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1. Introduction

We study a planar model of crystal evolution. This model was derived by M.Gurtin and
J.Matias (see [GM]). Its special feature is that the interfacial curve is a polygon. Our aim
is to investigate the system when a facet is annihilated or a facet is broken, i.e. a new
segment of zero length is inserted.

The system in question was derived from the principles of thermodynamics and after
some simplifications takes the form:

w=~40u in |J QUQ,, (1.1)
0<t<T
[Vuly; =-V;, ji=1,...,N, [u]=0, (1.2)
/ v="L;-p6;L;V;, j=1,...,N. (1.3)
85 (t)

(1.1) is the heat equation; (1.2) is the law governing the motion of the interface and (1.3)
is the counterpart of the Gibbs-Thompson law suitable for polygons in the plane which is
supplemented by kinetic undercooling. Originally (1.3) was derived from the balance of
capillary forces.

We augment the above system with the initial and boundary conditions

3(0) = so, u(0, z) = uo(z) (1.4)

and
ulag =0 for t > 0. (1.5)

We remark here that the above problem was formulated by Herring in the metallurgical
literature in the fifties, see [Hr]. Later, it was independently rediscovered by Ben Amar -
Pomeau [BP] and Gurtin — Matias [GM]

We remark that system (1.1)-(1.5) has been already studied for regular data, i.e. when
all facets have positive length. In this case we have already shown in [Ryl, Ry2] that weak
solutions to (1.1)-(1.5) exist and they are unique. We have also established in [Ry2] some
geometric properties of the small interfaces.

Let us mention that the above problem for smooth interfaces is also well-posed. This
was established in the early '90’s, see [CR] and [Ra]. It turns out that 8 > 0 is quite
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important. The problem for 8 = 0 and smooth interfaces was studied by Luckhaus [L] and
in greater generality by Almgren-Wang [AW)]. In particular, they showed that uniqueness
fails. Uniqueness is an open problem also if we admit general interfaces for 8 > 0, see
Soner [S].

Let us also mention that the limiting case of our problem for u = 0 is the (driven)
‘motion by weighted crystalline curvature’

F=T;-BLV;, j=1,...,N (1.6)

When the driving term F' is zero then above system has been proposed independently by
J.Taylor [T1] and S.Angenent-M.Gurtin [AG]. Since then this problem has attracted many
authors.

In this paper we deal mainly with the question of existence of solutions (1.1)-(1.5).
We show existence of weak solutions in case of initial polygon possessing a number of zero
length facets. In order to obtain a tractable problem we consider only zero crystalline
curvature facets. On the way we establish existence of solutions up to annihilation of a
zero crystalline curvature facets.

We do not show their uniqueness. One of the problems is that the notion of weak
solution does not specify the position of a new zero-length facet.

The above results permit a continuation of solutions after each loss of facet and possible
creation of new ones. However, this is not quite a corollary implying global existence since
we do not consider here all possible topological catastrophes.

On the other hand, evolution past singularity has been already established for motion
of polygons by crystalline curvature. The authors of [EGS] and [FG] treated the case of
graphs, while in [IS] the case of any closed polygon is covered.

We shall announce a number of results here and we will present the main ideas while
asking the Reader willing to learn the full account to refer to the original paper [Ry3].

2. Preliminaries
In order to make the presentation of notation easier we refer to the picture below:

(solid)

(liquid)

A region with smooth boundary 2 (a vessel) is a sum of 2 (¢) (an ice crystal) bounded
by interface s(t) and Q3(t) (water), i.e. and s(t) = 8Q(t) N N2 (). The facets of s are
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N

denoted by s;, ¢ = 1,...,N. L; is the length of facet s;, L = Zj:l

normal to s(t). The jump of ¢ across s is denoted by [4], i.e.

Lj; v is the outer

[6)(z0) = Qg(t%ialil—)xo o(z) — Ql(giarg_mo é(z), zo € s(t) = 0 (t) NON(2).

We assume that 8; > 0 and I'; are constants. We shall see momentarily how I'; are related
to curvature. Before that, we note that in order to fully describe the position of s(t) at
time ¢, it is sufficient to specify the signed distance between the line containing the i-th
facet at the initial time and the line containing the i-th facet at the time instant {. We
shall denote this distance by 2;(t), hence

is the facet velocity in the direction of the outer normal. Thus, the vector z = (z1,..., zN)
fully describes evolution of the interface.

