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Abstract

In this article, we first introduce aLax-Friedrichs type finite difference
method to compute the $\mathrm{L}$-solution, following its original definition recently
proposed by the second auther in[12] using level sets. We then generalize our
numerical methods to compute the proper viscosity solution proposed in [11]

for amore general class of HJ equations that includes conservation laws. We
couple our numerical methods with asingular diffusive term of essential im-
portance. With this singular viscosity, our numerical methods do not require
the divergence structure of equations and do apply to more general equations
developing shocks other than conservation laws. These numerical methods
are generalized to higher order accuracy using WENO Local Lax-Friedrichs
methods [17]. We verify that our numerical solutions approximate the proper
viscosity solutions of [11] and, in particular, the entropy solutions in case of
conservtion laws.

1Introduction

Nonlinear Hamilton-Jacobi Equations arise in many different fields, including con-
trol theory, and differential games. Because of the nonlinearity, the Cauchy prob-
lems usually have non-classical solutions due to the crossing of characteristic curves.
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For scalar equations of conservation law type, there is awell known theory
regarding the existence and uniqueness of aweak solution called entropy solution,

using the special integral structure of equation [19]. Advanced numerical methods,
e.g. [13][14][24][26], have been developed and widely used to compute approxi-
mations that converge to the correct entropy solutions.

Nevertheless, this notion of weak solution cannot be applied to many fully
nonlinear equations, e.g the eikonal equation $u_{t}+|\nabla u|=0$ . In 1983, Crandall
and Lions [5] first introduced the notion of viscosity solution for this type of equa-
tions, based on maximum principle and the order preserving property of parabolic
equations. In general, for any given Hamilton-Jacobi equation of the form

$u_{t}+H(x, t, u, Du)=0$ ,

where $H$ is acontinuous function from $\Omega\cross \mathbb{R}^{+}\cross \mathbb{R}\cross \mathbb{R}^{n}$ , non-decreasing in $u$ ,
and $\Omega$ is an open subset of $\mathbb{R}^{n}$ , there exists unique uniformly continuous viscosity
solution if the initial data is bounded, uniformly continuous.l

Correspondingly, Crandall and Lions in [4] proved the convergence of two
approximations to the viscosity solution of equations whose Hamiltonians only de-
pend on Du. This was generalized by Souganidis to equations with variable coef-
ficients in [25]. Many sophisticated numerical methods have since been developed
[17][21][22].

However, there are problems in control theory and differential games which
demand discontinuous solutions. The notion of semi-continuous viscosity solution
has been introduced first by Ishii $[15, 16]$ using an extension of Perron’s method.
Because of the non-uniqueness in Ishii’s result, other notions of semi-continuous
solutions were proposed by various authors $[1][2]$ with different kinds of additional
properties imposed on the Hamiltoniah. Nevertheless these notions, in their origi-
nal definitions, do not facilitate the construction of their numerical approximations.

Finally, for the class of equations with Hamiltonians $H$ ( $x$ , $u$ , Du) nondecreas-
ing in $u$ , M.-H. Sato and the second author [12] introduced anew notion for semi-
continuous solution. This notion of solution is defined by the evolution of the zero
level curve of the auxiliary level set equation which embeds the original HJ equa-
tion. It is thus called the $\mathrm{L}$-solution. In this article, we will device aLax-Friedrichs
type scheme to compute approximation of the $\mathrm{L}$-solution in its original formulation
(i.e. level set). We will also show that with suitable CFL condition, our schemes
keep the discrete version of an important property of this class of HJ equations.

When the Hamiltonians $H$ ( $t$ , $x,u$ , Du) are not nondecreasing in $u$ , the solu-
tions may develop shocks in finite time even if the initial data is continuous. Re-
cently, anew notion called the proper viscosity solution is introduced by the second

Notice that the conservation laws do not fall into this category because the corresponding $H$

might not be monotone in $uj$ e.g. shocks may develop from smooth initial data
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author [11] to track the whole evolution. This notion is consistent with the entropy
solution when the equation is aconservation law. In order to approximate the
proper viscosity solution of aclass of more general HJ equations, we introduce a
singular diffusive term in the vertical direction to the auxiliary level set equations
so that the level curves will not overturn. We will show numerically that the sin-
gular diffusive term regularizes the shock solutions of conservation laws such that
the “equal area” entropy condition is satisdied and thus demonstrate its validity.

