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Introduction

Partial differential equations in the “usual” set—up are given on an open set (or
on a manifold) that a priori has a C* structure. However, many applications in
physics and engineering as well as in pure mathematics (geometry, topology) are
from the very beginning connected with singular geometries of the configuration
or with non—compact exits to infinity.

We will discuss some elements of the analysis on manifolds with geomet-
ric singularities, boundaries, edges, corners, etc. A typical novelty compared
with the smooth case is that singularities lead to natural classes of degenerate
operators (that include “non-degenerate” ones as well) and to new (in gen-
eral operator-valued) principal and complete symbol structures that behave like
“semi—quantised” objects and encode specific information from the singularities,
especially asymptotics of solutions.

The author thanks the organisers of the Conference “Microlocal Analysis and
Asymptotic Analysis of PDE”, Oct. 2000, RIMS, Kyoto University, especially
Professor N. Tose.



THE GENERAL PROGRAM

1 The general program

Configurations with singularities that we have in mind are special stratified
spaces (in fact, pseudo-manifolds), locally modelled by “singular” charts that
map neighbourhoods on M to corresponding model cones or wedges under nat-
ural conditions for the transition maps. A cone with base X is the quotient
space

X2 := Ry x X)/({0} x X),

i.e., {0} x X represents the tip of the cone. A wedge with model cone X2 is a
Cartesian product
X2 xQ  for open Q C RY.

A manifold M with singularities contains a subset M’ of singular points such
that M \ M’ is a C*° manifold. M’ itself is assumed to be singular in a similar
sense, with a subset M’ of singular points, etc.

This gives us a chain of spaces M := M® > M’ > M" > ... > M >
M+ = @ such that M*) \ M*+1) js a C manifold for every k.

An example is the closed unit cube M in R3, where M’ = OM is its sur-
face, including edges and corners, M” is the system of one-dimensional egdes,
including corners, and M'” is the system of corner points.

The general program for the analysis of operators on M includes the follow-
ing points:

e Establish a pseudo—differential calculus that contains the typical differen-
tial operators on M

¢ Characterise adequate scales of Sobolev spaces

e Study operator algebras with natural symbol hierarchies that determine
ellipticity and additional conditions on the lower-dimensional skeleta

e Characterise asymptotics of solutions near the singular points.

Analogous problems are reasonable in the context of parabolicity and hy-
perbolicity.
As concrete realisations of problems with singularities we have:

e Boundary value problems on spaces with piecewise smooth geometry
e Mixed elliptic, transmission, and crack problems
¢ Problems on spaces with components of different dimensions

e Parabolic problems in the (infinite) space/time cylinder, where the spatial
configularations are not smooth; here, t — oo behaves like an exit to
infinity

e Hyperbolic problems in domains with non—-smooth geometry, such as prop-
agation and reflection of singularities near conical points, edges, etc.

Asymptotics of solutions to various kinds of non-linear problems
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Each of these models has its own history; the analytic understanding in the
hyperbolic case is far from being in a satisfactory state.

The same is true of the index theory of elliptic operators on manifolds with
geometric singularities.

A common feature of these models is a specific interplay between microlocal
and global information, expressed by the components of hierarchies of symbols.

In this survey we content ourselves with elliptic operators and illustrate
typical elements of the calculus for conical and edge singularities as well as for
boundary value problems. For the general background, cf. the monographs
Schulze [25], [28] or Egorov and Schulze [6]. A general machinery to construct
operator algebras on (pseudo-) manifolds with higher singularities is given in
(30]. Applications to parabolic problems are given in the author’s joint paper
with Krainer [14]. Concerning edge space aspects in hyperbolicity, cf. Dreher
and Witt [4]. Non-linear problems, with singularities of various kind have been
studied by Witt [41] and in the author’s joint paper with Vishik, Witt and Zelik
[38].

2 Fuchs type operators

First recall that when X is a closed compact C*° manifold, E, F € Vect(X),
where Vect(-) the set of smooth complex vector bundles on the space in the
brackets, and A : C*°(X, E) — C*(X, F) a (classical) pseudo-differential op-
erator of order u on X, we have the homogeneous principal symbol of order u,
that is a homomorphism

oy(A) : X E — 7% F, (1)

wx : T*X \ 0 —» X. Ellipticity of A means that (1) is an isomorphism. While
this is a purely microlocal condition,

dimker A, dim coker A

and index ind A = dimker A — dimcoker A are globally defined. This is, of
course, well-known, but operator families on X appear as a part of the symbol
structure of operators on a manifold with conical singularities with base X
which gives us a first impression on how ellipticity and the calculus as a whole
are determined by local and global data.

