \delta < 1 \). (This is possible by hypothesis.) Then, by Lemma 1,

\[
\| \partial \chi_t(A)^{\alpha_1} i[D, (A - z)^{-1}] (A)^{\delta} (A - z)^{-1} (A)^{\alpha_2 - \delta} \|
\leq C_N (z)^{a-1-N} |Imz|^N (|Imz|^{-\theta} + |Imz|^{-\theta-1}) (z)^{\alpha_2 - \delta} |Imz|^{-1}
\]

on \(\text{supp} \overline{\partial} \chi_t \). We take \(N = \theta + 2 \) and thus obtain that

\[
\| \partial \chi_t(A)^{\alpha_1} i[D, (A - z)^{-1}] (A - z)^{-1} (A)^{\alpha_2} \| \leq C (z)^{a-3+\alpha-\delta}
\]

which is integrable and \(C \) does not depend on \(t \). Hence \(\langle A \rangle^{\alpha_1} R_{1,t}(A)^{\alpha_2} \) extends to a bounded operator and the estimate in the statement holds. One proceed similarly to get the second assertion.

1.3. Let \(B \) be a bounded operator of class \(C^{\theta, \infty}(A) \), \(0 < \theta \leq 1 \) and \(\alpha_1, \alpha_2 \) positive numbers such that \(\alpha_1 + \alpha_2 < \theta \). Then \(\langle A \rangle^{\alpha_1} [B, \langle A \rangle^{\alpha_2}] \) extends to a bounded operator on \(\mathcal{H} \).

Proof. Recall that in the proof of Lemma 1 we proved that \([B, \langle A \rangle^{\delta}] \in \mathcal{B}(\mathcal{H}) \) whenever \(\delta = \alpha_1 + \alpha_2 + \epsilon < \theta \). We denote \(\delta_i = \alpha_i / \delta \), \(i = 1, 2 \) and set \(A_\delta = \langle A \rangle^{\delta} \); this is a self-adjoint operator \(A_\delta \geq 1 \). We have to control \(A_\delta^k [B, h(A_\delta)] \), where \(h \in S^{\theta_2}, h(s) = s^\theta \) if \(s \geq 1/2 \) and \(h(s) = 0 \) if \(s \leq 1/4 \). We have (first in form sense)

\[
A_\delta^k i[B, h(A_\delta)] = \frac{1}{\pi} \int_{\mathcal{C}} \overline{\partial} h(z) A_\delta^k (A_\delta - z)^{-1} i[B, A_\delta] (A_\delta - z)^{-1} \, dz \, dy.
\]

On the support of \(\overline{\partial} h \) the norm of the integrand can be estimated as

\[
\| \overline{\partial} h(z) A_\delta^k (A_\delta - z)^{-1} i[B, A_\delta] (A_\delta - z)^{-1} \| \leq C (z)^{\theta_1 + \theta_2 - 1/2}
\]

The rhs is an integrable function, since \(\theta_1 + \theta_2 < 1 \). Therefore \(A_\delta^k i[B, h(A_\delta)] \) extends to a bounded operator on \(\mathcal{H} \).
LEMMA 1.4. Let B be a bounded operator of class $C^{0,\infty}(A)$, $0 < \theta \leq 1$ and α_1, α_2 positive numbers such that $\alpha_1 + \alpha_2 < \theta$, and $\{g_t\} \subset S^a$, $a \leq 0$, a bounded family of symbols. Then:

\[\|\langle A \rangle^{\alpha_1}i[B, g_t(A)]\langle A \rangle^{\alpha_2}\| \leq C, \]

where C does not depend on t.

Proof. (i) Consider first the case where $a < 0$. Then

\[\langle A \rangle^{\alpha_1}i[B, g_t(A)]\langle A \rangle^{\alpha_2} = \frac{1}{\pi} \int_{C} \overline{\partial} \tilde{g}_t(z)\langle A \rangle^{\alpha_1}i[B, (A-z)^{-1}]\langle A \rangle^{\alpha_2} dx dy. \]

Using Lemma 1 the norm of the integrand can be majorized by $C\langle z \rangle^{-2-2\epsilon}$. (ii) If $a = 0$, let $\epsilon > 0$ be such that $\alpha_1 + \alpha_2 + \epsilon < \theta$ and write

\[\langle A \rangle^{\alpha_1+\epsilon}\langle A \rangle^{-\epsilon}i[B, g_t(A)]\langle A \rangle^{\alpha_2} = \langle A \rangle^{\alpha_1+\epsilon}i[B, g_t(A)]\langle A \rangle^{-\epsilon}\].