We remark that asimple monotone Lax-Friedrichs scheme seems to produce
convergent approximations of the $\mathrm{L}$-solution for the first class of HJ equations in
their original form, even though the scheme does not follow the original defini-
tion of the $\mathrm{L}$-solution. However, for the second class of equations, it is likely that
the numerical approximations obtained this way converge to the wrong weak s0-
lution. This is awell known fact for monotone schemes for conservation laws
in nonconservative form. In contrast, our numerical approximations for the cor-
responding “nonconservative” level set equations appear to converge to the right
weak solution; i.e. the proper viscosity solution and, in case of conservation laws,
the entropy solution.

In the following sections, we first review briefly the previous work on using
level sets as atool to analyze and compute solution of given PDEs. We then derive
the level set equation from agiven HJ equation. We then devise numerical meth-
ods for the level set equations for the computation of the HJ equations solutions
according to the behavior of $H_{u}$ . We extend each type of our numerical schemes
to higher order accuracy using the WENO schemes devised in [17].

1.1 Analysis by the level set function

Osher [20] rediscovered amethod of Jacobi [3] to study the Cauchy problem of
general first order nonlinear equations through the aid of the level set equations. In
that paper, Osher derived from the general first order equation

$F(x, y, u, u_{x}, u_{y})=0$

atime dependent Hamilton-Jacobi equation

$\phi_{t}+H(x, y, t, \phi_{x}, \phi_{y})=0$

and proved that the zero level set of its viscosity solution at time $t$ is the set { $(x, y)$ :
$u(x, y)$ $=t\}$ . With continuous initial values, the viscosity solution theory gives the
existence and uniqueness of the solution to the time-dependent Hamilton-Jacobi
equations provided that $H$ does not change sign
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In [6], Evans used the level set method described in [20] to obtain the level
surface heat equation. He gave the geometrical interpretation to the instant “un-
folding” of multi-valued initial data of the solution of linear heat equation. By
considering the viscous Burgers’ equation

$u_{t}+uu_{x}=\epsilon u_{xx}$ , $\epsilon>0$

as alower order perturbation to the heat equation, Evans provided further analysis
and ageometrical explanation as to how the term $\epsilon u_{xx}$ keeps the solution from
becoming multi-valued.

Recently, M.-H. Sato and the second author proposed to characterize the semi-
continuous solutions of HJ equations using asimilar approach. In this paper [12],

they define the $\mathrm{L}$-solution and prove existence and uniqueness of the L-solution
with aclass of Hamiltonian. We remark that the $\mathrm{L}$-solution is equivalent to the
conventional viscosity solution if the hypothesis are identical.

The idea is to represent the “graph” of asemi-continuous function $u(x)$ as the
zero level set of afunction $\phi$ : $\mathbb{R}^{2}arrow \mathbb{R}^{1}$ with the requirement that every level set
of $\phi$ is the graph of some function of $x$ . More precisely, we define the subgraph of
afunction $u$ be be $\mathrm{s}\mathrm{g}(u):=\{(x, y)\in \mathbb{R}^{2} : y\leq u(x)\}$ and the curve $\Gamma(t)$ to be the
upper boundary of $\mathrm{s}\mathrm{g}(u)$ . For smooth functions $u(x,t)$ , $\Gamma(t)$ is simply the graph of
$u$ at time $t$ . Consider the general first order equation:

$u_{t}+H(t,x, u, u_{x})=0$ (1)

where $u$ is afunction from $\mathbb{R}arrow \mathrm{K}$ We embed $\Gamma(t)$ as the zero level set of a
function $\phi$ : $\mathbb{R}^{2}\cross \mathbb{R}^{+}arrow \mathbb{R}$ (i.e. $\phi(t, x, y)=0$ for all $(x, y)\in\Gamma(t)$ for each
$t$ $\in \mathbb{R}^{+})$ and derive the level set equation:

$\phi_{t}-\phi_{y}H(t, x, y, -\frac{\phi_{x}}{\phi_{y}})=0$ . (2)

In the following sections, we will use $H_{u}$ to denote the partial derivative of
$H(x, u, u_{x})$ with respect to $u$ for the original HJ equations and $H_{y}$ to denote the
partial derivative of $H(x, y, \phi_{x}, \phi_{y})$ with respect to $y$ , where $H(x, y, \phi_{x}, \phi_{y})$ is the
Hamiltonian derived from the original one. Finally, the level set function $\phi$ is set
up to be non-decreasing in $y$ initially in the examples of this paper.

