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1Introduction

We study three phase boundary motion by surface diffusion in $\Omega\subset R^{2}$ , where $\Omega$ is a
bounded domain which will be specified below when the global-in-time motions are to
be investigated. The purpose of this note is to exhibit our previous results in $[4, 5]$ and
is also to announce our recent results in $[6, 7]$ concerning the topics on global existence
results and self-intersection.

Let $\Omega$ be abounded domain in $R^{2}$ which has a(possibly piecewise) smooth boundary
an. We consider the situation that abinary or aternary nonequilibrium alloy system
is contained in $\Omega$ and three different phases of the alloy system are separated by three
evolving phase boundaries $\Gamma^{:}(t)$ , $i=1,2,3$, depending on time $t\geq 0$ . Moreover one end
points of $\Gamma^{i}(t)$ are connected at atriple junction $m(t)$ with aprescribed angle condition
and other end points $b^{:}(t)$ are on an where $\Gamma^{:}(t)$ and $\partial\Omega$ intersect perpendicularly, see
Figure 1.

Flgure 1
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In this note we consider two types of mathematical models describing evolutions of three
phase boundaries.

The first model to be considered is of the form for $i=1,2,3$:

along $\Gamma^{\dot{1}}(t)$ : $V^{\dot{1}}$ $=-l^{:}\sigma^{:}\kappa_{ss}^{\dot{1}}$ (surface diffusion flow equations),
at $b^{:}(t):\Gamma^{:}(t)1\partial\Omega$ ,

$\kappa i$ $=0$ (no flux condition),

for $t>0$ ,

$\sigma^{1}\kappa^{1}+\sigma^{2}\kappa^{2}+\sigma^{3}\kappa^{3}=0$ (continuity of the chemical potential),

(1)
at $m(t)$ : $\angle(\Gamma^{:}(t), \Gamma^{j}(t))=\theta^{k}$ for $i,j$, $k$ $\in\{1,2,3\}$ different mutually,

$l^{1}\sigma^{1}\kappa_{f}^{1}=l^{2}\sigma^{2}\kappa^{2},$ $=l^{3}\sigma^{3}\kappa_{s}^{3}$ (balance of fluxes),
at $t=0:\Gamma^{:}(0)=\Gamma_{0}^{\dot{1}}$ .

Here $V^{:}$ , $\kappa^{:}$ , and $s$ are the normal velocity, the curvature, and the arclength parameter of
$\Gamma^{:}(t)$ , respectively. The convention with respect to the direction used here is as follows:
$s$ runs from $m(t)$ to $b^{:}(t)$ along $\Gamma^{\dot{1}}(t);V^{:}$ and $\kappa^{:}$ are computed in the direction of the unit
normal vector $N^{:}$ of $\dot{\mathrm{P}}(t)$ , where $N^{:}$ is obtained by rotating the unit tangent vector $T^{\iota}$

of $\Gamma^{:}(t)\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}+\pi/2$ . Moreover, $l^{:}$ , $\sigma^{:}$ , and $ff\dot{l}(i=1,2,3)$ are positive constants with the
constraints $0<ff\dot{l}<\pi$ , $\theta^{1}+\theta^{2}+\theta^{3}=2\pi$ and

$\frac{\sigma^{1}}{\sin\theta^{1}}=\frac{\sigma^{2}}{\sin\theta^{2}}=\frac{\sigma^{3}}{\sin\theta^{3}}$ : Young’s law. (2)

The model (1) was derived by H. Garcke and A. Novick-Cohen [2] to describe evolutions
of three interphase boundaries in aternary alloy system.

The second model we are going to study is the following:

for $t>0$ ,
along $\Gamma^{1}(t)$ : $V^{1}=l^{1}\sigma^{1}\kappa^{1}$ (curvature flow equation),
along $\Gamma^{:}(t)$ : $V^{j}=-l^{:}\sigma^{:}\kappa^{:}$

at $b^{\dot{1}}(t):\Gamma^{:}(t)1\partial\Omega$ , $i=1,2,3$,
$\kappa:=0$ , $i=2,3$, (no flux condition),

at $m(t)$ :

$\angle(\Gamma^{:}(t), \Gamma^{j}(t))’=\theta^{k}\mathrm{f}\mathrm{o}\mathrm{r}i,j,k\in\{1,2,3\}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\epsilon\epsilon i=2,3,(\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}),$

,
(3)