We use the proof of the previous lemma to show that the first term is a bounded operator and its norm can be bounded by a constant not depending on t. For the second term we use (i). \blacksquare

2. THE PROOF OF THEOREM 2

We can suppose, without restricting the generality, that in Theorem 2 we have $M = 1$ and $\lambda = 0$.

LEMMA 2.1. If $\Phi \in C_0^\infty(\mathbb{R})$ is a real function, $\Phi = 1$ on a neighborhood of 0, then

\[(u, \Phi(L)\varphi)_{-s,s} = (u, \varphi)_{-s,s}, \text{ for all } \varphi \in \mathcal{A}^s. \]

Proof. We have, for $\varphi \in \mathcal{A}^1$,

\[(u, (1 - \Phi(L))\varphi)_{-s,s} = (u, L\Psi(L)\varphi)_{-s,s}, \]

where $\Psi(t) = (1-\Phi(t))t^{-1}$. Therefore, to have (2) for $\varphi \in \mathcal{A}^1$ it suffices to prove that $\Psi(L) = (L+1)^{-1}\varphi_1$ with $\varphi_1 \in \mathcal{A}^1$. We can write $(L + 1)\Psi(L) = (1 - \Phi(L)) + \Psi(L)$. Thus, since $(1\Phi(L))\varphi \in \mathcal{A}^1$, it remains to show that $\Psi(L)\varphi \in \mathcal{A}^1$ if $\varphi \in \mathcal{A}^1$. We have

\[i[\Psi(L), A] = \frac{1}{\pi} \int_{C} \overline{\partial} \Psi i[(L-z)^{-1}, A] dx dy = \frac{1}{\pi} \int_{C} \overline{\partial} \Psi (L-z)^{-1}((L+1)^{-1/2}(L+1)^{-1/2}i[L, A](L+1)^{-1/2}((L+1)^{1/2}(L-z)^{-1} dx dy \]

The norm of the integrand can be bounded by $C\langle z \rangle^{-2-2\epsilon}|\text{Im}z|^2(\langle z \rangle^{|\text{Im}z|^2} = C\langle z \rangle^{-3}$. We get that $i[\Psi(L), A]$ is a bounded operator and we obtain easily that $\Psi(L)\varphi \in \mathcal{A}^1$ if $\varphi \in \mathcal{A}^1$. Thus equation (1) holds for $\varphi \in \mathcal{A}^1$; the general result follows by density using the fact that $\Phi(L) \in \mathcal{B}(\mathcal{A}^s)$. \blacksquare
Remark. In fact the previous Lemma says that $\Phi(L)u = u$ for all $\Phi \in \mathcal{C}_0^\infty(\mathbb{R})$, $\Phi = 1$ on a neighborhood of 0; this fact can be easily seen using that $\Phi(L) \in \mathcal{B}(A^t) \cap \mathcal{B}(A^{-t})$ and it is symmetric with respect to the duality $(.,.)_{\iota,-\iota}$.

Lemma 2.2. Let $\chi \in \mathcal{C}_0^\infty(\mathbb{R})$ such that $0 \leq \chi(s) \leq 1$, $\chi(s) = 1$ for $|s| \leq 1$, $\chi(s) = 0$ for $|s| \geq 2$. We consider the $\mathcal{C}_0^\infty(\mathbb{R})$ function

$$
x_t(y) = \int_{(y)}^\infty s^{-2\beta} \chi^2(s/t) ds,
$$

where $\beta > \max(\alpha, s/2)$, $\beta < \theta/2$. Then

$$
(\mathcal{L}\Phi^2(L)\chi_t(A)u, u)_{\iota,-\iota} = 0.
$$

Proof. The Lemma follows by hypothesis as $\Phi^2(L)\chi_t(A)u \in (L+1)^{-1}A^\iota$.

We shall set T for different bounded operators with norm independent on t.

Remark. We have

$$2 \text{Re } i ((\mathcal{L}\Phi^2(L)\chi_t(A)u, u)_{\iota,-\iota} = 0.$$

We shall give to this relation the form and the meaning

$$i([L\Phi^2(L), \chi_t(A)]u, u)_{\iota,-\iota} = 0.$$

Set $L_1 = \Phi^2(L)L$. Then L_1 is a bounded operator of class $\mathcal{C}^{\theta+1,\infty}(A)$ (Thm. 6.2.5 [ABG]).