In our considerations the Wulff shape W plays a role of a reference polygon. We note
that if s(t) is convex, then s(¢) and W have the same number of facets. We always assume
that s(t) is an admaissible, i.e.

(i) the normals v; belong to the set of normals to the Wulff shape W
(ii) normals v; to the neighboring facets s; are normals to the neighboring facets of W.
The constants I'; are defined as follows (see [G, §12.5]):

¢;  if s is locally concave near both ends of s;;

{ —L£; if s is locally convex near both ends of s;;
I; =
0 otherwise;

where ¢; is the length of the facet of the Wulff shape to which v; is outer normal.
Interestingly, I'; /L; is the crystalline weighted curvature of s;. The relevant definition,
which does not need any differential structure of s is given in [T2] p. 423. If z; are as above
and z = (z1,...,2N), i.e. 8(2) is a polygon resulting from s by moving entire facet s; by 2;
in the direction of the normal v;, then we shall denote by A(z) is the area surrounded by
s(z) and by E(z) the surface energy of s(z), i.e. E(z) = zil f(i)L;, where f(v) is the
surface energy density. Using this notation, the crystalline weighted curvature K; of s; is

. E(z+eAz;) — E(2)
B Az.-I-I-IbO A(z + e;Az;) — A(z)

Ki =

where e;, i = 1,..., N, are the standard unit vectors of the coordinate axis in RY. 1t is
not difficult to check that K; =T';/L;.

In our presentation we shall assume that N is constant in time, but some of the facets
may be of zero length.
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3. Existence and uniqueness of solutions with fixed number of facets -

We have to formulate (1.1)-(1.5) in a weak form. We look for a position z of the interface as
well as for the distribution of temperature u. We impose some minimal regularity, namely
we need
1) z € CH([0, T)R™);
and
2) u € C([0,T), H}(2)), (1 > a > 0), us € L2 ([0,T), H~1(Q)), such that u(0) = ug €
H}(Q) and u satisfies the weak form of (1.1)-(1.2):

N
(ug, h) = /QVu(:c)-Vh(x)d:L'+Z/ Vih(z)dl, (3.1)
j=1v%j

for all h € H3(Q), here (-,-) is the pairing between H}(§2) and H~1(Q), and d—;ti =V;
fulfill (1.3).

Apparently, the three terms in (3.1) seem loosely related to each other. We shall show
that we can simplify their form. We start with the observation that the functionals

H(Q)5h= [ hdeR
s,-(t)

are continuous. Therefore, by the Riesz Representation Theorem there is just one element
fi € HY(Q) such that,

/ Vh(z) - Vfile) dz = (b, £3) ey = / hdl. (3.2)
Q 8i(t)

It is apparent from (3.2) that in fact, f; satisfies the equation
~Afi =6,

and hence it belongs to H}(Q) N H° (), o < 3/2 (cf.' [Ry1])
Thus, the weak form becomes

N

(ue, h) = —(u, ) ey + O Vi(Ffir M may,  u(0) = uo, (3.3a)
Jj=1

di Fi —\U, Ji

R LY %(0)=0, i=1,...,N. (3.3b)

dat BiL;

Let us also mention that we need more regular initial data than just belonging to H} ().
We shall say that ug is admissible if

N
uo — Y Vi(0)£i(0) € HO(Q) forallo <2

=1
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In order to be precise we need a slightly different function space which we shall define
momentarily.

Lemma 1. Let us suppose that 0Q is smooth, then the operator A : D(A) c L*(Q) —
L%(Q) given by Au = —Au for u € D(A) = H}(Q) N H%(Q) is sectorial and the fractional

powers
= (L*(Q))°

are well defined. In particular X'/2 = H}(Q). Moreover, A is self-adjoint and strictly
positive.

It is an abuse of notation, but we shall write H27(Q) for X°.

Now, the existence result may be formulated in a following way:
Theorem 1. [cf. [Ryl-Ry2] Let us suppose that sy is an admissible polygon, ug is an
admissible data. Then, there exist T > 0 and a unique weak solution to (3.3) satisfying

VS Cl’a([o; T), ]RN): ue€ C"Y([O,T)’H"(Q)),

where 0 < « <‘2, and 0 < v, 1 < o are such that v+ o < 3/2.