$\sigma^{2}\kappa^{2}+\sigma^{3}\kappa^{3}=0$ (continuity of the chemical potential),
$l^{2}\sigma^{2}\kappa_{t}^{2}=l^{3}\sigma^{3}\kappa_{f}^{3}$ (balance of fluxes),

at $t=0:\Gamma^{:}(0)=\Gamma_{0}^{1}$ , $i=1,2,3$ ,

As in (1), $l^{:}$ , $\sigma^{:}$ and $ff\dot{l}(i=1,2,3)$ are positive constants with $0<\theta^{:}<\pi$ , $\theta^{1}+\theta^{2}+\theta^{3}=2\pi$

and in the constraint (2). This model was derived by A. Novick-Cohen [10] to describe
evolutions of one antiphase boundary and two interphase boundaries in abinary alloy
system.

Now we set $\Gamma(t)=\bigcup_{\dot{|}=1}^{3}\Gamma^{:}(t)$ and $\Gamma_{0}=\bigcup_{\dot{|}=1}^{3}\Gamma_{0}^{\dot{1}}$ . Then the problem for (1) $((3))$ is stated
as follows: given initial data $\Gamma_{0}$ , find an unknown evolving phase boundary $\{\Gamma(t)\}_{t\geq 0}$ that
solves (1) $((3))$ .
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Our purpose here is to study two kinds of topics for (1) and (3): (A) aglobal-in-time

solvability, and (B) self-intersection in ashort time. As is expected, the configuration

of the solution of (1) $((3))$ as $tarrow\infty$ may strongly depend on the configuration of $\partial\Omega$ .

We study (A) when $\Omega$ is arectangular domain or atriangular domain; both cases will

be studied for (1), and the only former case will be studied for (3). We investigate (A)

for aclass of initial data which are close to an equilibrium state. On the other hand,

for (B) we consider aclass of initial data which are far from an equilibrium state. Here

we say that $\Gamma_{e}:=\bigcup_{i=1}^{3}\Gamma_{e}^{i}$ is equilibrium (or stationary) for (1) $((3))$ if $\Gamma_{e}$ solves (1) $((3))$

without initial condition and satisfies that $V^{:}\equiv 0$ on $\Gamma_{e}^{\dot{l}}$ for $t\geq 0$ and $i=1,2,3$. It is

easy to see that the equilibrium solution $\Gamma_{e}$ for (1) consists of line segments or circular
arcs, or mixture of them, and the equilibrium solution $\Gamma_{e}=\bigcup_{i=1}^{3}\Gamma_{e}\dot{.}$ for (3) is of the form
$\Gamma_{e}^{1}=\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}$ segment and $\Gamma_{e}^{\dot{1}}$

$=\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}$ segment or circular arc $(i=2,3)$ . We check this fact for

(1) (the check for (3) can be done in asimilar way). We denote by $\kappa_{e}\dot{.}$ the curvature of
$\Gamma_{e}^{i}$ . From the definition of equilibrium it follows that $\kappa_{e,ss}^{i}=0$ on $\Gamma_{e}^{i}$ , which implies that
$\kappa_{e}^{i}=a^{i}s+b^{i}$ with some constants $a^{i}$ and $b^{i}$ . Then, due to no flux condition at an in (1),
$a^{i}$ , $i=1,2,3$ , must vanish. Thus we have $\kappa_{e}^{i}=b^{i}$ , as desired.

When $\Omega$ is rectangular or triangular, we shall show that if initial data $\Gamma_{0}$ is close to

an equilibrium state in some sense, then (1) $((3))$ admits aunique global solution that

converges to the equilibrium state as $tarrow\infty$ . We shall also show that if $\Gamma_{0}$ is far from

equilibrium, then the solution of (1) $((3))$ develops aself-intersection in finite time. The

main difficulty in the proof of the global existence result for (1) in triangular $\Omega$ lies in

the establishment of apriori estimates for both the $C^{2+\alpha}$-norm of the solution with some
$\alpha\in(0,1)$ and the distance between the triple junction and an. This can be overcome by

finding a“vanishing property” for both curvatures and normal velocities, which strongly

reflects both the peculiarity of the motion by (1) and the configuration of an.
In the remainder of this note we proceed as follows. In Section 2we state our results on
global existence and self-intersection in aprecise manner. In Section 3we then explain

known results and fundamental properties for (1) and (3) which play an important role

throughout the proof of our results. Finally, in Section 4we present abrief outline of the

proof only for our global existence results for (1) when $\Omega$ is triangular.