Lemma 2.3. We have

$$i[L_1, \chi_t(A)] = i[L_1, A]A(A^{-2\beta-1}\chi^2(\langle A \rangle/t) + \langle A \rangle^{-s}T\langle A \rangle^{-s}.$$

Proof. One applies Lemma 1.2 for $R_{1,t}$, $\alpha_1 = \alpha_2 = s$, $a = 1 - 2\beta$. (Here $\alpha_1 + \alpha_2 + a = 2s + 1 - 2\beta < \theta + 1$ since $\beta > \theta/2$, and $s < \theta$.)

As a direct consequence we get the next Lemma.

Lemma 2.3'. $\sup_{t \geq 1} |(i[L_1, A]A(A^{-2\beta-1}\chi^2(\langle A \rangle/t)u, u)_{\iota,-\iota}| < \infty$.

Lemma 2.4. If $\tilde{\Phi} \in \mathcal{C}_0^\infty(\mathbb{R})$, $\tilde{\Phi} = 1$ on a small enough neighborhood of 0, then

$$\sup_{t \geq 1} |\Phi(L)[i[L, A]\Phi(L)A(A^{-2\beta-1}\chi^2(\langle A \rangle/t)u, u)_{\iota,-\iota}| < \infty.$$

Proof. We know that $\Phi(L)u = u$. We have

$$A(A^{-2\beta-1}\chi^2(\langle A \rangle/t)\tilde{\Phi}(L) = \Phi(L)A(A^{-2\beta-1}\chi^2(\langle A \rangle/t) + [\Phi(L), A(A^{-2\beta-1}\chi^2(\langle A \rangle/t)].$$

Set $g_t(A) = A(A^{-2\beta-1}\chi^2(\langle A \rangle/t)$. Here $\{g_t\} \in S_{-2\beta}$ is a bounded family of symbols. One applies Lemma 1.2 to get

$$[\Phi(L), g_t(A)] = [\Phi(L), A]\Phi(L)\Phi_t(A) + R_{1,t}.$$

In this case $\alpha_1 = \alpha_2 = s$, $a = -\beta$. Thus, since $2\beta + 1 > s + 1 > 2s$,

\[(2.5) \quad A(A)^{-2\beta-1}\chi^2(\langle A \rangle/t)\tilde{\Phi}(L) = \tilde{\Phi}(L)A(A)^{-2\beta-1}\chi^2(\langle A \rangle/t) + \langle A \rangle^{-s}T\langle A \rangle^{-s}.
\]

Hence

\[(2.6) \quad (i[L_1, A]A(A)^{-2\beta-1}\chi^2(\langle A \rangle/t)\tilde{\Phi}(L)u, \tilde{\Phi}(L)u)_{s,-s} = (i[L_1, A]\tilde{\Phi}(L)A(A)^{-2\beta-1}\chi^2(\langle A \rangle/t)u, \tilde{\Phi}(L)u)_{s,-s} + (i[L_1, A]\langle A \rangle^{-s}T\langle A \rangle^{-s}u.u)_{s,-s}.
\]

Since $i[L_1, A] \in B(\mathcal{H}) \cap \mathcal{C}^{\theta,\infty}(A)$ (Prop. 5.2.2 [ABG]), $[L_1, A]$ is a bounded operator on A^*, $s < \theta$ (Thm 5.3.3, Lemma 5.3.2 [ABG]). Therefore the second term in (2.6) is bounded by a constant independent on t. But, in form sense,

\[
\tilde{\Phi}(L)i[L_1, A]\tilde{\Phi}(L) = \tilde{\Phi}(L)\Phi(L)[L, A]\Phi(L) + \tilde{\Phi}(L)i[A, 1 - \Phi(L)]\tilde{\Phi}(L) + \tilde{\Phi}(L)i[A, 1 - \Phi(L)]L\tilde{\Phi}(L).
\]

We take supp$\tilde{\Phi}$ to be in the set where $\Phi = 1$; then

\[
\tilde{\Phi}(L)i[A, 1 - \Phi(L)]\tilde{\Phi}(L) = 0 \quad \text{on} \quad A^1 \times A^1.
\]

Therefore the bounded operator given by this form on \mathcal{H} ($L \in C^1(A)$) is zero. Similarly we get that $\tilde{\Phi}(L)i[A, 1 - \Phi(L)]L\tilde{\Phi}(L) = 0$. Summing up

\[
\tilde{\Phi}(L)i[L_1, A]\tilde{\Phi}(L) = \tilde{\Phi}(L)i[L, A]\tilde{\Phi}(L).
\]

The lemma follows by (2.6), (2.5) and the previous relation. \[\square\]

We can denote $\tilde{\Phi}$ also by Φ.