The proof we shall present is new. It contains ideas which will be subsequently used
to show existence in the case of broken facets.

We transform system (3.3) by introducing a new variable U:

U:=-A"1lu.

Hence, the weak form becomes

N
(Ut Wz o) = (AU, ) ey + D Vilfir By, Vh € HY(Q)
j=1

or

N
Us=AU+ ) _Vifi, U(0) = -A1u,, (3.4a)

i=1

and it is coupled to

dz; _ Ti+ (AU, fi)mya)

== oL , z(0)=0, i=1,...,N. (3.4b)

Let us notice that system (3.4) is slightly awkward since this is an ODE coupled to heat
equation with the highest order term in the ODE. Thus, some additional work is required.

Let us first suppose that the postulated solution exists, i.e. V = (V4,...,Vy) € C°®
for some positive . We know that the map

RN 5z fi(z) € H(Q), o <3/2
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is Holder continuous with exponent o satisfying a + o < 3/2, (see [Ry1, Proposition 3.4)).
Thus, t — f;(z(t)) is Holder continuous. Then, by [He, Theorem 3.2.2] the constant
variation formula is valid:

t N
U(t) = —eAtA 1y, +/ eAt=7) Zf,-(r)Vi('r) dr.
0 i=1
and due to regularity of f;’s we may recover u:

t N
u(t) = eAtug -—/0 AeAlt=T) Zf,-('r)Vi(T) dr. - (3.5)
i=1

Further manipulations require working with the Green function G for the heat operator,
i.e. with a function satisfying (0; — A;)G(z,y,t) = 0, and the boundary condition (1.5).
It is a well-known fact that G(z,y,t) is equal to the sum of the Gauss-Weierstrass kernel
(47t) exp(—(x —y)2/4t) and a correcting smooth term H(z,y,t) whose specific form is not
quite important to us.

One of the properties of G is the formula (cf. [Ry2])

eBtug(z) = /Q G(z,, t)uoly) dy.

For a special case of up more can be proven, see Lemma 3.5 in [Ry2]:
Aedtfy(z) = — / Glz,y,t)dy, t> 0. (3.6)
8¢

If we insert (3.5) into (3.3b), and we use (3.6), then we come to

N .,

T, 1 1
V= — — G(zx,y,t dydz + /M t), ,(t—1)Vadr,
BiL;  BiL; /si(t)/n (9, )uoly) dy .BiLij; 0 +(@(0),5(7), (E=m))V; dr
(3.7)

where

Mym,m,0= [ [ Glo,y,0) dody. (3.8)

si(z1) Y 8j(2z2)

Thus, we have obtained an integral equation for V. We can denote the RHS of (3.7) by
¥(V) and note that ¥ is a continuous operator on C([0, T];RY) into itself. Thus, the
problem of finding a solution to (3.3) is reduced to a fixed point problem: V = ¥(V). In
order to proceed we need an estimate for M;;. Namely, we proved in [Ry2, Lemma 3.7]
that for ¢ > 0 we have

/ / C 4 . |
|Mij(z1,22,¢) — M;j(2},25,¢)| < Fﬁ(lzl — 2| + |22 — 25)), (3.9)
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where C is independent of .

Now, we can apply the Banach Fixed Point Theorem to (3.7) for sufficiently small
T > 0 to find a solution in the space of continuous functions.

Finally, we have to show that a unique solution to (3.7) is in fact H6lder continuous.
We will deal only with the core of the problem, i.e. with the second and third terms of the
RHS of (3.7). We adopt the standard notation: Apv(t) = v(t + h) — v(t). Let us set

Ni(t) 1= f . /Q G(z, v, tyuoly) dy da.

We note that

ARNi(t) = / / Gz, y,t + h)uo(y) dydz — / / G(z,y,t + h)uo(y) dy dz
8;(t+h) 8i(t)
/ / (Gt + 1) = Gl uoly) dy
8;(t)
=J1 + Js.

