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Abstract

We consider stationary solutions of a spatially inhomogeneous Allen-
Cahn type nonlinear diffusion equation in one space dimension. The
equation involves a small parameter €, and its nonlincarity has the
form h(x)?f(u), where h(x) represents the spatial inhomogeneity and
f(u) is derived from a double-well potential with equal well-depth.
When € is very small, stationary solutions develop transition layers
that can possibly cluster in the spatial region. We first show that
those transition layers can appear only near the local minimum and
local maximum points of the coefficient /(z) and that at most a single
layer can appear near each local minimum point of h(z). We then
discuss the stability of layered stationary solutions and prove that the
Morse index of a solution coincides with the total muuber of its layers
that appear near the local maximnum points of h(x). We also show the
existence of a stationary solution that has layers at any given set of lo-
cal minimum and local maximum points of h(z) with the multiplicity
of layers being arbitrary at the local maximum points.

1 Introduction

Some classes of reaction-diffusion systemns give rise to sharp transition layers
when the diffusion coefficients are very small. Such phenomena have long
been known in physics, biology and other areas of science. Since the middle
of 1980’s, they have become a subject of intensive mathematical study, and
the nature of those layers —— their motion, location and stability — is now
well understood by using various techniques of singular perturbation theory.
However, most of those studies have been focused on isolated layers whose
interaction with other layers (if they exist) is negligible, and little is known
about the situation in which many layers appear within a relatively small
distance from one another.



We consider multi-layered stationary solutions for a spatially inhomoge-
neous Allen-Cahn equation of the form

€Uy = €Ugy + -}h(x)2f(u) O0<z<1,t>0)

uz(0,8) = ug(1,8) =0  (t > 0) (1.1)
u(z,0) = up(x) 0<z<1).

Here € is a small parameter and the coefficient h(z) > 0 represents spatial
inhomogeneity of the diffusive medium. f satisfies the following conditions.

(F1) f has precisely three zeros a~ < 0 < o and satisfies

flle”) <0, f(0)>0, f'(a*)<0,

(F2) /a 'i+ f(w)du =0,

u
©3) 1> pw) @ 0).
Note that (F1) implies that (1.1) has a double-well potentlal (namely W (z, u)

defined by (1.4)) and (F2) implies that the two wells are of equal depth.
Our goal is : :

(a) to find out where stationary layers appear;

(b) to show that in certain circumstances multiple stationary
layers appear within a very small distance from one another
(clustering layers);

(c) to study the stability of multi-layered stationary solutions;
in particular, to determine the Morse index of such solutions
from the information about the location of the layers.

Let us formulate our problem more precisely. The stationary problem for
(1.1) is written in the following form:
1
eu’ + ;h(x)2f(u) =0 (0<z<1), (1.2)
' (0) = /(1) = 0.

In an earlier work [7] the author has shown the existence of stable layered
solutions of (1.2) whose layers appear near the local minimum points of h(z).
More precisely, we have shown the following theorem in [7].

Theorem 1.1 Let {z1,22,: -+ ,Zn} be an arbitrary subset of the set of strict
local minimum points of h(x). Then there erists a stable solution of (1.2)
which has one layer near each xy (k = 1,2,--- ,m) and has no layer in the
rest of the interval (0,1).
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Let us explain briefly why the local minima of h(x) are relevant. Solutions
of (1.2) are critical points of the functional

_(Enz L ) ,
E(u) _/0 (Q(u) +=W(z,u)) da, (1.3)
where the potential W (z,u) is given by
W(z,u) = — / " h(z)2f (v)dv. (1.4)

This potential has two minimal values at u = o~ and u = at, so it is so-called
a double-well potential. And since (F2) implies

W(z,a7) =W(z,a") (=0),

this potential well has equal depth at its minima.

Now, stable solutions of (1.2) are local minimizers of E(u). In order to
minimize the energy E(u), the function u(z) tends to have values very close
to o~ or ot in most of the spatial region, while at those places where u(z) has
a transition layer, h(x) plays an important role since the quantity W (z,u)
is no longer small on the transition layer. Roughly speaking, h(z) represents
the density of the ‘localized energy’ at each transition layer. As the integrand
in (1.3) is almost zero in the intervals away from the transition layers, the
energy E(u) is almost equal to the sum of these localized energies at the
transition layers. Thus, in order to locally minimize the energy F(u), the
function u(z) can have transition layers only near the local minimum points
of h(z). (This claim will be proved rigorously in Section 5 of the present
paper; see Corollary 4. ) What Theorem 1.1 shows is that there are indecd
such stable solutions that have transition layers at any prescribed minimum
points of h(x).

