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1Introduction

In [15] we have introduced the notion of proper viscosity solutions to -solve the
Cauchy problem for asingle nonlnear first order equation of the form

(1.1) $\partial_{\mathrm{t}}u+H(u,\nabla u)=0$ in $\mathrm{R}^{n}\cross(0,\infty)$ ,

(1.2) $u|_{t=0}=u\circ$ in $\mathrm{R}^{n}$

globally-in-time allowing jump discontinuities of solutions. If the quation (1.1) is a
conservation law, there is anotion of the entropy solution (which is aspecial distri-
butional weak solution) so that the Cauchy problem is uniquely solvable globally-
in-time at least for bounded initial data (see e.g. [6]). However, there are acouple
of interesting examples of (1.1) which is not aconservation law. Typical examples
include

(1.3) $\partial_{t}u-a(u)|\nabla u|=0$ ,

(1.1) $\partial_{t}u-b(u)(1+|\nabla u|^{2})^{1/2}=0$ ,

where $a$ and $b$ are not nonincreasing. The conventional theory of viscosity solutions
[5] does not apply for such problems including conservation laws. As explained
in \S 3 the notion of proper viscosity solution is more restrictive than usual viscos-

ity solution; the proper viscosity soloution requires some control on the speed of
shocks (jump discontinuities) while the conventional viscosity solution does not re-
quire such acontrol. In [15] we have established various comparison principles for
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proper viscosity solutions and constructed aunique global proper viscosity solution
for various situations. We also proved, in various setting, that the solution of a
regularized problem

$\partial_{t}u^{e}+H$ ( $u^{\mathcal{E}}$ , Vu’) $=\epsilon\triangle u^{\epsilon}$

with (1.2) converges to the proper viscosity solution of (1.1), (1.2) as $\epsilonarrow 0$ in the
sense of convergence of closed sets:

$\mathrm{s}\mathrm{g}u^{\epsilon}arrow \mathrm{s}\mathrm{g}u$,

where $\mathrm{s}\mathrm{g}u^{c}$ denotes the subgraph defined by

$\mathrm{s}\mathrm{g}u^{\epsilon}=\{(x’, x_{n+1},t);x’\in \mathrm{R}^{n}, x_{n+1}\leq u^{\epsilon}(x’,t), t\in[0, \infty)\}$.

It is akind of Hausdorff distance convergence.
In this paper we show that the graph of our proper solution can be regarded as

asolution of asurface evolution equation in $\mathrm{R}^{n+1}$ whose vertical diffusion is very
strong so that its effect is nonlocal. The equations with very strong diffusivity has
been proposed by S. Angenent and M. Gurtin [2] and J. Taylor [22] as crystallne
flow and studied for many years; the reader is referred to [16] for the state of arts.
Such an interpretation turns to be useful to calculate the evolution of the graph
of proper solutions by the level set approach developed by [17], [18]. If sg tz is
regarded as the set $\{\psi>0\}$ for an auxiliary (continuous) function $\psi(x’, x_{n+1}, t)$ in
$\mathrm{R}^{n}\cross \mathrm{R}\cross(0, \infty)$ , (1.1) can be written as

(1.5) $\partial_{t}\psi+(-\partial_{x_{n+1}}\psi)H(x_{n+1}., \nabla_{x’}\psi/(-\partial_{x_{n+1}}\psi))=0$.

In the level set approach we consider (1.5) in $\mathrm{R}^{n}\cross \mathrm{R}\cross(0, \infty)$ rather than on the zero
level of $\psi$ . When $r\mapsto H(r,p)$ is not nondecreasing, there is achance that the zero
level set $\{\psi=0\}$ may overhang, i.e., $\{\psi=0\}\cap\{x_{0}’.\}\cross \mathrm{R}\cross\{t_{0}\}$ has more than two
connected components at some $(x_{0}’, t_{0})$ . Since the graph of afunction does not have
such aproperty even the function is discontinuous, the level set $\{\psi=0\}$ does not
corresponds to the graph of proper solution. The question is what is the reasonable
reinterpretation of (1.5) so that $\{\psi=0\}$ is the graph of aproper viscosity solution.
Instead of (1.5) we propose to consider

(1.6) $\partial_{t}\psi+(-\mathfrak{c}?_{x_{n+1}}\psi)H(x_{n+1}, \nabla_{x’}\psi/(-\mathrm{r}?_{x_{l+1}},\psi))=D|\nabla\psi|(\partial_{x_{n+1}}(\mathrm{s}\mathrm{g}\mathrm{n}\partial_{x_{n+1}}\psi))/2$.

for sufficiently large $D$ $>0$ . In \S 2 we study the interface version of (1.6) and give
aformal reason why $\{\psi=0\}$ for (1.6) is the graph of aproper viscosity solution.
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Although we do not discuss in the present paper, our formal reasoning is useful to
define the notion of solution of (1.6) for general D $>0$ .