Basing on the observation that [, G(z,y,t + h)uo(y) dy belongs to Hg(2) we use [Ry0,
equation (2.16)] to deduce that

|71| < Clz(t + k) — 2(2)[?||e®*uol| g3 ay < ChY2||uol| a3 a)-

As far as Jy is concerned we shall show only the most difficult part related to estimating
the singular part of G, i.e. the Gauss-Weierstrass kernel. Let us set

oy dd:c--—l—/ fel"fr"ﬁu dydz
41l't,/;(t)/ O(y) 4 4rt si(t) JQ O(y) Y

We notice that

47rt/,(t)/nt+he - wo(y) dyds
-/ " [T - expl-(@ - p2ae+ B - )
= Z‘;(le + J32)

The maximum principle applied to J3, yields

h
J! 5——/ vollpmiay <
|21 iTh ’i(t)” |z ()

For the purpose of estimating Jj, we make use of

hL; (t)

luollze () < ClIVllcio,mlluoll L= (0)-

1-e ol < Colz|*, 0<a<]1,
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whose proof we leave to the Reader (cf. also [Ry3, equation (4.16)]). This inequality
implies that

' [ e=(z=v)?
Tl < [ [ S u(w)@ -y R+ By dyd,
s Ja 4
where a < 1/2. Now, the same reasoning as applied to J4; gives us the following estimate:

TLal < (diam Q)2he (¢ + h)=¢=° / oo
8i(t

< C(diam Q)*h* [Juo|| Lo () IV ll oo, 77t 2

Finally,
|Ni(t + B) — Ni(t)| < Chl/2.

Now, we turn our attention to estimating the third term of (3.7) and let us set

N
)y / Mij(2(8), 2(r), t — T)V;(r) dr =: Fy(2).
i=1""0

We shall estimate the difference A F := Zf\;l |F;(t + h) — F;(t)]:

N .p
R+ 1) = F(©) = [ Mis(ale+ ), a(r),t+ b= r)Vyr) dr

N
+ }:/0 (M;;(z(t + h),z(T + h),t — T)V;(1T + h) — M;;(z(t), z(7),t — T)V; (7)) dT

Hence, by (3.9)

max, I\V'(T + h) = V;(7)|
Rols [ e+ [ oG n Y

— alr max, |V;(T + h)| .
+;/0 |z(T + h) — z(7)| T d

<CvVh+ C’Ts/zmj:_a.x|Vj(T)|mf»X|V3(T+ h) — V;(7)|

|Fy(t+ h) —

max |+(¢)] dr

+ CT3/% max max |V; (1)|2h.
, L

We notice the presence on the RHS of a quantity which we are estimating, i.e. max, [V;(7+
h) = V;(7)|. We use eq. (3.7) again and we arrive at (after notmg that z — L; is Lipschitz
contmuous)

|ALF| < CVh + CT3/? max |AnF| + C max 1VillZ oo 0,77 T3/ * R0
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and for CT3/2 < 1/2
1
|ARF| oo go,7) < CVR+ C(max IVillZeo 0,17 + 3 [1ARF | Lo 10,1

that is we obtain
m1z_a,x|F(7'+ h) - F(r)| < CVh

as desired.
Once we have established Holder continuity of V;’s we can recover u from (3.5).

4. Properties of solutions when facets vanish

We wish to establish time regularity of weak solutions to (3.3) near the instant of collapsing
of a facet. Our experience with parabolic problems suggests that space regularity will play
an important role. We recall that f; € H°(2), 0 < 3/2 and it is not true that s = 3/2.
We stress that V; € C*, and u € C*([0,T), H°(Q)), where a < § and a + 0 < 3/2.
We shall denote Z a nonempty subset of {1,..., N}, such that
(a) if i € Z, then T'; = 0;
(b) its complement Z¢ = {1,...,N}\ Z is non-void.
Here is the main result of Section 4.
Theorem 2. Let us suppose that Z is as above, (z,u) is a weak solution to (3.3) such
that ug is admissible and
lim L;(t) =0, 1€ Z,
t—=T :

lim L;(t) > m > 0, i€ 2°.
t->T
Then,

(i) lims7 V(t) exists;
(ii) limg—, 1 u(t) exists in H? () for each o < 3/2, in particular

sup [[u(t)||ze(@) < C < oo.
, (0,T)
Moreover, if V € C*([0,T],IRN) for all « < 1/4, then for all t € [0, T] we have

N
u(t) - Y fi(z()Vi(t) € HO(Q), Vo <2. (4.1)
=1

Remark. We stress that we assume Holder continuity up to the instant of vanishing of
some facets.