2Main results

We first state our results when $\Gamma_{0}$ is close to an equilibrium state. For this purpose we

pay our special attention to two types of domains $\Omega_{\star}$ and $\Omega_{*};$ here $\Omega_{\star}$ is the rectangular

domain defined by
$\Omega_{\star}:=\{(x, y);-a<x<0, -b<y<b\}$

45



with positive constants $a$ and $b;\Omega_{*}$ is the triangular domain with three vertices $p^{i}(i=$

$1,2,3)$ being located counterclockwise whose interior angles are $\pi-\theta^{:}(i=1,2,3)$ . We
then consider two special equilibrium states. The first one is $\Gamma_{\star}$ which is contained in
rectangular $\Omega_{\star}$ , where $\Gamma_{\star}=\bigcup_{\dot{l}=1}^{3}\Gamma_{\star}^{i}$ is the union of one line segment $\Gamma_{\star}^{1}$ and two circular
arcs $\Gamma_{\star}^{\dot{l}}(i=2,3)$ in rectangular $\Omega_{\star}$ . Moreover, $\Gamma_{\star}$ is assumed to be mirror symmetric,
which means that $\Gamma_{\star}^{2}$ and $\Gamma_{\star}^{3}$ are symmetric with respect to the $x$-axis and $\Gamma_{\star}^{1}$ is aline
segment on the $x$-axis, and $\Gamma_{\star}$ is also assumed to have the area enclosed by the $x$ , y-axes
and $\Gamma_{\star}^{3}$ which is the same as the one enclosed by the $x$ , $y$-axes and $\Gamma_{0}^{3}$ , see Figure 2. The
second equilibrium state is $\Gamma_{*}$ which is contained in triangular $\Omega_{*}$ , where $\Gamma_{*}=\bigcup_{i=1}^{3}\Gamma_{*}.\cdot$ is
the union of three line segments $\Gamma_{l}^{\dot{1}}$ $(i=1,2,3)$ in triangular $\Omega_{*}$ , see Figure 3.

$\mathrm{P}^{\mathit{1}}$

$\mathrm{P}^{\mathfrak{l}}$

$=_{\mathfrak{l}}\cup’|\dot{\Gamma}_{l}$

$\underline{\Gamma^{1}}$

$\mathrm{F}\downarrow\cdot 3^{are}2$

Then our global existence and stability results are stated as follows.

Theorem 2.1 (Global existence and stability results (i) (Rectangular $\Omega[\mathit{5}J$). Let $\Omega=$

$\Omega_{\star}$ and let $l^{2}=l^{3}$ , $\sigma^{2}=\sigma^{3}=:\sigma$ and $\theta^{2}=\theta^{3}$ (in this case, $\sigma^{1}=2\sigma\cos(\theta^{1}/2)$ due to
Young’s law (2)$)$ . Assume that $\Gamma_{0}$ belongs to $C^{3}$ with compatibility conditions for (1)
$((\mathit{3}))$ and have a mimr symmetry in the sense that $\Gamma_{0}^{2}$ and $\Gamma_{0}^{3}$ are symmetric with respect
to the $x$ -axis and $\Gamma_{0}^{1}$ is a line segment on the $x$ -axis. Assume also that $\Gamma_{0}$ is close to $a$

stationary $sol$ ution $\Gamma_{\star}$ in the sense that

$\rho_{0}^{2}:=||\kappa_{0,s}^{3}||_{L^{2}(\Gamma_{0}^{\theta})}^{2}+C_{0}(E[\Gamma_{0}]-E[\Gamma_{\star}])$

is sufficiently small. Here $C_{0}$ is a constant depending on the area enclosed by the $x$ , y-axes
and $\Gamma_{0}^{3}$ , and