In this paper we also extend the notion of proper viscosity solutions so that it
applies to some second order problems including

(1.7) $\partial_{t}u-a(u)|\nabla u|=\sigma|\nabla u|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla u/|\nabla u|)$ ,

(1.8) $\partial_{t}u-b(u)(1+|\nabla u|^{2})^{1/2}=\sigma(1+|\nabla u|^{2})^{1/2}\mathrm{d}\mathrm{i}\mathrm{v}(\nabla u/(1+|\nabla u|^{2})^{1/2})$

with $\sigma>0$ . If $\sigma=0$ , (1.7) and (1.8) is nothing but (1.3) and (1.4) respectively.
The equation (1.7) requires that each $y$-level set of $v$, moves by $a(y)$ plus its mean
curvature. The equation (1.8) requires that the graph of $u$ moves by $b(y)$ plus its
upward mean curvature. As already noted by [14], [3] the solution of (1.8) may cease
to be continuous in afinite time when $b$ is not nonincreasing. Thus the notion of
proper solution is expected to be useful to extend the solution for such problems. We
do not pursue such problems. There are several interesting examples of parabolic
equations whose solution may cease to be continuous. The reader is referred to [1],
[14], [20], [19], [21] and papers cited there.

In the last part of this paper we give several examples of solutions. In particu-
lar, we point out that our proper solution distinguish admissible shocks from non
admissible one when (1.1) is aconservation law.

This work is partly supported by the Grant-in-Aid for Scientific Research
N0.10304010, 12874024, the Japan Society for the Promotion of Science.

2Very strong vertical diffusion

We consider asurface evolution equation of ahypersurface $\Gamma_{t}\subset \mathrm{R}^{n+1}$ of the form:

(2.1) V $=v(x_{n+1}, \mathrm{n})-\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma\iota}\xi(\mathrm{n})$ on $\Gamma_{t}$ .

Here $V$ denotes the normal velocity of $\Gamma_{t}$ in the direction of the unit normal vector
$\mathrm{n}$ of $\Gamma_{t}$ and divrt denotes the surface divergence on $\Gamma_{t}$ . The function $v$ is agiven
function of $n+1$-th component $x_{n+1}$ of $x\in \mathrm{R}^{n+1}$ and $\mathrm{n}$ . The function $\xi$ is the
gradient of $\gamma(p)=D|p_{n+1}|/2$ with apositive parameter $D$ , i.e.,

$\xi(p)=(\partial_{p_{1}}\gamma(p), \ldots,\partial_{\mathrm{p}_{\mathfrak{n}}}\gamma(p), \partial_{\mathrm{f}\mathrm{f}\mathrm{i}+1}\gamma(p))=(0, \ldots,0, D(\mathrm{s}\mathrm{g}\mathrm{n}p_{n+1})/2)$,
$p=(p_{1}, \ldots,p_{n},p_{n+1})\in \mathrm{R}^{n+1}$ .
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At the place where $\mathrm{n}$ is orthogonal to (0, $\ldots$ ,0, 1), the curvature term $\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma_{t}}\xi(\mathrm{n})$ is
not well-defined quantity in ausual sense even if $\Gamma_{t}$ is small. The diffusion effect is
too strong so that the quantity $\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma_{t}}\xi(\mathrm{n})$ turns to be nonlocal. If $n=1$ and $v$ is
independent of $x_{n+1}$ , such atype of problems is well-studied in aseries of papers
[8], [10], [11], [12], [13]. Their assumptions on 7exclude that of (2.1); however, the
results of these papers easily extend to (2.1). In this case if $\Gamma_{0}$ is given as aboundary
of subgraph $\mathrm{s}\mathrm{g}u_{0}$ of afunction of $x’\in \mathrm{R}^{n}$ , then its evolution by (2.1) turns to agree
with evolution by $V=v(\mathrm{n})$ and $\Gamma_{t}$ stays aboundary of $\mathrm{s}\mathrm{g}u(\cdot,t)$ of afunction of
$x’\in \mathrm{R}\mathrm{n}$ . In other words, graph-like property of $\Gamma_{t}$ is preserved and no overhanging
occurs; moreover the curvature term plays no role. It is not difficult to chedc these
properties by using definition of solutions in [12]; however, we do not give its proof
here.

