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The stability of resonant short-crested waves is investigated. We found

the similar kind of bubble of instability near the turning point as Ioualalen

et al. (1996), the instability which is related to harmonic resonance. Their

results are, however different from ours for the growth rate and the insta-

bility region. Furthermore we discovered another bubble of instability that

is very close to the turning point.

Harmonic resonances of short-crested water waves are thus associated

with two bubbles of instability; the first one is located on abranch with

the turning point and the second one is located on another branch that is

continuous in the vicinity of the bifurcation point.

1Introduction

In alinear description, short-crested wave fields are defined as asuperp0-

sition of two tw0-dimensional progressive wave trains of equal wavelengths

and intersecting at an angle $\gamma$ . The description of the geometry of the prop-

agation can be found in Hsu et al. (1979) who defined an angle 0so that

$\theta=(\pi-\gamma)/2$ . The three-dimensional fields admit two tw0-dimensional

limits: the progressive Stokes wave for $\theta=90^{0}$ for which the two waves

propagate in the same direction and the standing wave for $\theta=0^{0}$ for which
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$\fbox^{\backslash }\backslash \cross 1$ :Short-crested wave fields for angles $\mathit{0}=10^{0}$ (left) and $\mathit{0}=45^{0}$ (right) on deep water.

the two waves propagate in opposite directions. Figure 1shows two typical

wave patterns on deep water: the left in the figure represents ashort-crested

wave field for $\theta=10^{0}$ that is close to standing waves, exhibiting long crests

in the $x$-direction compared to the other horizontal direction $y$;the right in

the figure represents awave at angle $\theta=45^{\mathrm{O}}$ exhibiting equal wave lengths

in both horizontal directions.

The properties of short-crested waves have been discussed in Roberts

(1983) for deep water and in Marchant&Roberts (1987) on water of finite

depth. In particular, the authors showed how short-crested wave fields may

be unsteady through harmonic resonance phenomena. Roberts&Peregrine

(1983) calculated low order analytical solutions for $\thetaarrow 90^{\mathrm{o}}$ and found

that harmonic resonances correspond to multiple-like solutions. Okamura

(1996) calculated both weakly nonlinear and fully nonlinear short-crested

waves in deep water for $\theta\approx 0^{0}$ and found that harmonic resonances corre-

spond to multiple-like solutions. Marchant& Roberts (1987) showed that

harmonic resonances occur for short-crested waves in finite depth when

harmonic $(m,n)$ , i.e. $\sin(m\alpha(x-ct))\cos(n\beta y)\cosh[\kappa_{mn}(z+d)]$ , is asolu-

tion of the homogeneous differential equation derived from the nonlinear

surface conditions, where $\kappa_{mn}=(m^{2}\alpha^{2}+n^{2}\beta^{2})^{1/2}$ , $\alpha=\sin\theta$ and $\beta=\cos\theta$ .

19



Such cases occur at critical depths for which

$\kappa_{mn}$ taffi$(\kappa_{mn}d)=m^{2}\tanh d$ . (1)

The critical angles for which aharmonic resonance occurs are given in

Marchant &Roberts (1987) and in Ioualalen et al. (1996) for different

depths. We have chosen the harmonic resonance $(2,6)$ occurring at depth

$d=1$ . In the linear description, the critical angle for which this harmonic

resonance occurs is $\theta_{c}=65.8354^{\mathrm{o}}$ [$e.g.$ , Ioualalen et al. (1996)].

Ioualalen et al. $(1993, 1996)$ computed the stability problem associated

with the harmonic resonance phenomenon and found that harmonic res0-

nances are associated with sporadic and weak superhamonic instabilities

that have abubble-like shape in the wave steepness parameter space. This

was the first attempt to characterize the stability of resonant short-crested

waves. However, the stability problem studied by the authors was associ-

ated with non-bifurcated solutions and not fully nonlinear solutions.

The aim of the present study is to extend their work to fully nonlinear

solutions exhibiting amultiple-like solution behaviour.