$E[\Gamma_{0}]:=2${ (a $-\xi_{0})\sigma\cos(\theta^{1}/2)+(the$ length of $\Gamma_{0}^{3})$ },
$E[\Gamma_{\star}]:=2$ { (a $-\xi_{\star})\sigma\cos(\theta^{1}/2)+(the$ length of $\Gamma_{\star}^{3})$ },
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$where-\xi_{0}and-\xi_{\star}$ are the $x$ -coordinates of the triple junctions of $\Gamma_{0}$ and $\Gamma_{\star}$ , respectively.
Then the model (1) $((\mathit{3}))$ admits a unique smooth global-in-time solution $\{\Gamma(t)\}_{t\geq 0}$ which
always stays mimr symmetric as in $\Gamma_{0}$ . Moreover the solution $\{\Gamma(t)\}_{t\geq 0}$ converges to $\Gamma_{\star}$

uniformly as $tarrow\infty$ .
(ii) (Triangular $\Omega[\mathit{6}J$). Let $\Omega=\Omega_{*}$ and let $l^{1}\sigma^{1}=l^{2}\sigma^{2}=l^{3}\sigma^{3}$ . Assume that $\Gamma_{0}$

belongs to $C^{3}$ with compatibility conditions for (1) and fulfillS the area condition:

$\mu(D^{i}[\Gamma_{0}, \partial\Omega])=\mu(D^{:}[\Gamma_{*}, \partial\Omega])$, $i=1,2,3$,

where $D^{i}[\Gamma_{0}, \partial\Omega]$ denotes the domain enclosed by $\Gamma_{0}^{j}$ , $\Gamma_{0}^{k}$ , and $\partial\Omega$ without containing $\Gamma_{0}^{\dot{1}}$

($i$ , $j$ , $k$ :different mutually) and $\mu(D)$ denotes the area of domain D. Assume also that
$\Gamma_{0}$ is close to a stationar$ry$ solution $\Gamma_{*}$ in the sense that

$K_{0}^{2}:= \sum_{i=1}^{3}(\sigma^{i}||\kappa_{0}^{i}||_{L^{2}(\Gamma_{\dot{\dot{\mathrm{O}}}})}^{2}+l^{:}(\sigma^{i})^{2}||\kappa_{0,s}^{\dot{l}}||_{L^{2}(\Gamma_{\dot{\mathrm{O}}})}^{2}.)$

is sufficiently small Then the model (1) admits a unique smooth global-in-time solution
$\{\Gamma(t)\}_{t\geq 0}$ . Moreover the solution $\{\Gamma(t)\}_{t\geq 0}$ converges to $\Gamma_{*}$ uniformly as $tarrow\infty$ .

Remark 2.2 In Theorem 2.1 (i), due to the symmetry to be required, we should seek
the solution satisfying that for $t\geq 0$ , $m(t)$ always stays on the $x$-axis, $\kappa^{1}\equiv 0$ on $\Gamma^{1}(t)$ ,
and $\kappa^{2}(t, s)=-\kappa^{3}(t, s)$ for the common arclength parameter $s$ of $\Gamma^{2}(t)$ and $\Gamma^{3}(t)$ . In this
case both (1) and (3) are reduced to the common problem only for $\Gamma^{3}(t)$ :

for $t>0$ ,

at $b^{3}(t)$ : $\Gamma^{3}(t)[perp]\partial\Omega$,
$\kappa_{s}^{3}=0$ (no flux condition),

along $\Gamma^{3}(t)$ : $V^{3}=-l^{3}\sigma^{3}\kappa_{ss}^{3}$ (surface diffusion flow equation),

$\}$ (4)
at $m(t)$ : $\angle$ ( $\Gamma^{3}(t)$ , the $\mathrm{x}$-axis) $=\theta^{1}/2$ ,

$\kappa_{s}^{3}=0$ (balance of flux),
at $t=0$: $\Gamma^{3}(0)=\Gamma_{0}^{3}$ .

Hence (1) and (3) become the common problem (4) to find asingle evolving curve $\Gamma^{3}(t)$

with two free end points.

We will show abrief outline of the proof of Theorem 2.1 (ii) in Section 4; for its details,
see [6]. For the proof for the remaining part of Theorem 2.1, see [5].

Let us next state our result for the case that the initial data $\Gamma_{0}$ are far from equilibrium
state. For this purpose we only treat the case $\Omega=\Omega_{\star}$ and we consider initial data $\Gamma_{0}$

contained in $\Omega_{\star}$ with the configuration as in Figure 4.
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$\Omega_{*}$

$\mathrm{r}\grave{\downarrow}3^{\mathfrak{U}\mathrm{r}e}4$

Then we have the following interesting motion of the solution of (1) $((3))$ .

Theorem 2.3 (Self-intersection $[7J$). There is an initial data $\Gamma_{0}\in C^{2+\alpha}(\alpha\in(0,1))$ with
the compatibility conditions for (1) as in Figure 4such that the solution $\{\Gamma(t)\}_{t\in[0,T]}$ with
a $T>0$ of (1) $((\mathit{3}))$ starting $hm$ $\Gamma_{0}$ develops a self-intersection in finite time smaller
than $T$, although it stays smooth.