If $x_{n+1}\mapsto v(x_{n+1}, \mathrm{n})$ is not nonincreasing, solution of

(2.2) V $=v(x_{n+1},$n)

is expected to be overhanged even for graph-like initial data and the curvature term
really play arole so that solutions of (2.1) and (2.2) may be different each other.

Following suggestions going back to [7] and [9] (see also [16]) it is reasonable to
define speed of $\Gamma_{t}$ including the place at which $\mathrm{n}$ is orthogonal to (0, $\ldots$ ,0, 1) in the
followsing way:

(2.3) V $=V(x,t)=v(x_{n+1}, \mathrm{n})-\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma_{t}}\eta$

(2.1) $\eta\in\partial\gamma(\mathrm{n})$ almost everywhere on $\Gamma_{t}$

and $\eta$ minimizes

(2.5) $\int_{\Gamma_{t}}|v(x_{n+1},\mathrm{n})-\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma_{t}}\eta|^{2}dS$ ,

where $dS$ is the surface element and $\partial\gamma$ denotes the subdifferential of $\gamma$ . We are
fully aware that one has to prove that the choice of the speed is actualy reasonable
by approximating $\gamma$ by smoother one; moreover, one has to specify aclass of $\Gamma_{t}$ to
define evolution by (2.3)-(2.5). However, we do not pursue such problems in the
present paper.

We now specify $\Gamma_{t}$ and calculate its speed. We consider ashock profile

(2.6) $u(x’,t)=\{$
$u_{1}(x’, t)$ , $x’\in U_{t}$

$u_{2}(x’, t)$ , $x’\not\in U_{t}$
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where $U_{t}$ is an open set in $\mathrm{R}^{n}$ and the boundary $S_{t}$ of $U_{t}$ is asmooth one-parameter
family of smooth hypersurfaces. The functions $u_{1}$ is $C^{1}$ in $\overline{U}$ when $U= \bigcup_{t>0}U_{t}\cross\{t\}$

and $u_{2}$ is $C^{1}$ in the complement of $U$ . To fix idea we assume that the value of $u_{2}$ on
$S_{t}$ is always greater than that of $u_{1}$ . Let $\Gamma_{t}$ be the boundary of the subgraph $\mathrm{s}\mathrm{g}u$ in
$\mathrm{R}^{n+1}$ and $\mathrm{n}$ be the unit outward normal of $\mathrm{s}\mathrm{g}u$ . We are interested in the velocity
of $\Gamma_{t}$ at $(x_{0}, t_{0})$ when $x_{0}’$ is on the shock $S_{t_{0}}$ . By (2.4) we see that

(2.7) $\eta=(0,$\ldots ,0,$D/2)$ and $\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma_{t_{0}}}\eta=0$ on $\Gamma_{t\mathrm{o}}\backslash (S_{t\mathrm{o}}\cross \mathrm{R})$ .

By (2.4) on $\Gamma_{t_{0}}\cap(\mathrm{h} \cross \mathrm{R})$ the function $\eta$ is of the form

(2.8) $\eta(x)=(0,$\ldots ,0,$\eta_{n+1}(x))$ , $|\eta_{n+1}(x)|\leq D/2$ .

Since
$\mathrm{d}\mathrm{i}\mathrm{v}_{\Gamma}‘\eta=\frac{\partial\eta_{n+1}}{\partial x_{n+1}}=\partial_{\mathrm{g}_{n+1}}\eta_{n+1}$ on $\Gamma_{t}\cap(S_{h\}}\cross \mathrm{R})$ ,

the integral (2.5) is minimized if and only if

(2.9) $\int_{\mathrm{u}_{1}(d,t\mathrm{o})}^{u_{2}(x’,t_{\mathrm{O}})}|v(x_{n+1},\mathrm{n}(x, t_{0}))-\partial_{x_{n+}1}\eta_{n+1}|^{2}dx_{n+1}$

is at every $x’\in S_{k}$ . We set $x’=x_{0}’$ and observe that the problem
(2.7)-(2.9) can be interpreted as an obstacle problem: find $\tilde{\eta}$ : $[a,b]arrow \mathrm{R}$ which
minimizes

(2.10) $\int_{a}^{b}|z(y)+\tilde{\eta}’(y)|^{2}dy$

subject to

(2.11) $|\tilde{\eta}(y)|\leq D/2$ for y $\in[a,$b],

(2.12) $\tilde{\eta}(a)=\tilde{\eta}(b)=D/2$ .