Conversely, if a critical point u(z) has transition layers only near the
local minimum points of h(z), then the above intuitive argument suggests
that u(z) is a local minimizer. The results by Ei, lida and Yanagida [4] on the
motion of interfaces for equation (1.1) rigorously justifies this observation, at
least partially (they deal with even higher dimensional cases). The paper by
Norbury and Yeh [10] also confirms the above observation through a formal
asymptotic analysis and numerical simulations. Let us also mention a related
paper by do Nascimento [9], who makes further stability analysis of layered
solutions in several space dimensions.

The above arguments and results are basically concerened with solutions
whose layers appear at isolated locations. However, if some layers cluster at
certain points, then the situation becomes more complicated, and one necds
to do more delicate analysis.

The contents of this article is as follows: Section 2 is a preliminary sec-
tion, where we state basic properties of n-mode solutions. In Section 3, we
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show that layers can appear only in a small neighborhood of the set of local
minimum and local maximum points of h(z) (Theorem 1) and that at most
a single layer can appear near each local minimum point of h(z) (Theorem
2).

In Section 4, we discuss the stability of layered solutions and show that
the Morse index of any such solution coincides with the number of its lay-
ers that appear near the local maximum points of h(z) (Theorem 3). This
theorem not only completely characterizes the stability of solutions in terms
of the location of its layers, but also it implies one important fact: the lin-
earized operator associated with any layered stationary solution has no zero
etgenvalue.

Because of this remarkable property, layered solutions with a given qual-
itative profile persist under a small perturbation of the equation. Using this
property, we will prove in Section 5 the existence of a solution of (1.2) having
an arbitrary number of clustering layers at an arbitrarily chosen set of local
maximum points of h(z) while having a single layer at an arbitrarily chosen
set of minimum points of h(z) (Theorem 5). The strategy for proving this
theorem is to use a homotopy argument. Details of the above arguments are
given in [8].

Lastly we should mention some related results on multi-layered solutions.
When the present work was nearly completed, the author was informed that
Ai and Hastings were also completing a paper [1] showing the existence of
solutions with clustering layers for a different type of nonlinearity of the form

flz,u) = =du+u® + cosz.

Unlike the present paper, their result deals with the “unbalanced” case,
namely the case where the corresponding potential W (x,u) has two wells
of generally unequal depth with their balance varying from place to place.
This situation is essentially the same as the equation studiend by Angenent,
Maret-Paret and Peletier [3], who proved the existence of stable solutions
with multiple (but non-clustering) layers. In this unbalanced case, so-called
spikes can also appear. In a forthcoming paper [6], we will also deal with the
unbalanced case, but in a more general form, and study the existence and
stability of multi-layered solutions.

2 Preliminaries

In this section we will state basic properties of n-mode solutions.

Definition 2.1 u is called an n-mode solution if u is a solution of (1.2)
that has precisely n zeros in the interval (0,1).

One can show by using bifurcation techniques the following proposition:
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Proposition 2.2 For each n € N, there erists an ¢, > 0 such that for
0 < € < €,, problem (1.2) has at least two n-mode solutions.

In the rest of this article n € N is fixed arbitrarily and any n-mode
solution for sufficiently small € is denoted by wu,.

Proposition 2.3 (Shape of layers) Let x, be an arbitrary zero poznt of u,

such that Luc(z) > 0 (resp. Lu.(x) < 0). Set v (z) = 11((}( )z + z,).

Then v(2) converges to ¢(z) (resp. ¢(—=z)) uniformly on every compact set
of R, where ¢(z) is the unique solution of the following problem:

¢"+ f(¢) = (—00 < z < 00),
¢'(—o0) = _, ¢'(00) = o™, (2.1)
¢(0) = 0.

Roughly speaking, the above proposition implies that a transition layer
appears around each zero of the solution u., and that the shape of the tran-
sition layer is given by squeezing ¢ holizontally by the scale €¢/h(z).

The following proposition, on the other hand, shows that u. stays very
close to o or o in any interval distant from S, = {x € (0,1); u.(z) = 0}.