2Model Equations

We first consider the scalar 1D equation

$u_{t}+H(x,u,u_{x})=0$

with the Hamiltonian $H(x, u, u_{x})$ satisfying the following properties
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1. $H$ is Lipschitz in all its arguments

2. $\lim_{\lambdaarrow 0}\lambda H(x, u,p/\lambda)$ exists.

In addition, we are concerned with the following two classes of equations: $1$ )$\mathrm{E}\mathrm{q}\mathrm{u}\mathrm{a}-$

tions with $H_{u}\geq 0$ but with discontinuous initial data; 2)Equations such as conser-
vation laws that do not belong in the first class.

Let us consider the following two model equations, both of which can be in
either the first or the second class depending on the parameters:

$\bullet$ Equations that contains both terms from conservation laws and fully nonlin-
ear first order tems:

$u_{t}+uu_{x}+au|u_{x}|=0$ , $a\in \mathbb{R}$. (3)

The associated level set equation reads

$\phi_{t}-y$ . (a $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\phi_{y})|\phi_{x}|-\phi_{x}$ ) $=0$ . (4)

If $a\geq 1$ , $H_{u}$ will be non-decreasing. Equation (3) then falls into the first
class of equations. For $0\leq|a|<1$ , $H_{u}$ changes signs according to the value
of $u_{x}$ . Equation (3) then belongs to the second class. Notice that if $a=0$ ,
we have the inviscid Burgers’ equation.

$\bullet$ Equations that prescribe the normal motion of the graph of $u$ :

$u_{t}-v(u)\sqrt{1+u_{x}^{2}}=0$ ; (5)

The corresponding level set equation is

$\phi_{t}+\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\phi_{y})v(y)|\nabla\phi|=0$ . (6)

The function $v$ is the normal velocity of the graph of $u$ , or the level sets of
$\phi$ . If $v$ ever decreases, then $H_{u}\leq 0$ and the equation fails to be in the first
class.

2.1 Geometrical Explanation of the Non-0verturning Conditions

As mentioned earlier, we need to pay special attention in order to prevent the over-
turning of the level curves of $\phi$ . One equivalent criterion is to demand the minimum
principle: $\phi_{y}(x, y, t)\geq 0$ for $t\geq 0$ .

In light of the level set equation (6), we have amore geometrical requirement
on the speed function $v$ . By the method of characteristics, we know that $v(y)$ pre-
scribes the normal velocity of the level sets of $\phi$ . On the vertical segments of the
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Figure 1: The concavification of the flux in Buckley-Leverett equation

level sets, which correspond to jumps in $u$ , $v(y)$ prescribes the horizontal velocity
according to $y$ . Overturning will happen if $v(y)$ is increasing, since the upper part
of the jump of $u$ moves faster than the lower part.

Consider the primitive function of $v$ :

$V(y)= \int v(s)ds$ .

The non-increasing condition of $v$ translates to the concavity of $V$ ! This fact re-
minds us of one of the entropy conditions for conservation laws with non-concave
flux function. It says that the entropy solution of the conservation law with non-
convex flux $f$ is the classical solution of the conservation law with the flux $f^{*}$ ,

where $f^{*}$ is the minimal concavification of $f$ over the increasing jump interval.
This, in turns, provides us ahint on the regularization of HJ equations (6) –we
need to impose regularization that concavities the primitive function on the verti-
cal segments of the level sets and nowhere else. We shall demonstrate numerically
that our proposed singular diffusive regularization term does exactly that in alater
part of this article.

2.2 Equations with Hamiltonian $H_{u}\geq 0$

We first consider the equations $u_{t}+H(t, x, u, u_{x})=0$ for which $H_{u}\geq 0$ and the
corresponding level set equation equation (2).