2Mathematical formulation of the problem

We consider surface gravity waves on an inviscid, incompressible fluid of

finite depth where the flow is assumed irrotational. The governing equa-

tions are given in adimensionless form with respect to the reference length

$1/k$ and the reference time $(gk)^{-1/2}$ , where $g$ is the gravitational accelera-

tion and $k$ the wavenumber of the incident wave train.

Let us define affame of reference $(x^{*}, y^{*}, z^{*}, t^{*}, \phi^{*})$ so that $x^{*}--x-ct$ ,

$y^{*}=y$ , $z^{*}=z$ , $t^{*}=t$ and $\phi^{*}=\phi$ $-cx^{*}$ where $c$ represents the propagation

velocity of the short-crested wave train and is equal to $\omega/\alpha$ , $\omega$ being the
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frequency of the wave and $\alpha=\sin\theta$ is the $x$-direction wave number, the

$y$-direction wave number being $\beta=\cos\theta$ . If we omit the asterisks for sake

of simplicity, the governing equations are:

$\Delta\phi=0$ , $\mathrm{f}\mathrm{o}\mathrm{r}-d<z<\eta(x, y, t)$ , (2)

$\phi_{z}=0$ , on $z=-d$, (3)

$\phi_{t}+\eta+\frac{1}{2}(\phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}-c^{2})=0$ , on $z=\eta(x, y, t)$ , (4)

$\eta_{t}+\phi_{x}\eta_{x}+\phi_{y}\eta_{y}-\phi_{z}=0$ , on $z=\eta(x, y, t)$ , (5)

where $d$ is the depth of the fluid, $\phi(x, y, z, t)$ is the velocity potential and
$z–\eta(x, y, t)$ is the equation of the free surface. In this new frame of

reference propagating at aspeed $c$ , the system of equations (2)$-(5)$ admits

doubly periodic solutions of permanent form $\overline{\eta}(x, y)$ and $\overline{\phi}(x, y, z)$ .

We define the following functions to construct astability problem:

$\eta(x, y, t)=\overline{\eta}(x, y)$ $+\eta’(x, y, t)$ , (6)

$\phi(x, y, z, t)=\overline{\phi}(x, y, z)+\phi’(x, y, z, t)$ , (7)

where we assume that the surface elevation and the velocity potential are
superposition of asteady unperturbed wave $(\overline{\eta},\overline{\phi})$ and infinitesimal pertur-

bations $(\eta’, \phi’)$ . After substituting expressions (6) and (7) into equations

(2)$-(5)$ and linearizing we obtain the zeroth order system of equations for

which permanent short-crested waves are solutions and the first order per-

turbation equations representing the stability problem. Both systems of

equations will be resolved in the frame of reference moving with the wave.
We look for non-trivial solutions of the following superharmonic form

$\eta’=e^{-i\sigma t}\sum_{J=-\infty}^{\infty}\sum_{K=-\infty}^{\infty}a_{JK}e^{i(J\alpha x+K\beta y)}$ , (8)
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$\phi_{||}$

$\overline{\mathbb{H}^{\backslash }}2$:Coefficient $\phi_{26}$ versus coefficient $\phi_{11}$ for depth $d=1$ and angle $\theta=66^{0}$ . The different
branches of the solutions are numbered I-III.

$\phi’=e^{-i\sigma t}\sum_{J=-\infty}^{\infty}\sum_{K=-\infty}^{\infty}b_{JK}e^{i(J\alpha x+K\beta y)_{\frac{\cosh[\kappa_{JK}(z+d)]}{\cosh(\kappa_{JK}d)}}}$ , (9)

where $\kappa JK$
$=[(J\alpha)^{2}+(K\beta)^{2}]^{1/2}$ .

2.1 Computation of the multiple-like solutions of permanent
form

The velocity potential $\overline{\phi}$ is expressed as follows:

$\overline{\phi}=-cx+\sum_{k=0j=2}^{N}\sum_{-(k\mathrm{m}\mathrm{o}\mathrm{d} 2)}^{N}\phi_{jk}\sin(j\alpha x)\cos(k\beta y)\frac{\cosh[\kappa_{jk}(z+d)]}{\cosh(\kappa_{jk}d)}$, (10)

where $N$ is the maximum order of expansion and is chosen to be odd. All

calculations are carried out using $N=19$ in this paper.