Proposition 2.4 There ezist constants 0 < C, < C, and 0 < K3 < K, such
that for sufficiently small € > 0, the following holds:

R’ld(.’ﬂ) Kgd(.’l?)
€ €

C exp(— ) S u(r) —a” < Crexp(— ) for z€S7,

(2.2)

Ciex (____(a_:)_) < at —u(z) < Cyexp(— 2’d(w)) for €S,
€ € (2.3)

where d(z) = dist(z,S.), S~ = {z € (0,1); u(z) < 0} and
St ={z € (0,1); u(z) > O}

3 Where do layers appear?
Set | )
M = {z € (0,1); h'(z) = 0},

and let M be the set of local minimum and maximum points of h(z) in (0, 1).
Clearly we have M C M. We assume that

(M1) M is a finite set;
(M2) h"(z) # 0 for each z € M.
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In what follows we fix n € N arbitrarily and discuss the behavior of
n-mode solutions when ¢ is very small.

Propositions 2.3 and 2.4 imply that there is one-to-one correspondence
between layers of u, and zeros of u.. The following theorem tells where
transition layers appear.

Theorem 1 (location) Assume (M1) and (M2). Then there exists a constant
Co > 0 such that for € > 0 sufficiently small, any zero point of u. lies in
Coe|log €| neighbourhood of M U {0, 1}.

The above theorem shows that transition layers can appear only near the
internal local extremum points of h(z) or near the boundary.

Theorem 2 (multiplicity of internal layers) Assume (M1) and (M2). Then
for € > 0 sufficiently small, there appears at most a single layer of u. near
each local minimum point of h(x) in (0,1). Here the term “near” means a
distance not exceeding Cyel|log €.

As a consequence of the above theorems, we see that, if n is larger than
the total number of local minimum points and maximum points of h(x), then
multiple layers appear near some of the local maximum points of h(z). The
following corollary follows from the proof of Theorem 2.

Corollary 3.1 (boundary layers) If the boundary point x = 0 is a local min-
imum point of h(x), then for sufficiently small € > 0, no layer of u. appears
near x = 0. The same statement holds true for x = 1.

4 Stability of layered solutions

In this section we mainly consider solution without boundary layers, but we
can allow boundary layers provided that

(H1) K(0) = K'(1) = 0.

Throughout this section we will assume (H1). The following theorem
completely characterizes the stability of multi-layered solutions in terms of
the location of layers:

Theorem 3 Let u. be an n—mode solution of (1.2) for sufficiently small
€ > 0 and let m denote the total number of layers that appear near the local
mazimum points of h(z). Then u. is nondegenerate and m coincides with
the Morse indez of u.
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Corollary 4 Let u. be an n—mode solution of (1.2) for € > 0 sufficiently
small. Then u, is stable, or equivalently, a local minimizer of E(u) in (1.3)
if and only if its layers appear only near the local minimum points of h(z).

Here the Morse index of u is defined as follows: Set
Lw = €w,, + h(z)*f'(v)w, (4.1)

and consider the following linearized eigenvalue problem:

{ Lw=-Aw in (0,1), (4.2)

uy(0) = uy(1) = 0.

Definition 4.1 We say that the Morse indez of u is m if (4.2) has m neg-
ative eigenvalues and all the other eigenvalues are positive.

The proof of Theorem 3 will be given in Section 6 below.

5 Existence of layered solutions

In this section we will show the existence of solutions that have layers near
arbitrary (internal) local minimum and local maximum points of h(z).
Let Mgy = {z;}£_, be an any subset of M. Set

I* ={i€{1,2,--- ,k}; z; is a local maximum point of h },

I" ={ie{1,2,--- ,k}; z; is a local minimum point of b }.
Define

P={p)t,e(N)* p =1 if i€l~ and
pi  is a positive integer if 1 € I*}.

Theorem 5 For any (p;)%., € P, there exists an ¢, > 0 such that for any
0 < € < € (1.2) has a solution with ezactly p; layers near z; (i = 1,2,--- ,k),

Remark 5.1 The term ‘near’ in Theorem 5 indicates O(e|loge|) neighbour-
hood of the mentioned points (see Proposition 2.4). Note that, by Theorem
2, at most one layer can appear near local minimum point of h(z). Therefore
the set P defined above is an optimal class for the multiplicity of layers.