The minimum principle

For this class of equation, one can show that if $\phi_{y}(x, y, t =0)\geq 0$ initially, then
$\phi_{y}(x, y, t)\geq 0$ for all time! (See [12]) This implies that $\{\phi=c\}$ will remain as $a$
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graph throughout the evolution. Therefore, we can remove the sign(0y) term from
the derived level set equation (2) of this class of equation.

The Lax-Friedrichs schemes for the level set equation

For the level set equations with $H$ independent of $\phi_{y}$ (after removing $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\phi_{y})$ ),
we introduce for this class of Hamiltonians amonotone Lax-Friedrichs schemes

$\phi_{i,j}^{n+1}=\frac{1}{2}(\phi_{i+1,j}^{n}+\phi_{i-1,j}^{n})+\Delta t$ $H(x_{i}, y_{j}, D_{x}^{0}\phi_{i,j}^{n})$ . (7)

For equations such as equation (5), since the Hamiltonians depend on $\phi_{y}$ , we use

$\phi_{i,j}^{n+1}=\frac{1}{4}(\phi_{i+1,j}^{n}+\phi_{i-1,j}^{n}+\phi_{i,j+1}^{n}+\phi_{i,j-1}^{n})+\Delta t$ $H(x_{i}, y_{j}, D_{x}^{0}\phi_{i,j}^{n}, D_{y}^{0}\phi_{i,j}^{n})$ .
(8)

Here, $\phi_{i,j}^{n}:=\phi(x_{i}, y_{j}, t_{n})$ , $D_{x}^{0}\phi_{i,j}^{n}$ and $D_{y}^{0}\phi_{i,j}^{n}$ are the central differencing of $\phi_{i,j}^{n}$

in the $x$ -and $y$ -direction respectively.
Because of the hypothesis that $H_{y}\geq 0$ , our schemes preserve the minimum

principle discretely (i.e. given $\Delta_{y}^{+}u_{i,j}^{n}\geq 0$ for all $t,j\in Z_{d}$ , then $\Delta_{y}^{+}u_{i,j}^{n+1}\geq 0$ for
all $i,j\in Z_{d}$ ) if

$\frac{\Delta t}{\Delta x}\leq C\min(1/||H_{\phi_{x}}||_{\infty}, 1/||H_{\phi_{y}}||_{\infty})$ ,

where $C=1$ for equation (7) and $C=2$ for equation (8).

Extension to higher order of accuracy

Following the methods originally conceived for HJ equations $\phi_{t}+H(D\phi)=0$ in
[22], see also [21], it is possible extend the above methods to higher order accuracy.
In this paper, we use an direct extension of the Local Lax-Friedrichs method [22]
together with the WENO schemes described in [17] for approximating the partial
derivatives of $\phi$ .

2.2.1 Examples

We provide here some numerical computations for some equations that belong to
the class we are considering
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Figure $2\ovalbox{\tt\small REJECT}$ Numerical solution using third order WENO-LLF to the Riemann prob-
lem for equation (3) with $\mathrm{u}_{L}\ovalbox{\tt\small REJECT}$ 0.0, $u_{H}\ovalbox{\tt\small REJECT}$ 0.1, and a $\ovalbox{\tt\small REJECT}$ 2.0. We plotted the zero
level set at time t $\ovalbox{\tt\small REJECT}$ 0,0.1, and 0.2.

Constant motion along the normal

Consider the equation

$u_{t}+c\sqrt{1+u_{x}^{2}}=0$ . (9)

Given acontinuous initial data, it is well-known that the following equation corre-
sponds to motion of the graph with constant normal velocity $c$ .

Using the notion of the $\mathrm{L}$-solution, we can easily describe the motion defined
by equation (9), even with piecewise continuous data. The corresponding level set
equation is simply

$\phi_{t}+c|\nabla\phi|=0$ ,

which describes the constant normal speed motion of each level set of $\phi$ .

Model equation $u_{t}+uu_{x}+au|u_{x}|=0$

With $a\geq 1.\mathrm{O}$ , we know that this model equation retains the property that $\phi_{y}\geq 0$

for all time. Figure 2show the computational result using (7) and third order
WENO-LLF. The numerical solutions of this equation are computed with $a=2.0$ .
Finally, we show that our Lax-Friedrichs type scheme cannot be applied to compute
solutions for equation with $a<1$ . See figure3
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Figure $3\ovalbox{\tt\small REJECT}$ Numerical solution to the Riemann problem for equation (4) with fJ( $\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}$

1.0, $u_{H}\ovalbox{\tt\small REJECT}$ 0.0, and a $\ovalbox{\tt\small REJECT}$ 0.1. We plotted the zero level set at time t $\ovalbox{\tt\small REJECT}$ 0,0.0, and
1.0.