A manifold B with conical singularities is a topological space that contains
a finite subset S (the conical points) such that B\ S can be regarded as the
interior of a C°° manifold B with compact boundary. For simplicity, consider
the case when S only consists of one point. Then 0B =: X may be regarded
as the base of a cone X2 that is the local model of B in a neighbourhood of
v € S. Then B is locally near 8B modelled by R, x X; in this connection B is
called the stretched manifold associated with B. Let (r,z) € Ry x X denote a
splitting of points on B near S. Then the typical differential operators A on B
are those of Fuchs type, that is

A= r'”gaj(r) (—r%)j, (2)
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for convenience, written with operator-valued symbols a;(r) € C*°(R,., Diff* /(.
Here, Diff”(-) denotes the space of all differential operators of order v on the
space in the brackets, with smooth coefficients (in local representations); Diff”(-)
is Fréchet in a natural way in all cases that we are considering in this paper.
(For the moment, we simply speak about operators acting in function spaces
rather than in spaces of sections in bundles; this can be done as well and is
straightforward.) In local coordinates z € ¥ on X, ¥ C R" open, n = dim X,
the operator A can be locally described by a symbol of the form

p(r,z,0,8) =r " ¥p(r,z,rp,§),

where p(r, z, g, €) is smooth up to r = 0.
Let p(,)(r,z,0,€) denote the homogeneous prmcxpal part of p(r,z, 0,€) of
order pu. Then

0’-¢(A)(T‘, z, 0, 5) = p(u)(r’ z, 0, g)

is the homogeneous principal symbol of A (near (0B)) in the usual sense. We
also have a “compressed” variant, namely

atl),f(A)(ra z, 0, E) = 5(#)(7" z, 9, 6)

which is also invariant, now in the sense of a function on a so—called compressed
cotangent bundle (realised by a simple singular modification of the standard
cocycle for the cotangent bundle).

In addition, we have the principal conormal symbol

u

om(A)(2) = a;(0)27. (3)

=0

z € C lS interpreted as a covarlable for the Mellin transform (Mu)(z) =
fo r)dr; then M~1:M = —1'3—— Now op(A)(2) induces a family of
contmuous operators

om(A)(z) : HY(X) — H*~*(X)

between standard Sobolev spaces on X. The principal symbol “hierarchy” of
operators of Fuchs type is

o(A) := (o4 (A), om(A)).
Definition 1 A is said to be elliptic with respect to a weight v € R, if

(i) oy(A) # 0 on T*(int B) \ 0 and oy ¢(A)(r,z,0,€) # 0 for (0,€) # 0, up to
r=0,

(ii) aM(A)(z) H*(X) — H*H(X) are isomorphisms for all 2 € C, Rez =
1 -7, n=dim X, for some s € R.

Note that condition (i) can be formulated invariantly as non—vanishing of
oy,£(A) globally on T¢B \ 0, where T¢'B is the compressed cotangent bundle.
Moreover, if (ii) is satisfied for an s = s9 € R, then it holds for all s € R.
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Let H*7(B) denote the weighted Sobolev space of smoothness s € R and
weight v € R, cf. [25] or [28]. Recall that when w(r) is any cut-off function
(i.e., w(r) € C§°(R4), w(r) =1 in a neighbourhood of r = 0) we set

HoY(B) = wH™(X™) + (1 — w)H}, (int B),

for X» = Ry x X. Here, R; x X is identified with a collar neighbourhood
of B in B such that R, corresponds to the inner normal (with respect to a
Riemannian metric on B), and H*7(X") is the completion of C§°(X") with
respect to the norm

(= | uRsamz)(Mu)(z)u%z(X)dz}%

2mi

i

for an arbitrary family R#(7) of classical parameter—dependent elliptic operators
on X with parameter 7 € R that induces isomorphisms RH(7) : H*(X) —
H*#(X) for all s € R and 7 € R; further

Ig:={z2€C: Rez:ﬂ}.