In this work we are interested in the harmonic coefficient 026 whose mode

$(2,6)$ is responsible for aharmonic resonance at angle $\theta_{c}=65.8354^{\mathrm{O}}$ for

depth $d=1$ in the linear approximation. Figure 2exhibits the multiple-

like structure of the coefficient 026 as afunction of the coefficient $\phi_{11}$ of the

fundamental mode for the wave parameters $d=1$ and $\theta=66^{\mathrm{O}}$ near the
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critical angle $\theta_{c}$ . The turning point is $(\phi_{11}, \phi_{26})=(0.167091,0.0106346)$ .

We have obtained all solutions of the resonant short-crested waves: branch

$\mathrm{I}$ , branch II including the turning point and branch III. Ioualalen et al. $(199($

obtained branch Iand the part of branch III on the right side of the turning

point and failed to find branch $\mathrm{I}\mathrm{I}$ . Then they used the Shanks transform to

match artificially branches Iand III in the vicinity of the turning point that

we obtain here. They computed the stability of the solution corresponding

to anon-bifurcated solution. Because their solutions are much different

from ours near the critical point, we are now interested in studying the

stability of the multiple-like solutions that represent the fully nonlinear

wave field along all the three branches and around the turning point to

characterize definitely the stability behaviour of harmonic resonances.

2.2 Resolution of the stability problem

The stability analysis consists in determining the set of eigenvalues $\sigma$

and the coefficients $a_{JK}$ and $b_{JK}$ of their associated eigenvectors. Since the

system of perturbation equations is real-valued, the eigenvalues $\sigma$ appear

in complex conjugate pairs. Thus an instability corresponds to $s^{\propto}(\sigma)\neq 0$ .

For $h–0$, the unperturbed wave is given by $\overline{\eta}=0$ and $\overline{\phi}=-c\circ x$ with

$c_{0}=\omega_{0}/\alpha=(\tanh d)^{1/2}/\alpha$ . Then the eigenvalues are $\sigma_{JK}^{s}=-(J\alpha)c0+$

$s[\kappa_{JK}\tanh(\kappa_{JK}d)]^{1/2}$ with $s=\pm 1$ , sign[ss\propto (-i\sigma )] being the signature of

the perturbation [$e.g.$ , MacKay &Saffman (1986)]. The real-valued set

of eigenvalues $\{\sigma_{JK}^{s}\}$ causes the wave to be neutrally stable for $h=0$.

Instabilities arise as the wave steepness $h$ increases. We apply the necessary

condition for instability in terms of collision of eigenvalues of opposite

signatures $s$ or at zer0-frequency. An instability can arise if for some wave
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steepness $h$ , two modes have the same ffequency, that is, $\sigma_{J_{1}K_{1}}^{s}--\sigma_{J_{2}K_{2}}^{-s}$ .

This condition takes the following form for $s=1(s=-1$ corresponds to

an opposite direction of propagation):

$[\kappa_{J_{1}K_{1}}\tanh(\kappa_{J_{1}K_{1}}d)]^{1/2}+[\kappa_{J_{2}K_{2}}\tanh(\kappa_{J_{2}K_{2}}d)]^{1/2}=(J_{1}-J_{2})(\mathrm{t}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i} d)^{1/2}$

The perturbation equations lead to ageneralized eigenvalue problem of

the form: $Au=i\sigma Bu$ , where $\sigma$ is the set of eigenvalues to be computed

with the corresponding eigenvectors $u$ $=(a_{jk}, b_{jk})^{T}$ .

3Resonant interactions: superharmonic instabilities
associated with the harmonic resonance (2,6)

In this section, the superharmonic instability of short-crested waves sub-

ject to aharmonic resonance $(2,6)$ is computed for depth $d=1$ and angle
$\theta=66^{\mathrm{O}}$ .