2.3 Singular Viscosity Regularization

Consider the model equation (4) with $|a|<1$ , and equation (5) with $v(y)$ non-
decreasing. We know that it no longer has the minimum principle in $\phi_{y}$ , and over
turning” or “folding” in its solution might develop.

Motivated by the work on atype of singular diffusion in [7, 8, 18], we will add
asimilar singular diffusion term in the $y$-direction to both our model equations:

$M| \nabla\phi|\frac{\partial}{\partial y}(\frac{\phi_{y}}{|\phi_{y}|})$ .

We first notice that this viscosity is activated only when $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\phi_{y})=\phi_{y}/|\phi_{y}|$

changes signs! With $M$ sufficiently large, this term $\partial(\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\phi_{y}))/\partial y$ can be shown,
at least formally, to concavify the primitive of the speed function on the vertical
part of the level sets [10].

We briefly describe how to find the minimum value of $M$. Consider the prim-
itive function $V(y)$ of the speed function $v(y)$ of equation (5) over $[a, b]$ that is
ajump of $u$ . Let $V^{*}$ be the function whose graph is the upper boundary of the
convex hull of $V$. Let $V_{M}=V^{*}+M$ . We claim that $M$ has to be large enough
such that $V_{M}$ is tangent to or never crosses $V^{*}$ . See figure 4for an example with
$V(y)=y^{2}/2$ . Since the purpose of this paper is to provide the numerics, we refer
the reader to the recent paper of the second author [10] for aformal reasoning.

Alternatively, we describe another intuitive motivation behind this diffusion
term: consider the Heaviside function $y=H(x)$ and the level set function $\phi(x, y)$

for which this is the zero level set. If we treat the zero level set of $\phi$ locally as
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Figure 4: $V(y)=y^{2}/2$ on [0, 1]. The minimum value of M should be 1/8.

afunction of $y$ wherever it is vertical, we see that the “overturning” will increase
the total variation of $\{\phi=c\}$ as afunction of $y$ . This motivates the following
regularization:

$\min_{\phi}\int|\phi_{y}|dy$ .

The corresponding Euler-Lagrange derivative is

$\frac{\partial}{\partial y}(\frac{\phi_{y}}{|\phi_{y}|})$ .

To make the diffusion term geometrical, i.e. invariant of the choice of level set
function, we multiply it by $|\nabla\phi|$ and arrive at the same diffusion term.

Now, let us go back to our model equation with this viscosity term:

$\phi_{t}-y$ . (a $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\phi_{y})|\phi_{x}|-\phi_{x}$ ) $=M| \nabla\phi|\frac{\partial}{\partial y}(\frac{\phi_{y}}{|\phi_{y}|})$ .

We use central differencing to approximate the singular diffusion term on the right
hand side:

$\sqrt{(D_{x}^{0}\phi_{\dot{\iota},j})^{2}+(D_{y}^{0}\phi_{\dot{l},j})^{2}}\cdot\frac{\tanh(\gamma D_{y}^{+}\phi_{\dot{l},j})-\tanh(\gamma D_{y}^{-}\phi_{i,j})}{\Delta y}$ ,

where the signum function $\phi_{y}/|\phi_{y}|$ is approximated by $\tanh(\gamma\phi_{y})$ with $\gammaarrow\infty$ ,
and

$\mathrm{t}\mathrm{m}\mathrm{h}(\gamma D_{y}^{+}\psi_{:,j})=\tanh(\gamma\frac{\phi_{i,j+1}-\phi_{\dot{\iota},j}}{\Delta y})$
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is an approximation of $\ovalbox{\tt\small REJECT}\#_{y}/|_{\ovalbox{\tt\small REJECT}}\# y|$ evaluated at $( j_{\rangle}\ovalbox{\tt\small REJECT})j- l- r/2)\ovalbox{\tt\small REJECT}$ Similarly $\tanh(D_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} j_{\ovalbox{\tt\small REJECT}_{\rangle}r\ovalbox{\tt\small REJECT}})$

is an approximation for $Cl_{\ovalbox{\tt\small REJECT}},/|(/\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} y^{\ovalbox{\tt\small REJECT}}$ at $(x_{\mathrm{i}\mathrm{t}}y_{\ovalbox{\tt\small REJECT}-y}2)\ovalbox{\tt\small REJECT}$ The partial derivative $. on the
left hand side is approximated by upwind differencing:

$\bullet|a|<1$ :

$y\geq 0$ : $\phi_{x}arrow D_{x}^{-}\phi$

$y<0$ : $\phi_{x}arrow D_{x}^{+}\phi$

$\bullet|a|\geq 1$ :

$\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(D_{y}^{0}\phi)$ a $y\leq 0$ : $\phi_{x}arrow(D_{-}^{x}\phi)^{+}-(D_{+}^{x}\phi)^{-}$

$\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(D_{y}^{0}\phi)$ a $y>0:\phi_{x}arrow-(D_{-}^{x}\phi)^{-}+(D_{+}^{x}\phi)^{+}$ .

Here, $p^{-}$ denotes the negative part of $p$ (with sign) and $p^{+}$ the positive part.
Because of the singular diffusion term, the stability condition is similar to the

parabolic equation:

$\frac{\Delta t}{\Delta x^{2}}\leq C_{M,H}$ ,

where $C_{M,H}$ is aconstant depending on the diffusion coefficient $M$ and the maxi-
mum values of $H_{\phi_{x}}$ and $H_{\phi_{y}}$ .

Extension to higher order accuracy

Again, we may combine the central differencing approximation of the viscosity
term and the WENO-LLF scheme described in the earlier section for numerical
computation. This is needed for future generalization to more complex equations
or to system of equations because upwinding is no longer easy.

2.3.1 Test on the model equation: $u_{t}+uu_{x}+au|u_{x}|=0$

We first test our numerical scheme for the case $a=0.1$ which cannot be handled by
the Lax-Friedrichs scheme (7). Figure 5shows that the “overturning” is prevented
in contrast to the result shown in figure 3.

189



Figure $5\ovalbox{\tt\small REJECT}$ Numerical solution to the Riemann problem for equation (4) with $\mathrm{q}_{L}$
$\ovalbox{\tt\small REJECT}$

1.0, $u_{H}\ovalbox{\tt\small REJECT}$ 0.0, a $\ovalbox{\tt\small REJECT}$ 0.1, and M $\ovalbox{\tt\small REJECT}$ 0.2. We plotted the zero level set at time
t $\ovalbox{\tt\small REJECT}$ Q,Q.5, and 1.0.

2.3.2 Tests on conservation laws

As we have mentioned earlier, equation (3) with $a=0$ is equivalent to Burgers’
equation in non-conservative form. Here we go one step further to demonstrate
numerically that our regularization is equivalent to the entropy condition for con-
servation laws equations.

We consider the conservation laws

$u_{t}+f(u)_{x}=0$ (10)

with $f’\geq 0$ and its corresponding linear level set equation

$\phi_{t}+f’(y)\phi_{x}=0$ . (11)

The numerical results shown in the following examples are obtained by plotting
the zero contour of the numerical solution $\phi$ to the regularized equation:

$\phi_{t}+f’(y)\phi_{x}=M|\nabla\phi|\frac{\partial}{\partial y}(\frac{\phi_{y}}{|\phi_{y}|})$ . (12)

Burgers’ Equatlon

With $f(u)=u^{2}/2$ , we have the inviscid Burgers equation in non-conservative
form. We consider the Riemann problem $u(x)=u_{L}$ for $x<0.5$ and $u(x)=u_{R}$

for $x\geq 0.5$ . See figure 6.
We first test the case in which $u_{L}=1.0$ and $u_{R}=0.0$ . The result shown in

figure 6verifies the Rankine-Hugoniot shock speed: $s=[f]/[u]=0.5$ . Figure 7
shows asimilar computation with two different values of the diffusion coefficient$\mathrm{s}$
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Figure $6\ovalbox{\tt\small REJECT}$ Numerical solution (WEN05-LLF) to the Riemann problem of Burgers’
Equation with $\mathrm{u}_{L}\ovalbox{\tt\small REJECT}$ 1.0, $\mathrm{u}_{11^{\ovalbox{\tt\small REJECT}}}\ovalbox{\tt\small REJECT}$ 0.0, and M $\ovalbox{\tt\small REJECT}$ 0.2. We plotted the zero level set at
time t $\ovalbox{\tt\small REJECT}$ 0,0.5 and 1.0.5 $\mathrm{j}$