Theorem 2 Let B be compact, and let A be an operator of Fuchs type on B of
order p. Then the following conditions are equivalent:

(i) A is elliptic with respect to the weight v,
(ii) A: H*>Y(B) — H*~#Y"H#(B) is a Fredholm operator for any s € R.

For the iteration of pseudo—differential calculi on spaces with higher sin-
gularities (edges, corners, etc.) it is essential to consider pseudo—differential
operators on (stretched) infinite cones X* = R, x X. The configuration in this
case has an exit to infinity that causes specific precautions at infinity, cf. also
[11].

The weighted Sobolev spaces in this case are denoted K*7(X"), where
wKST(XN) = wHSY(X") for any cut—off function w(r), and (1 — w)K*7(X")
equals the standard Sobolev space in the sense that for X = S™ (the unit sphere
in R"*!) and X" = R**!\ {0} we have (1 — w)K*7(X") = (1 — w)H*(R*+1),
where on the right hand side of the latter relation r = |Z|, Z € R**!. The
definition for general X can be reduced to this case.

Remark 3 Setting (kau)(r,z) = /\ﬁ#u()\r,x) for u(r,z) € KS7(XM), A € Ry,
we have a strongly continuous group of isomorphisms

Kyt KST(XM) — K7 XM)

for every s,v € R.

3 Abstract edge spaces

Let E be a Hilbert space and {k)}rer, be a strongly continuous group of
isomorphisms k) : E — E, A € R. Then the abstract edge Sobolev space of
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smoothness s € R (with model space E) is defined to be the completion of
S(RY, E) (the Schwartz space of E—valued functions) in the norm

{ [ iemami dn}%-

R«
Here (n) is the Fourier transform with respect to y € R9.

Example 4 Set E = H*(R™"t1), (kau)(ZE) := A* *u(A\%), A € Ry. Then we
have W*(R9, H*(R"*1)) = H*(R"+1t9),

Another example is E = H*(R;) (= H*(R)|r, ), (kau)(t) = Atu(At), A €
R4, where

W*(RI, H*(Ry)) = H*(RT x Ry) = H*(R? X R)|rexRr, -
Parallel to the edge spaces we have spaces of operator—valued symbols

SI‘-

# (U xRS E, E),

U C RP open (subscript “(cl)” means classical or non—classical), associated with
E, {kx}rer, and E, {Fx}xer, that are Hilbert spaces with given strongly con-
tinuous groups of isomorphisms. S#¥(U x R9; E, E) is defiend to be the subspace
of all a(y,n) € C®(U x RY, L(E, E)) such that

I3 (n){DaDﬁa(y» M }(n) ”c(E E) = (n)"""'

for all y € K for arbitrary KaU, n € R?, a € NP, 8 € N, with constants
¢c=(a,08,K)>0.

Classical symbols are based on “twisted homogeneity”, that is a relation of
the form

Fy, An) = NRxf(y,m)sy Y, (4)
A€ Ry, (¥ € U x (R?\ {0}), for a function fly,m) € C®(U x (R7\
{o}), L(FE, E)). A symbol a(y,n) is said to be classical of order v, if there
are elements a(,—;)(y,n) € C=(U x (R?\ {0}), L(E, E)) that are homogeneous

of order u — j in the above—mentioned sense, j € N, such that for any excision
function x(n)

N

a(y,m) — x(m) Y aqu—j)(y,n) € S¥~ WU x R% E, E)
j=0

for all N € N.

Abstract edge Sobolev spaces based on strongly continuous groups of iso-
morphisms on a parameter space E have been introduced in [24] in connection
with edge pseudo—differential operators, cf. also Section 4 below.

4 The edge algebra

Let us set .
W””(X’\ x R?) := W’(RQ,ICS’"’(XA)). (5)
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It can be proved that then
Hiomp(X" x RY) C W*(X" x RY) C HE (X" x RY)

for all s,y € R.