Here we set $a=u_{1}(x_{0}’,t_{0})$ , $b=u_{2}(d_{0},t_{0})$ , $z(y)=-v(y, \mathrm{n}(x_{0}’,t_{0}))$ and $\tilde{\eta}=\eta_{n+1}$ . The
boundary condition (2.12) comes from (2.7) and the constraint (2.11) comes from
(2.8). Such atype of obstacle problems is derived in [9] for Lipschitz continuous
graph-like solution when $n=1$ . As in [9] we transform dependent variable $\tilde{\eta}$ by

$\zeta(y)=\tilde{\eta}(y)+Z(y)$ , $Z(y)= \int_{a}^{y}z(\sigma)d\sigma$.
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Then (2.10)-(2.12) is equivalent to find a minimizer \langle of the set of values

(2.13) $\{\int_{a}^{b}|\zeta’|^{2}dy;\zeta(a)=D/2,$ $\zeta(b)=Z(b)+D/2,$ Z $-D/2\leq\zeta\leq Z+\mathrm{D}/2,$ .

Theorem 2.1. Let $Z_{I}$ denote the convexification of $Z$ in $I=[a, b]$ . Then
$\zeta_{0}=Z_{I}+\frac{D}{2}$ is the unique $\ovalbox{\tt\small REJECT} er$ of (2.13) if and only if $\mathit{2}\mathit{4}\geq Z-D$ on $[a, b]$ .

Proof. Since the problem is convex, the unique existence of aminimizer is clear.
If $\langle$ is the minimizer, then $\tilde{\zeta}$ is convex outside the set where ( $=Z-D/2$, since
otherwise one can deform $\langle$ so that it decreases the energy $\int_{I}|\zeta’|^{2}dy$ . If $Z_{I}\geq Z-D$,
then $\langle$ $\geq Z_{I}+\frac{D}{2}$ since otherwise it decreases the energy. Since $\langle$ is now convex, by
definition $Z_{I}+ \frac{D}{2}\geq\tilde{\zeta}$ . Thus $\frac{D}{2}+Z_{I}=\tilde{\zeta}$ . If $Z_{I}\geq Z-D$ does not hold, then $\zeta_{0}$ does
not satisfy the constraint $Z-D/2\leq\zeta_{0}$ so $\zeta_{0}$ cannot be the minimizer. $\square$

It is clear that there is athreshold value of D for the property $Z_{I}\geq Z$ -D on I.

Corollary 2.2. Let $D_{0}=D_{0}(I)$ be $te$ number defined by

$D_{0}= \inf${$D;Z_{I}\geq Z-D$ on $I$ }.

Then $\zeta_{0}=\frac{D}{2}+Z_{I}$ is the unique minimizer of (2.13) for $D\geq D_{0}$ and it is not the
minimizer of (2.13) for $D<D_{0}$ . Moreover, $D_{0}(I)\leq D_{0}(J)$ if $I\subset J$ .

The monotonicity of $D_{0}(l)$ in I is clear by definition. By these observations the speed
at $(x_{0}, t_{0})$ in (2.3) $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}1\mathrm{s}-\zeta_{0}’$ i.e. $-\partial_{x_{n+1}}Z_{I}$ for sufficiently large $D$ , say $D\geq D_{0}(I)$

with $I=[u_{1}(\prime x_{0}’, t_{0}),u_{2}(x_{0}’,t_{0})]$ .
We now consider

(2.14) $\frac{\partial u}{\partial t}+H$($u$ , Vu) $=0$

where $\nabla\uparrow x=$ $(\partial_{x_{1}}u, \ldots,\partial_{x_{n}}u)$ , $\partial_{x_{j}}u=\partial u/\partial x_{j}$ . Let $\Gamma_{l}$ be the boundary of $\mathrm{s}\mathrm{g}u(\cdot,t)$ .
The unit normal $\mathrm{n}$ is taken outward so that its explicit form is

$\mathrm{n}=$ (-Vu, $1$ ) $/(1+|\nabla u|^{2})^{1/2}$ .

