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1Introduction to the Mathematical Problem
In this paper we treat the following free boundary problem for hyperbolic equation nu-

merically. Let $\Omega\subset \mathrm{R}^{n}$ , $T>0$ and put $\Omega_{T}=\Omega \mathrm{x}$ $(0,T)$ , find anon-negative solution to the
following equalitiae:

(P) $\{$

$u_{tt}-\Delta u=0$ in $\Omega\tau\cap\{u>0\}$

$|\nabla u|^{2}-u_{t}^{2}=Q^{2}$ on $\Omega_{T}\cap\partial\{u>0\}$ ,

under the suitable initial and boundary condition. Here $Q$ is agiven positive constant. This
problem was firstly introduced by K.Kikuchi and S.Omata (see [2]). In the case of $\Omega\subset \mathrm{R}^{2}$ ,
physical image of this problem is to investigate the movement of soapy film which goes into
soap water or of the membrane whose part adhered to the plane. It could be described by a
stationary point of the action functional below:

$J(u)= \int_{\Omega_{T}}(|\nabla u|^{2}-(u_{t})^{2}\chi\{u>0\}+Q^{2}\chi\{u>0\})dz$ , (1.1)

where $\chi\{u>0\rangle$ is the characteristic function of the set $\{(x,t)\in\Omega\tau;\mathrm{u}(\mathrm{x}, >0\}$ and $z=(x, t)$ .
Equations are derived as Euler-Lagrange equations of $J$ . However the functional $J$ is not
G\^ateaux differentiate in general. We derive the equations in (P) just as anecessary condition
for asmooth function $u$ to be astationary point of $J$ . The first equation of (P) is derived
from $\pi^{J(u}d+\epsilon\zeta$ ) $|_{e=0}=0(\zeta\in C_{0}^{\infty}(\Omega_{T}\cap\{u>0\}))$ . On the other hand, the second
one is from $\frac{d}{de}J(u(\tau_{e}^{-1}(z)))|_{e=0}=0$ (inner variation) where $\tau_{\epsilon}(z)$ is diffeomorphism and in
$C_{\mathrm{O}}^{\infty}(\Omega\tau;\Omega_{T})$ . We got the unique local existence of the solution (P) on some one dimensional
cases. (See [2]).

2Smoothing of Equations
In [1], we adopted the fixed domain method for numerical analysis to the one dimensional

problem. It seems to keep good accuracy, but unfortunately it could not treat the case when
the free boundary changes its topology. For this, we introduce asmoothing method for (P).
Unfortunately we did not get any proof which guarantees the convergence to the original
problem (P) from “smoothing” solution.

We consider the following equation:

$\Delta u-u_{tt}=\mathrm{J}(\mathrm{u})$ in $\Omega_{T}$ (1.1)
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with some initial and boundary conditions. Here $u^{\epsilon}$ is aclassical solution of (2.1) and Oe(f)
defined in the following way:

$B_{e}(f):= \int_{0}^{f}\beta_{\epsilon}(f)4\mathrm{f}$ ,

where

$B_{\epsilon}(f)arrow\{$

$Q^{2}$ (given constant) in $\{f>0\}$

0in $\Omega\cross(0,T)\backslash \{f>0\}$ .

This means that $B_{\epsilon}(f)$ is asmoothing of the characteristic function $Q^{2}\chi_{\{f>0\}}(x)$ .
If we assume $u^{\epsilon}arrow\exists v$ in some suitable sense and that such $v$ satisfies $\Delta v-v_{tt}=0$ in

$\Omega\cross(0, T)\cap\{v>0\}$ , then we can say that $v$ must satisfy the free boundary condition
$|\nabla v|^{2}-(v_{t})^{2}=Q^{2}$ on $\partial\{v>0\}$ automatically.

We will show this. Multiply $\zeta u_{k}(\equiv\zeta\frac{\theta u}{\theta x_{k}})$ to both side of (2.1) and integrate on $\Omega_{T}$ ,
$(\zeta\in C_{0}^{\infty}(\Omega_{T}))$ , we got the following equality:

$\int_{\Omega_{T}}\zeta u_{k}(\Delta u-u_{tt})dz=\int_{\Omega_{T}}\zeta u_{k}\beta_{\epsilon}(u)dz$ . (2.3)

Noting that $[B_{\epsilon}(u)]_{oe_{k}}=\beta_{\epsilon}(u)u_{k}$ and the integration by parts, the right hand side of
(2.3) can be calculated the following

$=- \int_{arrow-}\Omega_{T}\zeta_{k}B_{\epsilon}(u)dz\int_{\Omega_{T}\cap\{v>0\}}\zeta_{k}Q^{2}dz$

$(\epsilonarrow 0)$

$=- \int_{\Omega_{T}\cap\theta\{v>0\}}\zeta Q^{2}\nu_{k}dS$

where $\nu_{k}$ is a $k$-th element of outer normal $\nu=(\nu_{1}\cdots\nu_{n+1})$ to the set $\{v>0\}$ .
On the other hand, left hand side of (2.3),

$=- \int_{\Omega_{T}}(\nabla(\zeta u_{k})\nabla u-(\zeta u_{k})_{t}u_{t})dzarrow-\int_{\Omega_{T}}(\nabla(\zeta v_{k})\nabla v-(\zeta v_{k})_{t}v_{t})dz$ $(\epsilonarrow 0)$

$=- \int_{\Omega_{T}\cap\theta\{v>0\}}\zeta v_{k}(\nabla v, -v_{t})\cdot\nu dS+\int_{\Omega_{T}\cap\{v>0\}}\zeta v_{k}(\Delta v-v_{tt})dz$

$=- \int_{\Omega_{T}\cap\theta\{v>0\}}\zeta v_{k}(\nabla v, -v_{t})\cdot\nu dS+0$.