($M=0.04$ and $M=1.\mathrm{O}$). We can see that overturning will develop if $M$ is
not large enough, and if it is sufficiently large, this coefficient does not affect the
shock speed as predicted in [9]. We also compute the approximation obtained with
no diffusion term (i.e. $M=0$) and plot it (green curve) against the one obtained
from $M=0.2$ (blue curve), and show that the “equal-area” entropy condition is
satisfied by the latter (blue curve). See figure 8.

Finally, we compute the solution to Burgers’ equation starting with asine
curve. Figure 9shows the resulting well-known $N$-wave. Our diffusion term suc-
cessfully keeps the vertical part in the middle from overturning.

Buckley-Leverett Equation

Finally, we test our numerical method for equation (12) to substantiate our assertion
that the singular diffusion term minimally concavities the flux function $f$ over the
jump interval. We solve the Riemann problem of equation (10) with

$f(u)= \frac{u^{2}}{u^{2}+a(1-u)^{2}}$ , $a>0$ , $u\in[0,1]$ .

and $u_{L}=1.0$ , $u_{R}=0.0$ .
The upper boundary of the convex hull of $\mathrm{s}\mathrm{g}(f)$ consists of astraight line seg-

ment $L$ from $(0, 0)$ to $(u^{*}, f(u^{*}))$ followed by $(u, f(u))$ for $u\in[u^{*}, 1]$ , where
$L$ is atangent line of $f(u)$ . See figure l.The slope of $L$ is also the correct shock
speed for the Riemann problem. With $a=0.5$ , asimple calculation shows that
$u^{*}=1/\sqrt{3}=$

. 0.57735.
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Figure $7\ovalbox{\tt\small REJECT}$ Numerical solution to the Riemann problem of Burgers’ Equation with
$u_{1}$

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ 1.0, $\mathrm{u}\mathrm{p}_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT} 0.0$ . We plotted the zero level sets at time t $\ovalbox{\tt\small REJECT}$ 0 and 0.5 obtained
from M $\ovalbox{\tt\small REJECT}$ 0.04 and 1.0.

Figure 8: Numerical solution to the Riemann problem of Burgers’ Equation with
$u_{L}=1.0$ , $u_{R}=0.0$ . We plotted the zero level sets at time $t=0$ and 0.5 obtained
from $M=0.2$ and 0.0.
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Figure $9\ovalbox{\tt\small REJECT}$ Numerical solution (WENO5-LLF) to the Burgers Equation with sine
wave as initial data. We plotted the zero level set at time t $\ovalbox{\tt\small REJECT}$ 0 and 0.5.

Figure 10 shows the expected rarefaction from $u_{L}$ to $u^{*}$ and ashock between
$u^{*}$ and $u_{R}$ . Figure 11 shows an overlap of the solutions obtained with and without
regularization. One can observe that the“equal-area” entropy condition is satisfied.

The Vanishing Viscosity Approach

Consider the Lax-Friedrichs type scheme of the following form:

$u_{i}^{n+1}=u_{i}^{n}-\Delta tH(x_{i}, u_{i}^{n}, D_{x}^{0}u_{i}^{n})+c\Delta_{x}^{+}\Delta_{x}^{-}u_{i}^{n}/2$, (13)

where $\Delta_{x}^{\pm}u_{i}^{n}$ denotes the undivided $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}/\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}$ difference of $u_{i}^{n}$ and $0\leq$

$c\leq 1$ . With suitable CFL condition, the scheme is monotone and seems to yield
convergent approximations for the equations with $H_{u}\geq 0$ .

However, this scheme is not suitable for the HJ equations whose solutions de-
velop shocks. Figure 12 shows the numerical approximations using (13) with dif-
ferent values of $c$ and fairly small grid size. The left most curve is the initial data.
The remaining curves from left to right are obtained using $c=0.1,0.99$ , and 0.9
respectively. One can see that the numerical solutions converge to different func-
tions.