Since $V=\partial_{t}u/(1+|\nabla v,|^{2})^{1/’2}$ , (2.14) is equivalent to (2.2) if

(2.15) $v(x_{n+1},p_{1}, \ldots,p_{n},p_{n+1})=-p_{n+}{}_{1}H(x_{n+1}, (p_{1}, \ldots,p_{n})/(-p_{n+1}))$.

provided u is C. We consider (2.1) with interpretation of (2.3) and calculate the
speed of shocks for afunction u of the form (2.6) under the assumption that u is
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bounded. We need the value of v at $p_{n+\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}$ 0\rangle which is formally derived by sending
$p_{n+h}$ j 0 in (2.15). Its explicit form is

$v(x_{n+1},p_{1}, \ldots,p_{n},0)=-H_{\infty}(\prime x_{\iota+1},, -p_{1},$
\ldots ,

$-p_{n})$

where $H_{\infty}$ is the recession function defined by

$H_{\infty}(r,p_{1}, \ldots,p_{n})=\lim_{\lambda\downarrow 0}\lambda H(r, (p_{1}, \ldots,p_{n})/\lambda)$ .

For sufficiently large $D$, say $D\geq D_{0}(I)$ with $I=[ \inf u,\sup u]$ , the speed $V=$

$V(x_{0},t_{0})$ at shock $S_{u_{\mathrm{J}}}$ is provided $\mathrm{b}\mathrm{y}-\partial_{x_{n+}1}7_{I}J$ by Corollary 2.2. By definition

$Z_{J}(x_{n+1})=( \int^{x_{n+1}}H_{\infty}(r, -\hat{\mathrm{n}})dr)_{J}$

where $\hat{\mathrm{n}}=$ $(n_{1}, \ldots,n_{n})$ . Thus the speed $V$ of $19_{t}$ in the direction of $\hat{\mathrm{n}}$ agrees with
the speed appeared in the speed of shocks in the definition of proper solutions; see
\S 3 and [15]. If $r\mapsto H(r,p)$ is nonincreasing, $-\partial_{x_{n+1}}7_{/r}$ is constant on $\Gamma_{t_{0}}\cap\{x_{0}’\}\cross \mathrm{R}$,
$x_{0}’\in S_{t\mathrm{o}}$ . Its value agrees with the one obtained by the Rankine-Hugoniot condition
when (1.1) is aconservation law.

We have thus observed that ashock profile is resulted from very strong vertical
diffusion.

3Proper solutions

We extend the notion [15, \S 2] of aproper subsolution for aclass of second order
equation of the form

(3.1) $\partial_{t}u+H$(u, $\nabla u$,VVtz) $=0$ ,

where $\nabla\nabla u$ denotes the Hesse matrix of u. We assume that

$H_{\infty}(r,p,X)= \lim_{\lambda\downarrow 0}$ All$(r,p/\lambda,X/\lambda)$

exists and $(p,X)\mapsto H_{\infty}(r,p,X)$ is geometric in the sense of [4], i.e.,

$H_{\infty}(r,\lambda p, \lambda X+\sigma p\otimes p)=\lambda H(r,p,X)$

for ffi $p\in 1\mathrm{E}\mathrm{t}"\backslash \{0\}$ , $X\in \mathrm{S}^{n}$ , $\sigma\in \mathrm{R}$, $\lambda>0$ where $\mathrm{S}^{n}$ denotes the space of $n\cross n$ real
symmetric matrices. Let $\Omega$ be an open set in $\mathrm{R}^{n}$ . We set $Q=\Omega\cross(0, T)$ .
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Definition 3.1 (Proper subsolution). Let u $\ovalbox{\tt\small REJECT}$ Q $\ovalbox{\tt\small REJECT} p$ R be asubsolution [5]
of (3.1) in Q. We say that $\ovalbox{\tt\small REJECT} \mathrm{u}$ is aproper subsolution if for any $(\mathrm{r}_{0},\mathrm{k})E_{-}Q$ and any
upper test surface $\{S_{\mathrm{t}}\}$ of $\mathrm{u}^{*}$ at $( 0_{\rangle}’ 0)$ with level $7^{\ovalbox{\tt\small REJECT}}(<\mathrm{f}\mathrm{J}’(7\ovalbox{\tt\small REJECT}_{0},\mathrm{Z}_{0}))$ the inequality

$V(x_{0},t_{0})+H^{I}(u^{*}(x_{0},t_{0}),$ $-\mathrm{n}(x_{0},t_{0})$ , $-R_{\mathrm{n}}\nabla \mathrm{n}R_{\mathrm{n}})\leq 0$

holds with $I=[\mu, u^{*}(x_{0}, t_{0})]$ . Here $u^{*}$ represents the upper semicontinuous envelope
of $u$ .