Note that outer normal to $\{v>0\}$ become

$\nu=\frac{-Dv}{|Dv|}=\frac{-(v_{x_{1}},\cdots,v_{x_{n}},v_{t})}{\sqrt{\sum(v_{k})^{2}+(u_{t})^{2}}}$

then $v_{k}=-\nu_{k}|Dv|$ . Then the left hand side of (2.3) become

$=- \int_{\Omega_{T}\cap\theta\{v>0\}}\zeta|Du|\cdot\nu_{k}[|\nabla v|^{2}-(v_{t})^{2}]=-\int_{\Omega_{T}\cap\theta\{v>0\}}\zeta v_{k}(\nabla v,-v_{t})\cdot\nu dS$

. $\frac{1}{|Du|}dS$

$=- \int_{\Omega_{T}\cap\theta\{v>0\}}\zeta[|\nabla v|^{2}-(v_{t})^{2}]\nu_{k}dS$ .
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Thus from (2.3), we got the equation

$\int_{\Omega_{T}\cap\theta\{v>0\}}\zeta Q^{2}\nu_{k}dS=\int_{\Omega_{T}\cap\theta\{v>0\}}\zeta[|\nabla v|^{2}-(v_{t})^{2}]\nu_{k}dS$

then

$|\nabla v|^{2}-(v_{t})^{2}=Q^{2}$ on $\partial\{v>0\}$ .
Thus we got afree boundary condition in (P).

3Numerical Examples
Here we consider an one dimensional problem. Let $t$ be apositive constant and let us set

$\Omega$ $=(0,1)$ and $0<l_{1}<l_{2}<1$ . Here for comparison, we mention atrivial linear solution.

Linear Solution Let $a$ be a given positive constant and put $l= \frac{a}{\sqrt{Q^{2}+a^{2}}}$ . Consider

Problem (P) for initial and boundary conditions

$u(x,0)$ $=-\sqrt{Q^{2}+a^{2}}(x-l_{1})$ $x\in[0,l_{1}]$ , $=0$ $x\in(l_{1},1]$ ,
$\mathrm{u}(\mathrm{x},\mathrm{t})$ $=a$ $x\in(0,1)$ , $=0$ $x\in[l_{1},1]$ .
$u(0,t)$ $=a(t+1)$
$u(1,t)$ $\equiv 0$

The function $u(x,t)= \max(-\sqrt{Q^{2}+a^{2}}(x-l_{1})+at,0)$ satisfies (P) and then it is the unique
solution.

We investigate the following numerical calculations

Case 1 $(\epsilon=0.02)$

$u(0, t)$ $=t+0.4$
$u(x, 0)$ $=-\sqrt{2}x+0.4$

$x\in 10,\dot{\gamma}^{4}x\in[0,0_{2}.]\tau_{2}^{4}]’$

,
$=0=0$ $x\in(_{\dot{T}^{4}’}.1]x\in(^{0_{2}}\tau_{2}^{4},1],$.$u_{t}(x,0)$ $=1$

Unfortunately, the accuracy is not so good
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Case 2 $(\epsilon=0.02)$

$u(0, t)$ $=$ $u(1,t)$ $=t+0.4$
$u(x, 0)$ $= \max(-\sqrt{2}x+0.4,0, \sqrt{2}x+0.4-\sqrt{2})$

$u_{t}(x, 0)$ $=1$ if $u(x, 0)>0$ , $=0$ otherwise

For comparison, we consider the following initial and boundary problem;

$\{$

$u_{tt}$ $=\Delta u$ in $( \frac{1}{2},1)\mathrm{x}(0,t_{0})$

$u(x, 0)$ $= \frac{0.839}{0.5}(x-0.5)$ at $( \frac{1}{2},1)\mathrm{x}\{0\}$

$u_{t}(x,0)$ $=1$ at $( \frac{1}{2},1)\cross\{0\}$

$u(1, t)$ $=t+0.839$
$u_{x}( \frac{1}{2}, t)$ $=0$

(4.1)

After peeling off, we can compare the case 2and solution of (4.1). The results are the
following:

Case 3 $(\epsilon=0.02)$

There is a“threshold” for the boundary condition. In this case, initial data are “V”-
shaped function without initial velocity.
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Case 4 (’ $\ovalbox{\tt\small REJECT} B_{\ovalbox{\tt\small REJECT}}(0)\mathrm{C}\mathrm{R}^{2}{}_{\mathrm{t}}C\ovalbox{\tt\small REJECT}$0.05)
In a2-dimensional case, we can see peeling off phenomena and vibration.
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