The spaces of type (5) can be globally defined on a manifold W with edges
Y C W. By this we understand a topological space (locally compact, para-
compact) such that W\ Y and Y are C°° manifolds of dimensions n + 1+ ¢
and q, respectively, and every y € Y has a neighbourhood V in W such that
there is a homeomorphism @ : V — X2 x Q for a closed compact C*® man-
ifold X and open Q@ C RY, where @ : V — X2 x Q induces diffeomorphisms
alyyy = a:V\Y - X" xQand@lyny =: o' : VNY — Q (such an @ is called
a singular chart), and the transition maps Ba~! for different a : V\Y — X" xQ,
B:V\Y - X" x Q extend to diffeomorphisms

Ry xXxQ—-RpxX xQ.

For simplicity, let us assume here that Y has a neighbourhood in W' correspond-
ing to X2 x Y; then the transition maps (r,z,y) — (7, Z,y) may (and will) be
chosen to be independent of r and x for small 7. Instead of W we mainly look
at the stretched manifold W.

By definition W is a smooth manifold with boundary, where the local struc-
ture near W is given by Ry x X x 2 and (under our assumption) W 2 X x Y.
There is then a canonical projection W — W that is a diffeomorphism int W —
W\Y and locally near W induced by Ry x X x Q@ — X2 x Q. Locally near W
we employ the splitting of variables into (r, z,y) with covariables (g, &, 7). Local
symbols are assumed to be edge-degenerate, i.e., of the form r~#p(r, z, v, 0,€,7),
where

p(T, z,9,0,§, 77) = 5(7'7 z,y,70,§, 7'77)

for a classical symbol p(r, ,y, 9,&,7) of order u € R that is smooth up to r = 0.

Assume, for simplicity, W to be compact. Then, using the local spaces (5)
we can invariantly define weighted Sobolev spaces W*7Y(W, E) of sections in
vector bundles £ on W. The bundles are assumed to be pull-backs of bundles
on W under the projection W — W. There is then a restriction E’ of the former
bundle to Y. Analogously, we employ the notation with prime for other bundles
on W of the described kind.

The pseudo—differential algebra on W consists of block matrix operators of

the form
A K WY (W,E) WS HBY"K(W, F)
A= T Q : 85 - b ’
H*(Y,J™) H*~H(Y,J7T)

where E, F € Vect(W), J~, J* € Vect(Y). The upper left corneru.l.c. A= Ais
a pseudo—differential operator with edge-degenerate symbol, plus certain Mellin
and Green operators. The principal symbol structure consists of a pair

9 (A) = (0y(A),0A(A)),

where o,(A) is the principal interior symbol, o4 (A) the principal boundary sym-
bol. Let us illustrate the nature of the symbols for the case of edge-degenerate
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differential operators. Locally near Y in stretched coordinates (r,z,y) € R} x
X x Q they are assumed to be of the form

o J
A=r# | > ajalr y)(—ré—r—) (rD,)®
jtlal<u
where a;q(T,y) € Diff#~ U+l x, E,, F) with smooth dependence on (r,y) €
ﬁ.{. x Q.
oy(A)(r,z,y,0,€,7) (in local coordinates x on X with covariables &) is the
standard homogeneous principal symbol, where

out(A)(r,z,y,0,€ 1) = oy (A)(r,z,y,m " 0,&, 77 )

is smooth up to r = 0. Globally, oy ¢(A) has an invariant meaning as a homo-
morphism ,
0y,£(A) : Ty eE — my ¢ F, (6)

w,e : Tf W\ 0 — W, where TfW is the compressed cotangent bundle of W.
Moreover, the homogeneous principal edge symbol of A is given by the expres-
sion

_ AY
or A = T a0z ) 0"
jtlal<p
It represents a homomorphism
on(A) : my KN (XN @ E' — ay K H 7" H( XM F/, (7
my : T*Y \ 0 — 0. The operator A is said to be oy—elliptic, if (6) is an
isomorphism (note that this is required up to OW).

Theorem 5 Let A be oy —elliptic. Then for everyy € Y there exists a countable
set D(y) C C such that D(y) N {z: ¢ < Rez < c'} is finite for every ¢ < ¢,
such that

on(4)(y,m) : K*V(X") ® B} — K*H7#(X") ® F) (8)
is a Fredholm operator for ally € R such thatI'ny1_ N D(y) = 0, forall s € R.