Here $V=V(x_{0}, t_{0})$ denotes the normal velocity (in the direction of n) of $\{S_{t}\}$

at $(x_{0}, t_{0})$ in the direction of $\mathrm{n}(x_{0},t_{0});R_{\mathrm{n}}=I-\mathrm{n}\otimes \mathrm{n}$ which is the orthogonal
projection to the space orthogonal to $\mathrm{n}$ . The quantity Vn depends on extension
of $\mathrm{n}$ outside $S_{t}$ ;however, $R_{\mathrm{n}}\nabla nR_{\mathrm{n}}$ is independent of the extension. The relaxed
function $H^{I}$ is defined by

$H^{I}(r,p,X)= \partial_{f}(\int^{r}H_{\infty}(\rho,p, X)d\rho)_{I}$ .

We recall the definition of an upper test surface; this notion is defined in [15, \S 2]. We
say that asmooth family $\{S_{t}\}$ of hypersurfaces defined near $(x_{0},t_{0})\in \mathrm{R}^{n}\cross(0,T)$

is an upper test surface of $u^{*}$ at $(x_{0},t_{0})$ with level $\mu$ if $S_{t}=\partial U_{t}$ and $U_{t}$ is asmoothy
family of open sets and

$u^{*}(x,t)\leq\mu$ for x $\in U_{t}$ near $(x_{0},t_{0})$ .

We have given an orientation of $S_{t}$ by taking inward unit normal $\mathrm{n}$ of $\partial U_{t}$ .
Aproper supersolution is defined in asymmetric way as described in [15, \S 2].

As usual if $u$ is simultaneously proper sub- and supersolution, we say that $u$ is a
proper solution of (3.1).

Example 3.2 (First order problem). Assume that $r\mapsto H(r,p)$ is either
strictly monotone increasing or decreasing (depending on $p\in \mathrm{R}^{n}.$). We consider a
shock profile of the form (2.6). Let $\mathrm{n}$ be the unit normal vector field of $S_{t}$ pointing
to $U_{t}$ . Assume that the normal velocity of $S_{t}$ at $(x’,t)$ equals

(3.3) $c=- \frac{1}{b-a}\int_{a}^{b}H(r, -\mathrm{n}(x’, t))dr$

with $b=u_{2}(x’, t)$ , $a=u_{1}(x’,t)$ . This is the speed determined by the Rankine-
Hugoniot condition when (1.1) is aconservation law. If $r\mapsto H(r, -\mathrm{n}(x’, t))$ is
strictly decreasing for every point $x’\in S_{t}$ , $t>0$ , then it is easy to see that $u$ in
(2.6) is aproper solution of (1.1) provided that $u_{1}$ and $u_{2}$ solve (1.1) off $S_{t}$ . If $r\mapsto$
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$H(r, -\mathrm{n}(x’,t))$ is strictly increasing for some point $x’\in S_{t}$ for some $t>0$ , $u$ in (2.6)
is not aproper viscosity solution. The solution with shocks with speed satisfying
(3.3) always satisfies (1.1) in distribution sense when (1.1) is of conservation type. To
be an entropy solution it is known (e.g. [6]) that every characteristic line near shock
is merging to the shock as time develop. This is equivalent to $r\mapsto H(r, -\mathrm{n}(x’,t))$ is
strictly decreasing. Thus our proper viscosity solution really distinguish admissible
shock (entropy solution) ffom non admissible one when (1.1) is aconservation law.

Example 3.3 (Equation (1.7)). We shall give aspecial radial proper viscosity
solution of (1.7) when $a(r)$ is increasing. Consider tw0-valued function

$u(x’,t)=\{$
$a$ , $|x’|<R(t)$ ,
$b$, $|x’|\geq R(t)$

with $b>a$ . It is easy to see that $u$ is aproper viscosity solution of (1.7) if

$\frac{dR}{dt}(t)=\frac{1}{b-a}\int_{a}^{b}a(r)dr-\frac{\sigma(n-1)}{R}$ .

For (1.8) it is not easy to give an explicit solution with jump discontinuities.
However, we note that our Definition 3.1 is applicable to define the notion of proper
viscosity solution for (1.8) since

$H_{\infty}(r,p,X)=-b(r)|p|-\sigma \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}[(/ -(p\otimes p)/|p|^{2})X]$

is geometric.
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