Theorem 2.3 shows that the motions by (1) and (3) do not preserve the order of the
interfaces in general. This strongly contrasts with the motion by curvature (see [11,
Lemma 3] as acorresponding situation). The formation of self-intersections in two phase
case is already known (see [3, 9])

As is pointed out in Remark 2.2, our task in the proof of Theorem 2.3 is reduced to
investigate only the motion of $\Gamma^{3}(t)$ by assuming the mirror symmetry of the motion of
$\Gamma(t)$ with respect to the $x$-axis. Then the main part of the proof is devoted to show
that for acurve $\Gamma_{0}^{3}$ in $\Omega_{*}$ away from the $x$-axis except one end point $m_{0}$ , the solution
$\{\Gamma^{3}(t)\}_{t\epsilon[0,T]}$ starting from $\Gamma_{0}^{3}$ intersects the $x$-axis at apoint on the $x$-axis between $m(t_{1})$

and the origin $(0, 0)$ in afinite time $t_{1}\in(0,T]$ . The precise description of its proof will
appear in [7].

Remark 2.4 We here make asimple observation concerning the motions by (1) and (3)

around the triple junction $m(t)$ . For this purpose, we first note that Young’s law (2) is
equivalent to the condition

$\sum_{\dot{|}=1}^{3}\sigma^{:}N^{:}=0$ at $m(t)$ , (5)
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where $N^{\ovalbox{\tt\small REJECT}}$ are the unit normal vectors of $\mathrm{I}^{\ovalbox{\tt\small REJECT}}(t)$ at $\mathrm{r}\mathrm{n}(\#)$ for i $\ovalbox{\tt\small REJECT}$ 1,2,3.

In fact, we observe the equalities due to the angle condition at $m(t$ in (1) $((3))\ovalbox{\tt\small REJECT}$

$( \sum_{\dot{|}=1}^{3}\sigma^{:}N^{:},T^{1})=-\sigma^{2}\sin\theta^{3}+\sigma^{3}\sin\theta^{2}$ ,

$( \sum_{\dot{l}=1}^{3}\sigma^{:}N^{:},T^{2})=\sigma^{1}\sin\theta^{3}-\sigma^{3}\sin\theta^{1}$ ,

where $(\cdot, \cdot)$ denotes the usual inner product in $R^{2}$ and $\mathrm{I}^{\dot{4}}$ are the unit tangent vectors

of $\Gamma^{i}(t)$ at $m(t)$ for $i=1,2,3$. So, if we suppose (2), then $\sum_{\dot{|}=1}^{3}\sigma^{i}N^{:}$ vanishes because
$\{T^{1}, T^{2}\}$ is abasis in $R^{2}$ and $(\Sigma_{\dot{l}=1}^{3}\sigma^{:}N^{i},T^{j})$ , $j=1,2$ , are covariant components of
$\Sigma_{i=1}^{3}\sigma^{i}N^{i}$ with respect to the basis $\{T^{1}, T^{2}\}$ . Conversely, if we suppose (5), then we
immediately obtain (2).

Now the inner product of (5) and $dm(t)/dt$ yields

$\dot{.}\sum_{=1}^{3}\sigma^{:}V^{\dot{1}}$ $=0$ at $m(t)$ . (6)

This gives us auseful information that (1) and (3) have no rotating solutions around $m(t)$

such as aspiral travelling wave solution if $m(t)$ moves. In fact, if such asolution exists,

then three $V^{i}$ at $m(t)$ may have the same sign, but it contradicts to (6). We emphasize

that this remark is also valid for the three phase boundary motion by curvatures presented

by L. Bronsard and F. Reitich [1].

3Known results

We here summarize known fundamental results concerning (1) and (3) because they are
the key to the proof of our results.

The sharp interface model (1) was first derived by H. Garcke and A. Novick-Cohen [2]

via aformal singular limit from adegenerate Cahn-Hilliard system which is amodel to

describe diffuse interfaces in aternary (or possibly multi-component) alloy system. H.