Remark 5.2 For each (p;)¥., € P, there erist at least two solutions that
satisfy the properties in Theorem 5. One of these solutions is nearly equal to
a~ at £ = 0, while the other is nearly equal to a* at z = 0.
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6 Proof of Theorem 3

For the proof of Theorem 3, we use the min-max characterization of eigenval-
ues and the Sturm-Liouville theory for second order ODE’s. The following
propositions briefly explain these theories. The proofs of these propositions
are rather standard, so we omit the proof.

Let A\; < Ay < -+ < A; <--- be the eigenvalues of (4.2).

Proposition 6.1 (min-maz principle) A\, is characterized as follows:

. - H '
Ak = sup _inf ———gﬂ— , (6.1)
W1y W1 €L2(0,1) WEX[W1, ¥i_1] ”’w“Lg(o’l)

where

Xpr, o+ o) = {w e H'(O,)\{0}; w L9p; for j=1,---,k—1}

1 _
HW%z/(?WmP—Mmﬁﬁmﬁ)@
0
and L denotes orthogonality in L%(0,1).

Corollary 6.2 If there exists an m -dimensional subspace Y of H'(0,1) such
that

H(w) <0 for every w € Y'\{0},
then A\, < 0. ‘

Proposition 6.3 (Comparison of eigenvalues) Let A(x) be a continuous
function satisfying A(x) > 0, A(z) # 0 on [0,1] and define L by (4.1). If the
eigenvalues of the following problem:

w'(0) = wi(1) = 0, (6.2)

{ (L-A(z))w = -dw in  (0,1),
are denoted by A < 5\2 <M< -+, then
> M (k=1,2,3,--1).
On the other hand, if A(z) <0, A(x) # 0 on [0,1], then
M <M (k=1,2,3,---).
Corollary 6.4 If there exist positive functions w(z) and B(z) satisfying

{ ew" + h(z)*f'(u)w = -B(@)w in  (0,1), (6.3)

w'(0)=w'(1) =0
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then it holds that A; > 0.

Proposition 6.5 (Sturm-Liouville theorem) If there ezist w(z) and )\ sat-
isfying (4.2), and if w(z) changes sign precisely n — 1 times in (0,1), then
A= Ap.

Proof of Theorem 3. What we have to show is the following two
inequalities:

A"l < 0’ (6.4)

’\m+l > 0. (65)

The inequality (6.4) follows from Lemma 6.6 below and Corollary 6.2, by
setting - ‘
Y = span{w,, - ,w,}.

The inequality (6.5) follows from Lemma 6.7 below and Prdposition 6.1.

In the rest of this section we denote n—mode solution u, by u for conve-
nience.

Lemma 6.6 Let m be as in Theorem 3. Then there erist wl,'wg, <o Wip
such that

H(aqw, + - + crwy) <0 (6.6)
foranycy,--- ,em with |ey| + -+ + |cm| > 0.

Proof. Let & < -+ < &, be the zeros of u(z) and let 0 = {p < (; <
+++ < (n-1 < {, =1 be the zeros of u/(z). Clearly we have

Cre-1 < & < Gk (k=1,2,---,n).

Let ki,--- ,km be the set of subscripts such that for each k = k; (i =
1,---,m) the point (i lies in an O(e|loge|) neighborhood of a local max-
imum point of h(x). Let v(z) = u/(z)/h(z). This function |v| satisfies the
equation

n

Lv = eh(z) (E(lx_)) . (6.7)

Now we define w,, - - - , w,, as follows:

. — 'U(.’I:) in (C .‘—lac i)’
wile) = { 0 in [T\ (GoorrGo):
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Using (6.7), we see that

1

H(w;) = —62-/kail h(z) (ﬁ) widz (1, =1,---,m).

=

Note that h(x)(1/h(z))" > 0 near each local maximum point of h(z). Since
w;(x) has a very large value near x = §, while it decays very rapidly outside
a small neighborhood of §,, we have

Hw) <0 (i=1,---,m).

Considering that the supports of w; (i.e. [(k,—1,¢,] for ¢ = 1,---,m) are
mutually disjoint, we obtain

CH(cwy + -+ + W) = Zcf%(wi) <0,

=1 .
provided that ¢ + - - - + c2, > 0. The lemma is proved.