Proof. We shall proceed in a number of steps. We will present the main ideas while
referring the Reader to [Ry3] for details.

Step 1. We first establish uniform in ¢ bounds on ||ul|ze(q) and |V|. We use the
integral representation of u:

t N
u(t) = eAtug — /0 Aehlt-7) Zf,('r)V,('r) dr. (4.2)

i=1
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It is relatively convenient to estimate the H?() norm of the RHS. For this purpose we
recall [Ryl, Proposition 3.3]

I fi(@)| o) < CLY, a+o<3/2 (4.3)

and [He, Theorem 1.3.4] ‘
I(—2)7e%¥|| 2y < Ct™°. (4.4)

We also split the set of summation indices in (4.2), subsequently we use (4.3), (4.4) and

Lemma 1 to obtain
/ udl
i€EZ 8
—A(t—-r) 1
vo [ onrs 3 1o (inl+

/ udl ) dr,
1€Z°

where 0/2 + § < 3/4, and § > 0 is arbitrary. Due to Sobolev embedding,

lu(®)lle < Ce™|luoll, +C / (t = r) 10N Y Lam1() "

lull Lo (@) < Cllullo,

for o > 1 we obtain an estimate for ||u|| g () (t) for which a generalized Gronwall inequality
(see [He, Lemma 7.1. 1]) is applicable yielding a bound for max;e(o, 77 ||l Loo(g)(t) A
uniform bound on |V| may now be easily obtained from (3. 3b) ‘
Step 2. We show that the limit

lim V(t)

t—-T

exists. For this purpose we use again the constant variation formula (3.7).

r;

Vi =
BiL; ,BzL 5:(t)

/G(x, Y, t)uo(y) dydx—ﬁ,L Z/ M;;(2(t),z(r),t — T)V; dr,

(4.5)
The difficulty is the presence of the factor 1/L;(t) which goes to infinity for s € Z. But the
second and third terms of (4.5) are averages and this makes them tractable. Namely, we
can represent s; as follows s; = y;[0, L;] + v;, where v;, u; € IR? and p; has a unit length,
and v; is a position of one vertex of s;. Then, the second term takes the form

1
1= [ [ 6o £ + w0, o) doce.

It is relatively easy to see that v;(¢) and L;(t) have a limit as ¢ — T (see [Ry3] for details).
Therefore I has a limit as ¢ — T because of Lebesgue theorem. The third term can be
handled in a similar way (see [Ry3]).

Existence of the limit lim¢_,7 u(t) in H?(RQ) is easier and left to the Reader (see also
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Step 3. In order to estimate

N
lu(®) = Y £iEO)WVi®)lue @), o<2

j=1

we use (3.7). We set up the following identity for an easy application of the essential fact
that V; € C*([0,T)):

N
uw(T) - Y Vi(T)fi(2(T))

= N ' T N
= AT (ug — Y _ Vi(T) £i(=(T))) - /0 AeAT=7) N "(Vi(r) - Vi(T)) fila(r)) dr
=1 i=1

T N

- [ 8T S V) (i(a(r)) - Sila(T))) dr
i=1

Now, one can check that all terms belong to H?(f2), for all 0 < 2.

Remark. We have to establish the Holder continuity of V. This can be achieved with

the method of Theorem 1 used for estimating ALF but it has to be refined. This will be

presented in the next section. Here we note:

Proposition 1. If at t = T facets with indices i in Z disappear, then

VvV ec*(0,T],RY), Va<l1/4

5. Evolution of broken facets

The results of previous Section suggest what kind of solution we should look for if we allow
facet breaking.

Theorem 3. Suppose that ug is admissible, Z defined as above is non-empty, sg is an
admissible polygon, with a number of point (different from vertices) marked and dubbed
zero-length zero-curvature facets, their indices form the set Z. Then, there is T > 0, such
that z € CL2([0,T); IRY), u € C%=((0,T); H°(R)), for all o € (0,1/4), 0 + @ < 3/2 such
that (z,u) is a weak solution to (3.3).

Let us first remark that for a singular problem we can indeed guarantee lower temporal
smoothness of V than in case of regular data. However, it is not clear if this is a deficiency
of the method of the proof or a genuine phenomenon. On the other hand some temporal
Holder regularity of V is necessary for the whole method to work.