Garcke and A. Novick-Cohen [2] also established aunique local-in-time existence result

for (1) by applying solvability theory for initial boundary value problems of the system

of linear parabolic equations due to V. A. Solonnikov [12]. Their result requires $C^{4+\alpha_{-}}$

regularity $(0<\alpha<1)$ for initial data $\Gamma_{0}$ . Another their significant contribution is to

establish the two fundamental properties for the motion by (1), i.e., the energy-decreasing
property and the area-preserving property. Here the energy associated with the model
(1) is defined by

$E[ \Gamma(t)]:=\sum_{\dot{\iota}=1}^{3}\sigma^{i}L[\Gamma^{\cdot}.(t)]$, (7)
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where, for curve $\gamma$ , $L[\gamma]$ denotes the length of $\gamma$ . Then the energy-decreasing property for
(1) is stated as

$\frac{d}{dt}E[\Gamma(t)]=-\sum_{\dot{|}=1}^{3}l^{:}(\sigma^{i})^{2}\int_{0}^{L[\Gamma(t)]}(\kappa_{s}^{\dot{1}})^{2}d_{S}\leq 0:$ , $t\geq 0$ . (8)

The area-preserving property for (1) is described as

$\mu(D^{\dot{1}}[\Gamma(t), \partial\Omega])=\mu(D^{:}[\Gamma_{0}, \partial\Omega])$ , t $\geq 0$ , i $=1,$ 2,3, (9)

where $D^{:}[\Gamma(t), \partial\Omega]$ and $\mu$ are as in Theorem 2.1 (ii).
Prom the above we see that the flow by (1) is agradient flow of the energy $E$ . Hence,

as conjectured in [2], it is expected that (1) admits aunique global solution that converges
to aminimizer $\Gamma_{M}$ of $E$ subject to the area-constraint as (9) provided the initial data $\Gamma_{0}$

is close to the minimizer $\Gamma_{M}$ and fulfills the area condition

$\mu(D^{:}[\Gamma_{0}, \partial\Omega])=\mu(D^{:}[\Gamma_{M}, \partial\Omega])$, $i=1,2,3$ .

Our Theorem 2.1 (i) and (ii) for (1) can be viewed as an answer for this conjecture.

The sharp interface model (3) was first derived by A. Novick-Cohen [10] via aformal
singular limit from an Allen-Cahn/Cahn-Hilliard system which is amodel to describe
diffuse interfaces in abinary alloy system. In this case the energy associated with (3) is
also defined by (7). She showed the energy-decreasing property for (3):

$\frac{d}{dt}E[\Gamma(t)]=-l^{1}(\sigma^{1})^{2}\int_{0}^{L[\Gamma^{1}(t)]}(\kappa^{1})^{2}ds-\sum_{\dot{|}=2}^{3}l:(\sigma^{:})^{2}\int_{0}^{L[\Gamma(t)]}(\kappa:i)^{2}ds\leq 0$ $t\geq 0$ ;

and the area-preserving property:

$\mu(D^{1}[\Gamma(t), \partial\Omega])=\mu(D^{1}[\Gamma_{0}, \partial\Omega])$ , t $\geq 0$ . (10)

This means that (3) is gradient flow of $E$ and it can be expected that (3) admits aunique
global solution that converges to aminimizer $\Gamma_{M}’$ of $E$ subject to the area-constraint as
(10) provided the initial data $\Gamma_{0}$ is close to the minimizer $\Gamma_{M}’$ and fulfills the area condition

$\mu(D^{1}[\Gamma_{0}, \partial\Omega])=\mu(D^{1}[\Gamma_{M}’, \partial\Omega])$ .

Our Theorem 2.1 (i) for (3) can be viewed as an answer for this conjecture.

Remark 3.1 E in Theorem 2.1 (i) is the same as (7) as is seen by Young’s law (2)
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4 Outline of the proof of Theorem 2.1 (ii)

We here briefly explain an outline of the proof of Theorem 2.1 (ii). The details of the
most part of the proof are shown in [6] (the proof in the step (b) below will appear in [7]).

The proof proceeds via four steps.

Outline of the proof of Theorem 2.1 (ii). (a) $E\dot{m}$tence of a unique minimizer of $E$ subject
to area-constraint. The first step is to investigate the energy-minimizing problem subject
to prescribed area-constraint which can be viewed as astationary version of the time-
dependent problem (1). More precisely, we consider the problem:

minimize $E[\Gamma]$ for $\Gamma\in \mathrm{C}_{*}^{1}$ .