Lemma 2.5. $\sup_{t \geq 1} |(\Phi(L)i[L, A]\Phi(L)A(A)^{-\beta}\chi(\langle A \rangle/t)u, \langle A \rangle^{-\beta}\chi(\langle A \rangle/t)u)| \leq \infty$.

Proof. Set $B = \Phi(L)i[L, A]\Phi(L)$. Then B is a bounded operator of class $\mathcal{C}^{\theta,\infty}(A)$. Denote $f_t(x) = \langle x \rangle^{-\beta}(\langle x \rangle/t)$, $x \in \mathbb{R}$. We take $\beta_0 < \beta$, but still $\beta_0 > s/2$, $\beta_0 < \theta/2$. We write

\[
\langle A \rangle^{-s}\beta_0[B, f_t(A)]\langle A \rangle^{-\beta} = \langle A \rangle^{-s}\beta_0[B, f_t(A)]\langle A \rangle^{-\beta} - \langle A \rangle^{-s}\beta_0[B, \langle A \rangle^{\beta_0}]\langle A \rangle^{-s-\beta}(\langle A \rangle/t).
\]

But $2s - 2\beta_0 < 2s - \theta < \theta$, so the first term is a bounded operator and its norm does not depend on t (Lemma 1.4). The second term is bounded since $s - 2\beta < 0$ and $\langle A \rangle^{-s-\beta}[B, \langle A \rangle^{\beta_0}]$ is bounded by Lemma 1.3. Now the lemma follows easily. \[\square\]

Lemma 2.6. For all $\beta > \alpha$ we have $\langle A \rangle^{-\beta}u \in \mathcal{H}$.

Proof. (i) Consider first $\beta > \max(\alpha, s/2)$, $\beta < \theta/2$. Let F_+ be a smooth bounded real function, $F_+ = 1$ on $[1, \infty)$, $F_+ = 0$ on $(\infty, 1/2]$. We shall show first that

\[(2.7) \quad \sup_{t \geq 1} |(\Phi(L)i[L, A]\Phi(L)A(A)^{-\beta-1}F_+(A)\chi(\langle A \rangle/t))u, \langle A \rangle^{-\beta}F_+(A)\chi(\langle A \rangle/t)u)| < \infty.
\]

We use again the notation $B = \Phi(L)i[L, A]\Phi(L)$. If $F_- = 1 - F_+$ then

\[
(\mathcal{B}A(A)^{-\beta-1}\chi(\langle A \rangle/t)(A)u, \langle A \rangle^{-\beta}\chi(\langle A \rangle/t)u) = (\mathcal{B}A(A)^{-\beta-1}\chi(\langle A \rangle/t)(F_+ + F_-)(A)u, \langle A \rangle^{-\beta}(F_+ + F_-)(A)\chi(\langle A \rangle/t)u).
\]
Here \((A)^{-\beta} u \in \mathcal{H} \). Moreover, by Thm 3.10 [BGS2], the fact that \(B \) is of class \(C^{s,2} \) for all \(s < \theta \) ensure that \(F_+(A)B F_-(A) \in \mathcal{B}(A^{\beta-2}, A^{\beta-4}) \). Hence \((A)^{-\beta} F_+(A)B F_-(A) (A)^{\theta} = T \in \mathcal{B}(\mathcal{H}) \), and this gives

\[
(BA(A)^{-\beta-1} \chi((A)/t) F_+(A)u, (A)^{-\beta} \chi((A)/t) F_-(A)) \\
= (T(A)^{-\beta-t}(A)^{-\beta-1} \chi((A)/t) Au, (A)^{-2\beta} \chi((A)/t) F_-(A)u).
\]

Therefore

\[(2.8) \sup_{t \geq 1} |(BA(A)^{-\beta-1} \chi((A)/t) F_+(A)u, (A)^{-\beta} \chi((A)/t) F_-(A))| < \infty.\]

Similarly one gets

\[(2.9) \sup_{t \geq 1} |(BA(A)^{-\beta-1} \chi((A)/t) F_-(A)u, (A)^{-\beta} \chi((A)/t) F_+(A))| < \infty.\]

Now (2.7) follows by (2.8), (2.9) and the previous lemma.