Idea of the proof. We shall proceed as in the proof of Theorem 1. Let us suppose
that u is a postulated solution. Then, the temporal Holder continuity implies that (3.7)
holds. We shall treat (3.7) as an integral equation for velocities V.
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Let us introduce some convenient notation:

_ | &, ifie ze
(DV))i = {(?,’ﬂ‘ ifi € Z;
1
(L(V))i(t) =— BiL; /s © /ﬂ G(z,y,t)uo(y) dydz;

-~ [ Vi(r)
N(V));i(t) =— G(z,y,t — 7)1~ dydzdr,
(N (V)00 g/ﬂ L] cewt-nGr e

where i =1,...,N.
These definitions are correct even if L;(t) = 0. One can see that

D, N, L:C([0,TERY) = C([0,T); RY)

are continuous and their sum D + N + L is compact. Moreover, one can also check that
Schauder fixed point theorem is applicable. Thus, it yields existence of at least one solution
to

V =D(V) + N(V) + L(V). (5.1)

Subsequently, one may show that all fixed points of D+ + L are Holder continuous. Thus,
solutions to (5.1) (i.e. (3.7)) belong to the class of functions for which this representation
was derived.

Let us comment on compacteness of N. We showed (see [Ry2]) that for i,j € Z,
M, ;(2z1,22,¢) is locally Lipschitz continuous in 21,22 with Lipschitz constant bounded by
C¢~1/2 (c.f (3.9)). But this is impossible if 7 or j € Z because of vanishing denominator
in f% We set a more restricted goal. We set

- 1
M;;(21,22,¢) = m /Si(m) »/sj(zz) G(z,y,() dzdy.

Our aim is to show that

|33 (31, 72, C)] < %(lzll + [z]). (5.2)

This is sufficient to establish the compactness of N due to the general theory, (see [HP,
Theorem 7.6.2]). ‘
It is rather clear.that we have to deal mainly with the singular part of G(z,y,t) i.e.

we study
- 1
M. (z1, 22, =—/ / K¢ (z — y) dzdy,
1._1( 1,42 C) Li(zl) os(an) J;(a2) C( y) Y

where K¢(2) = (4m¢)~*exp(—2%/4¢) is the fundamental solution of the heat equation.
Once we notice that due to the fixed inner angles of s(t) we can estimate uniformly from
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below the expression (z — y)2 for z,y belonging to facets of s(t), then the remaining
calculations are fairly standard, (see [Ry3] for details).

We establish compactness of £L(V) by establishing its Holder continuity with exponent
1/2 and constant independent of V for V bounded in C[0,T]. Once we have established
compactness of the operator on the RHS of (5.1), then in a routine manner using Schauder
fixed point we can establish existence of a solution to (5.1), (see [Ry3]).

After we have shown existence of V a fixed point to (5.1), then the key point is to
prove its Holder continuity. In fact is remains to show that for A (V) is Hélder continuous
with exponent less than 1/4. The main task is to establish this for M{j defined above. We
set up the difference for

. / Z (a(t),5(7), t — T)Vy(r) dr =: J(t).

After obvious transformations we obtain:

J(t+h) - J()
N

t+h 1 1 (m—y)z)
= —_— ———exp | ————— | V;(7) dzdydT
‘/t Li(t+h)Ki(t+h);Lj(r)t+h—T p( t+h-—T1 J( ) y

t 1 1 al V;(r) (z - y)?
+/ ———/ - / —L  _exp (-——-—-—————-) dxdydr
0 (Li(t + h) si(t+h) Li(t) 3‘.(‘)) ; 8;(7) t+h-171 t+h—1

_E=9?) _ _(==9)?
/ ZL(t /s.(t) exp( Hh_f) EXP( = )Vj(T)dxdydr

t+h-71

+/o ;zi_l@/e,-(t) o <—(xt:i)2) (H;—T - t-l'f> Vilr) dedydr

The estimates of these four terms are tiresome, we refer the Reader for details to [Ry3].
Our task is finished with showing that solutions to (5.1) yield weak solutions of (3.3),

i.e. we have to define u using (4.2).
We note that Schauder fixed point theorem does not guarantee uniqueness of a solu-

tion.
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