Here $\mathrm{C}_{*}^{1}$ is the set of union of three $C^{1}$ -curves $\Gamma=\bigcup_{\dot{\iota}=1}^{3}\Gamma^{:}$ contained in $\Omega_{*}$ such that one
end point of each $\Gamma^{i}$ is connected at atriple junction and its another end point intersects
with $\partial\Omega_{*}$ between $l^{\dot{i}}$ and $p^{k}$ perpendicularly ( $i$ , $j$ , $k$ :different mutually) and also satisfies
the area-constraint

$\mu(D^{i}[\Gamma, \partial\Omega_{*}])=\mu(D^{i}[\Gamma_{*}, \partial\Omega_{*}])$ , $i=1,2,3$. (11)

(The notations $\mu$ , $D^{i}$ , $\Gamma_{*}$ are explained in Section 2.) It is then proved by adirect method
that the union of three line segments $\Gamma_{*}\in C_{*}^{1}$ is the unique global minimizer of $E$ on $\mathrm{C}_{*}^{1}$ .
$\Gamma_{*}$ is of course an equilibrium solution of (1).

(b) Local eistence. The second step is to establish aunique local existence result
for less regular initial data than the one treated by Garcke and Novick-Cohen [2]. More
precisely, we construct aunique local solution $\{\Gamma(t)\}_{t\in[0,T_{\mathrm{O}}]}$ with an existence time $T_{0}>0$

which depends on both $C^{2+\alpha}$-norm of the initial data $\Gamma_{0}$ with $\alpha\in(0,1)$ and the distance
between the triple junction of $\Gamma_{0}$ and $\partial\Omega_{*}$ . We emphasize that this result is also valid
even for general bounded domain $\Omega$ having piecewise smooth boundary $\partial\Omega$ . This result
can be proved by using an optimal regularity result in the theory of analytic semigroup
as in [8]. This work is needed when we try to extend the local solution to the global one
because $C^{2+\alpha}$-norm of the solution is seen to be apriori bounded, which is explained in
the next step.

(c) Global existence. In the third step we establish both an apriori upper bound of
the $H^{1}$ -norm of the curvature of the solution $\{\Gamma(t)\}_{t\geq 0}$ and an apriori lower bound of
the distance between its triple junction $m(t)$ and $\partial\Omega_{*}$ when the assumption of Theorem
2.1 (ii) is fulfilled. The main idea is in the “vanishing property” of both the curvatures
and the normal velocities of the solution. This means that for any time $t>0$ , one of the
curvatures $\kappa^{i}$ and one of the normal velocities $V^{i}(i=1,2,3)$ must vanish somewhere on
the solution curve. The advantage of this property is to yield aPoincar\’e-type inequality
for the derivatives of the curvatures of the solution up to second order. Then it can be
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shown that this Poincar\’e-type inequality yields the desired apriori bound of the curvature
in $H^{1}$ provided the assumption of Theorem 2.1 (ii) is fulfilled. Consequently, we can obtain
both an apriori upper bound of the $C^{2+\alpha}$-norm of the solution (with $\alpha\in(0,1/2])$ and
an apriori lower bound of the distance between its triple junction and $\partial\Omega_{*}$ . Thus we can
extend the unique local solution of (1) obtained in (b) to the one globally in time.

(d) Stability of the minimizer. In the final step we show the convergence of the solution
toward the minimizer $\Gamma_{*}$ of the energy $E$ subject to (11) as time goes to infinity. This
can be done by introducing an auxiliary three line segments $\overline{\Gamma}(t)=\bigcup_{\dot{|}=1}^{3}\overline{\Gamma}^{:}(t)$ in 0*; $\overline{\Gamma}^{i}(t)$ ,

$i=1,2,3$, are connected at the same triple junction as that of the solution $\Gamma(t)$ and
each $\overline{\Gamma}^{\dot{1}}(t)$ intersects with $\partial\Omega_{*}$ between $p^{j}$ and $p^{k}$ perpendicularly at another end point
(as usual, $i$ , $j$ , $k$ are mutually different). We prove with the aid of the energy-decreasing
property (8) that the asymptotic profile of the solution $\Gamma(t)$ as $tarrow\infty$ is described by
$\overline{\Gamma}(t)$ . In addition, due to the area-preserving property (9), we can eventually show that
$\overline{\Gamma}(t)$ must converge to $\Gamma_{*}$ as $tarrow\infty$ . Prom these facts we conclude that $\Gamma(t)$ converges to
$\Gamma$. as $tarrow\infty$ .

This is the brief explanation of the proof for Theorem 2.1 (ii).
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