Lemma 6.7 Let m be as in Theorem 8. Then there exist 1y,- -+ , V¥, such
that

H(w) >0. L | ‘(6.8)

inf
wex[¢1 [ a'/Jm]

In order to prove the above lemma, we will prepare two lemmas. For any
sub-interval J = (a,b) C (0,1), let

MM << <

be the eigenvalues of the problem

Lw = —\w in (a,b),
{ w(a) = u'(b) = 0,

(6.9)

and define

H (w) = /b (62|Vw|2 - h(:r)2f'(u)'w2) dz .

a

Clearly, the same statements as in Propositions 6.1, 6.3 and 6.5 remain true
for \{ and H’(w).

Lemma 6.8 Let {c}}?_, be as in the proof of Lemma 6.6. Then A],, > 0,
where J = (<k>Ck+i)-
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Proof. Let A{ < AJ <M <--- be the eigenvalues of the problem

{ (L + h(z)? (-@ - f’(u)))w =-Aw in (a,b),
w'(a) = w'(b) = 0, (6.10)

where a = (x, b = (x4i. Since u(z) satisfies (1.2), w = u is regarded as an
eigenfunction of (6.10) with eigenvalue A = 0. Considering that u(z) has i
zeros in the interval J = (a,b), we see from Proposition 6.5 that A = 0 is the
(2 + 1)-th eigenvalue, that is, )\, .+1 = 0. Applying Proposition 6.3 and using
(F.3), we get

Ny > M =

The lemma is proved.

Lemma 6.9 Let {{}r_, and {(k}ezo be as in the proof of Lemma 6.6. Let k
be such that & is located within O(e|log €|) neighborhood of a local minimum
point of h(z). Then X! > 0 for J = (C-1,{k)- In particular,

H (w) > ,\{/J wldz >0 for we H\(J).

Proof. As in the proof of Lemma 6.6, we set v(z) = v'(z)/h(z). Then
v has a constant sign on J and satisfies (6.7). This function |v| is very large
near & and decays to zero very fast away from this point. If we choose
S1,$2 > 0 sufficiently small,then

h(z)(1/h(z))" <0  on [ — <, & + <) (6.11)

and
- f@@) > -3f@") o I\E-a&tal (612

We can then modify v(zx) slightly to obtain a function w(z) satisfying (6.3)
with B =~ —e2h(z)(1/h(z z) > 0 and with (0,1) replaced by J. It follows
from Corollary 6.4 that AT > 0, where Q = (& — 61, & + <2) (for the details,
see [8]. )

It follows that

H (w) =HP(w) + H\(w)
> Q 2 2
_/\I/Qw dx+D/J\Qw dz
> min{D, A9} [; widz,

where D = -g-lf’(a+)| rer%(i)nl) h(z)?. This shows that A > min{D, 7} > 0.

The lemma is proved.
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Now we are ready to prove Lemma 6.7, thereby completing the proof of
Theorem 3.

Proof of Lemma 6.7 Let ky,--- , kn be as in the proof of Lemma 6.6
and set ' :

J = U [<k,~—17 Cki]'
i=1

We decompose J into its connected components Jy, - - - ,.Jp, where 1 < p < m.
Let m; be the number of zeros of u'(z) contained in J;. By the definition of
J, these zeros of u'(z) are all located very near the local maximum points of
h(z). Clearly we have '

my +mg + -+ +my = m.
Applying Lemma 6.8, we see that

A 1>0.

Consequently, by Proposition 6.1, there exist functions ¢i,--- , ¥}, € H'(J;)
such that .

W (w) 2 Mi [ w?da,

inf
we H(J;)\{0}, wly3 (j=1,,mi)

where L denotes the orthogonality in L?(J;). Now we extend 9}(z) by setting
¢i(z) = 0 outside J;. Then %} belongs to L?(0,1). It follows that, if w €
H'(0,1) satisfies w L ¢} (j = 1,--+ ,m;), then

Ho(w) > Ni /J w?dr.

Hereafter we set the entire set of function {}} as {t1, - ,¥m}. -
Now let K = {1,---,n}\ {ki, -+, km}. Then by Lemma 6.9, we have

H' (w) > /\{“/ w?dr >0
I

for each k € K, where I, = ((x-1, ). Combining the above inequalities, we
see that, if w € H(0,1) satisfies w L ¢; (j = 1,--- ,m), then
4 1
Hw) =Y H'(w)+ Y H'*(w) >4 / w? dz,
, 0

i=1 keK

where
d = min {min )\,J,;"_,min /\{", } > 0.

Hence by Proposition 6.1, \;, > § > 0. The lemma is proved.
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