We maintain that our level set approach is no less efficient since we can do the
computation locally around the zero level curve [23]. Also, the level set approach
is more “natural” since it is apart of the theoretical notions of solutions to the HJ
equations that we are concerned with
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Figure 10: Numerical solution to the Riemann problem of the Buckley-Leverett
Equation with $\mathrm{u}_{1}\ovalbox{\tt\small REJECT}|$ 1.0, $u_{H}\ovalbox{\tt\small REJECT}|$ Q.Q and a $\ovalbox{\tt\small REJECT}$ 0.5. We plotted the zero level set at
time t $\ovalbox{\tt\small REJECT}$ Q, Q.25, and 0.5.

Figure 11: Numerical solution to the Riemann problem of the Buckley-Leverett
Equation with $u_{L}=1.0$ , $u_{R}=0.0$ and $a=0.5$ . We plotted the zero level sets at
time $t$ $=0$ and 0.3 obtained from $M=0.2$ and 0.0. The little fragment of contour
at the lower part of the jump is due to the contour plotter.
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Figure 12: The numerical solutions of the Buckley-Leverett equation in non-
conservative form obtained from the monotone Lax-Friedrichs scheme (13). The
approximations are computed to t $\ovalbox{\tt\small REJECT}$ Q.) on [0, 1] with 2, 500 grid points.

3Summary

In this paper, we provided two classes of finite difference methods for the compu-
tation of the semi-continuous $\mathrm{L}$-solution of aclass of HJ equations. By studying
the level set equation derived from the HJ equations, we pointed out the necessary
condition for the validity of the solution defined as the zero contour line of the level
set function. We have also discussed the geometrical interpretation of the motion
of the solution embedded in the level set function. The remarks provide hints as
how to regularize the zero level curve motion so that it can be interpreted as the
graph of afunction.

For the class of HJ equations with $H_{y}\geq 0$ , we applied astraightforward Lax-
Friedtichs type scheme with possibility of extension to higher order accuracy. We
showed numerically that the singular diffusion term $|\nabla\phi|\partial(\phi_{y}/|\phi_{y}|)/\partial y$ can be
applied to compute the shock solution for amore general class of HJ equations.
In particular, we numerically verified that our numerical schemes yield approxi-
mations compatible with the entropy solution of aconservation laws equation with
non-convex flux. Of course, we have also shown the extension of our numerical
schemes to higher order WENO-local Lax-Friedrichs schemes.

Lastly, we remark here that our numerical schemes for the derived level set
equations can be computed locally around the zero level curve using the technique
described in [23] for efficiency
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4Systems of Conservation Laws

We are generalizing the result of our singular viscosity to study the solution of
conservation laws system and the link to Riemann invariants. Here we briefly
describe how we are approaching this problem.

Let $\tilde{u}=(u, v)\in \mathbb{R}^{2}$ , $\phi(t, x, y)$ : $\mathbb{R}^{+}\cross \mathbb{R}\cross \mathbb{R}^{2}\mapsto$} $\mathbb{R}^{2}$ be the vector values
level set function such that $\phi(t, x,\vec{u}(t, x))=0$ . The system

$\tilde{u}_{t}+A(\tilde{u})\tilde{u}_{x}=0$

can be formally translated to

$\phi_{t}+\phi_{y}A(y)\phi_{y}^{-1}\phi_{x}=0$ .
We shall use the Riemann invariants for the $2\cross 2$ system to diagonalize $A(y)$ and
desingularize the term $\phi_{y}^{-1}$ .

We propose asingular diffusion term similar to the scalar one we used. With
an abuse of notation, this term can be written as

$|\nabla_{x,y}\phi|\nabla_{y}\cdot(|\nabla_{y}\phi|^{-1}\nabla_{y}\phi)$ ,

where $\nabla_{x,y}\phi$ is the Jacobian matrix of $\phi$ with respect to $x$ and $y$ , $\nabla_{y}\phi=\phi_{y}$ is the
Jacobian matrix of $\phi$ , and $|A|$ $:=\sqrt{AA^{*}}\mathrm{i}\mathrm{s}$ the Euclidean norm of the matrix $A$ .
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