We can write \(A^{1-s} F_+(A) = g^2(A) F_+(A) \) with \(g \in S^0 \). But \((A)^{-s-\beta}[B, g(A)](A)^{1-\beta} \) is bounded by Lemma 1.4 \((2s - 2s \beta < 2s \theta < 2\theta - \theta = \theta)\). Hence

\[
\sup_{t \geq 1} |(B(A)^{-\beta} \chi((A)/t) g(A) F_+(A)u, (A)^{-\beta} \chi((A)/t) g(A) F_+(A))| < \infty.
\]

Using now the Mourre estimate we get

\[
\sup_{t \geq 1} \| \Phi(L)(A)^{-\beta} \chi((A)/t) g(A) F_+(A)u \| \leq \infty.
\]

As \([\Phi(L), (A)^{-\beta} \chi((A)/t) g(A) F_+(A)](A)^s \) is a bounded operator with norm independent on \(t \) (by Lemma 1.4) it follows

\[
\sup_{t \geq 1} \| (A)^{-\beta} \chi((A)/t) g(A) F_+(A)u \| \leq \infty.
\]

This provide, using Beppo-Levi Theorem,

\[(2.10) \langle A \rangle^{-\beta} g(A) F_+(A)u \in \mathcal{H}.\]

If we take \(\tilde{F}_+ \) to be a smooth bounded real function on \(\mathbb{R} \), \(\tilde{F}_+ = 1 \) on \([2, \infty)\) and \(\text{supp} \tilde{F}_+ \subset [1, \infty) \), we can write

\[
\tilde{F}_+(A)(A)^{-\beta} = (\tilde{F}_+/gF_+)(A)(gF_+)(A)(A)^{-\beta},
\]

and \((\tilde{F}_+/gF_+)(A)(gF_+)(A) \) is a bounded operator. Then (2.10) gives that \(\tilde{F}_+(A)(A)^{-\beta} u \in \mathcal{H} \). Thus the lemma follows in this case since \((1 - \tilde{F}_+(A)(A)^{-\beta} u \in \mathcal{H} \) by hypothesis (b) of Thm 2.

(ii) Now we can repeat the argument with \(s \) replaced by \(2\alpha \) and see that \((A)^{-\beta} u \in \mathcal{H} \) for all \(\beta < \theta/2, \beta > \alpha \). □

Lemma 2.7. In the conditions of Thm. 2, \(u \equiv 0 \).

Proof. Denote \(u_\epsilon = (A)^{-\beta} u \). We shall show that \(\| u_\epsilon \| \leq C \), where \(C \) does not depend on \(\epsilon \). This implies that \(u \in \mathcal{H} \). Since \(u = \Phi(L)u \), \(u \) is in the domain of \(L \); and, as \(Lu = 0 \), it follows that either 0 is a eigenvalue of \(L \), or \(u \equiv 0 \). The first case is impossible due to the Mourre estimate.
Recall that $L_1 = L\Phi^2(L)$. We shall denote by T different bounded operators with norm independent on t and ϵ. We begin by computing

\[
(i[L_1,A]u_\epsilon, u_\epsilon) = \lim_{t \to \infty} (i[L_1,A(A+itA)^{-1}it]u_\epsilon, u_\epsilon)
\]

\[
= \lim_{t \to \infty} i(L_1A(A+itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon, u_\epsilon)
\]

\[
- \lim_{t \to \infty} i(L_1A(A-itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon, u_\epsilon)
\]

\[
= -i([\langle\epsilon A\rangle^{-\beta}, L_1]A(A+itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon, u_\epsilon)
\]

\[
- \lim_{t \to \infty} i(u_\epsilon, (A-itA)^{-1}it\langle\epsilon A\rangle^{-1}u_\epsilon)
\]

\[
+ \lim_{t \to \infty} i(L_1A(A-itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon, u_\epsilon)
\]

\[
- \lim_{t \to \infty} i(u_\epsilon, \langle\epsilon A\rangle^{-\beta}(A-itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon)
\]

\[
= -i([\langle\epsilon A\rangle^{-\beta}, L_1]A(A-itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon, u_\epsilon)
\]

\[
- \lim_{t \to \infty} i(u_\epsilon, \langle\epsilon A\rangle^{-\beta}(A-itA)^{-1}it\langle\epsilon A\rangle^{-\beta}u_\epsilon)
\]