Following Ioualalen et al. (1996), asuperharmonic instability associated

with aharmonic resonance $(\pm m, n)$ may arise only if the two eigenvalues

$\sigma_{mn}^{s}=\sigma_{-mn}^{-s}$ of opposite signature are equal at agiven wave steepness $h$ .

The collision of the two eigenmodes $(\pm m,n)$ is then interpreted as Ioualalen

et al. (1993)’s class Ia $(m, n)$ instability and it can be interpreted as a

resonance between the two eigenmodes $(\pm m, n)$ and the $2m$ modes $(1, \pm 1)$

of the basic short-crested wave, that is,

$\Omega_{1}=-\Omega_{2}+m\Omega_{01}+m\Omega_{02}$ , (11)

$k_{1}=k_{2}+mk_{01}+mk_{02}$ , (12)

where $\Omega_{i}=[|k_{i}|\mathrm{t}\mathrm{a}\mathrm{A}(\kappa_{mn}d)]^{1/2}$ , $\Omega_{0i}=(\tanh d)^{1/2}$ for i $=1,$ 2 and $k_{1}$ –

$(\alpha m, \beta n)$ , $k_{2}=$ (-am, $\beta n$), $k_{01}=(\alpha, \beta)$ , and $k_{02}=(\alpha, -\beta)$ .
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In Figure 3are plotted the frequencies of the eigenvalues $\sigma_{\pm 26}$ along all

the branches of the short-crested wave solutions shown in Figure 2.

The stability of branch III shows that frequencies of the modes $(\pm 2,6)$

coalesce between $\phi_{11}\approx 0.160$ and $\phi_{11}\approx 0.214$ . The two modes are neu-

trally stable with anon-zero frequency for infinitesimal wave steepness $h$ ,

i.e. $\phi_{11}arrow 0$ , and then give rise to abubble of instability in that range of

$\phi_{11}$ with zer0-frequency. The bubble of instability is physically associated

with aresonant interaction; the coalescence of the two eigenmodes with

zer0-frequency simply means that the harmonics $(\pm 2,6)$ propagate at the

same phase speed as the basic wave, bearing in mind that the stability

problem has been computed in the frame of reference moving with the ba-

sic wave. This phase-locking of the resonant modes with the basic wave is

what we have expected.

More interestingly, the superharmonic instability is not anymore sp0-

radic as mentioned by Ioualalen et al. (1996). The authors found that the

instability occurs in arange of $h$ of order $h^{4}$ while ours occurs in the range

of or e$\mathrm{r}$

$h^{3}$ . The difference comes out of the short-crested wave solutions.

Our short-crested wave, branch III, is computed numerically through a

fully nonlinear method while theirs is obtained by matching artificially the

solutions by using the Shanks transform. Thus they obtained asolution

that is not strictly similar to our branch III.

The stability of branches Iand II shows that no instability appears on

branch Iwhile abubble of instability occurs for $0.1571<\phi_{11}<0.1656$

on branch $\mathrm{I}\mathrm{I}$ , the region which is very close to the turning point $(\phi_{11}=$

0.167091). The superharmonic instability is more sporadic and of lower

intensity (larger time scale) than that of branch III. Note that the insta
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Cl 3: Frequency $[-\Re(\sigma_{\pm 26})](+)$ and growth rate $[-\Im(\sigma_{\pm 26})](\mathrm{A})$ as afunction of coefficient
$\phi_{11}$ for depth $d=1$ and angle $\mathit{0}=66^{\mathrm{o}}:(\mathrm{a})$ branch $\mathrm{I};(\mathrm{b})$ branch $\mathrm{I}\mathrm{I};(\mathrm{c})$ branch III. See
Figure 2for definition of the branches
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bility between $\phi_{11}=0.146$ and $\phi_{11}=0.155$ on branch Iis simply due to

the presence of afour-mode class IBenjamin-Feir instability, which is not

related to harmonic resonance.
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