We have

\[
i[L_1, \langle\epsilon A\rangle^{-\beta}] = -\beta i[L_1, A]\epsilon^2\langle\epsilon A\rangle^{-\beta-2} + \langle A \rangle^{-\beta}T\langle A \rangle^{-\beta-1}
\]

(by Lemma 2.1, with $1 + 2\beta < 1 + \theta$, $\beta < \theta$, $\alpha = 1$) and also:

\[
i[L_1, \epsilon A\rangle^{-\beta}] = -\beta\epsilon^2\langle\epsilon A\rangle^{-\beta-1}[L_1, A] + \langle A \rangle^{-\beta-1}T\langle A \rangle^{-\beta}.
\]

It follows then

\[
-i([\langle\epsilon A\rangle^{-\beta}, L_1]itA(A+itA)^{-1}(\epsilon A)^{-\beta}u_\epsilon, u_\epsilon)
\]

\[
= (\beta i[L_1, A]\epsilon^2\langle\epsilon A\rangle^{-2-\beta}B_1u, u_\epsilon)
\]

\[
+ \lim_{t \to \infty} i(u_\epsilon, (A-itA)^{-1}it\langle\epsilon A\rangle^{-1}u_\epsilon)
\]

\[
= -\beta i[L_1, A]\epsilon^2\langle\epsilon A\rangle^{-2-\beta}B_1u, u_\epsilon)
\]

\[
+ \lim_{t \to \infty} i(u_\epsilon, (A-itA)^{-1}it\langle\epsilon A\rangle^{-1}u_\epsilon)
\]

Similarly for the second commutator. We get thus

\[
(i[L_1,A]u_\epsilon, u_\epsilon) = 2\beta(\epsilon^2\langle\epsilon A\rangle^{-2-\beta}B_1u, u_\epsilon) + (T\langle A \rangle^{-\beta}u, \langle A \rangle^{-\beta}u),
\]

where $B_1 = i[L_1, A]$. We write $\epsilon^2\langle\epsilon A\rangle^{-2-\beta} = \langle\epsilon A\rangle^\beta - \langle\epsilon A\rangle^{-1-\beta}$. Lemma 1.4 gives

\[
(\langle\epsilon A\rangle^\beta B_1u, u_\epsilon) = (B_1u, u_\epsilon) + (T\langle A \rangle^{-\beta}u, \langle A \rangle^{-\beta}u)
\]

and

\[
(\langle\epsilon A\rangle^{-2}B_1u, u_\epsilon) = (B_1\langle\epsilon A\rangle^{-1}u_\epsilon, \langle\epsilon A\rangle^{-1}u_\epsilon) + (T\langle A \rangle^{-\beta}u, \langle A \rangle^{-\beta}u).
\]

Hence

\[
(1 - 2\beta)(B_1u, u_\epsilon) = -2\beta(B_1\langle\epsilon A\rangle^{-1}u_\epsilon, \langle\epsilon A\rangle^{-1}u_\epsilon) + (T\langle A \rangle^{-\beta}u, \langle A \rangle^{-\beta}u).
\]

We use that $u = \Phi(L)u$ as in Lemma 2.4 to get

\[
(B_1\langle\epsilon A\rangle^{-1}u_\epsilon, \langle\epsilon A\rangle^{-1}u_\epsilon) = (\Phi(L)i[L, A]\Phi(L)\langle\epsilon A\rangle^{-1}u_\epsilon, \langle\epsilon A\rangle^{-1}u_\epsilon) + (T\langle A \rangle^{-\beta}u, \langle A \rangle^{-\beta}u).
\]
The Mourre inequality (suppose suppΦ small enough) provide

\[(1 - 2\beta)(B_1 u_{\epsilon}, u_{\epsilon}) \leq (T\langle A\rangle^{-\beta} u, \langle A\rangle^{-\beta} u)\]

Again:

\[(B_1 u_{\epsilon}, u_{\epsilon}) = (\Phi(L)i[L, A]\Phi(L)u_{\epsilon}, u_{\epsilon}) + (T\langle A\rangle^{-\beta} u, \langle A\rangle^{-\beta} u)\]

Then the Mourre inequality gives

\[||\Phi(L)u_{\epsilon}|| \leq C\]

Commuting $\Phi(L)$ and $\langle \epsilon A \rangle^{-\beta}$ (by Lemma 1.4), we get

\[||\langle \epsilon A \rangle^{-\beta} u|| \leq C\]

which gives $u \in \mathcal{H}$ and thus finishes the proof.

REFERENCES