Remark 6 D(y) is the set of all non-bijectivity points of the principal conormal
symbol of oa(A)(y,n), regarded as an operator of Fuchs type on the cone X",
namely

om(A) (Y, 2) := om(9n(A))(y, 2)

m
=Y _ao(0,y)2 : H*(X)® E, » H* *(X)® F,.
=0
We now assume that there is a 7 € R such that Ty, N D(y) = @ for all

y € Y. Similarly to methods in pseudo—differential boundary value problems
we fill up the Fredholm family (8) to a family of isomorphisms

Ko (XN)@E!, K*=#1-K(XM) ®F),

on ) = (0 ) e - e
Yy Y

10
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homogeneous in the sense

on A = (5 ) oA (5 ‘f)—l (10)

for all (y,n) € T*Y'\0, A € Ry. Analogous considerations are possible for edge-
degenerate pseudo—differential operators A. Implicitly we assume that a certain
topological condition on oy (A) is fulfilled, i.e., that bundles J~, J* € Vect(Y)
can be chosen such that (9) are isomorphisms. In general, if that condition is
violated, we can only choose the bundles J* to be given on T*Y \ 0, whereas
in (9) they are given on Y itself, cf. the remarks at the end of Section 5 below.

Consider the (1, 2), (2,1) and (2, 2)—entries of (9) in local coordinates Q2 x R?,
Q C R? open. Then, multiplying them by an excision function x(n) in R? we get
corresponding entries of a 2 x 2-matrix g(y, n) classical operator—valued symbols
9(y,n) = (gij(y, 77))i.j=l,2,

9(y, 1) € SAHQ X RG> @ CE) @ CI-, (KX #+e o Cl)y o Ci+),  (11)

s € R, where, for simplicity, X" is omitted in the spaces e, f and ji are the
fibre dimensions of E, F and J*, respectively, and € > 0. Associated pseudo-
differential operators Op(g)u(y) = [[ e®=¥)g(y, n)u(y’) dy'dn give us (after a
globalisation by means of a partition of unity on W and W) continuous maps

A g\ WUWE)  WERITH(W, )
A= (T Q) : & ad S (12)
HY(Y,J™)  H*H(Y,J¥)

for all s (the upper left corner is the given edge-degenerate operator A itself).

Remark 7 In general, e.g., in compositions of operators of the form (12) or
in parametrices (of elliptic operators) we have to replace A in the upper left
corner by A+ M + G, where M is a “smoothing” Mellin operator and (locally)
G = Op(g11), where g11(y,n) is a so—called Green symbol that appears as an
upper left corner of a symbol of the form (11).

The details of the calculus of operators of the kind (12) show that it is reason-
able to further specify the nature of the entries of (11) by requiring symbols with
values that map to subspaces of KX>7~#(X") @ C’+ with specific asymptotics
in the first component and that the pointwise formal adjoints have analogous
properties.

An operator
r 00 (13)
of the described kind, where, in general, A is a (classical) pseudo—differential
operator with edge degenerate symbols (in local coordinates near W) is said
to belong to the space Y*(W,g;v), where g = (7,7 — u) are the involved
weight data and v = (E,F;J~,J%) the bundles. (Weight strips © in g as
they are used in other expositions on edge degenerate operators are omitted,
here; we simply assume that those strips equal (—o00,0|, i.e., they are then
superfluous. Operators of this form constitute what we call the edge algebra
(that is, the union of all Y*(W, g;v) over 4 € R and weight and bundle data,

A= (A+M+G K)

11
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where algebra operations are admitted when these data fit together. To each
A = (Aij)i,j=1,2 € Y*(W, g;v) we have a pair of principal symbols, namely

o(A) = (oy(A),or(A)),

where oy, (A) := 0y (A11) is the homogeneous principal pseudo—differential sym-
bol of order p of the upper left corner; it has a Fuchs type variant oy ¢(.A),
cf. formula (6), and o4 (A) is the “sx—homogeneous” principal edge symbol of
order u that is a homomorphism of the form (9) satisfying relation (10) (the
choice of s is unessential).

Theorem 8 Let A € Y*(W,g;v) forg = (v,y—p), v=(E,F;J~,J*) and
o(A) = 0 implies that (12) is compact for every s € R.

Theorem 9 A € Y*(W, g;v), B e Y (W, h;w) forg = (y—-v,y—(u+v)), v =
(Eo, F;Jo,J*), h = (v,7—-v), w=(E,Eo; J™, Jo) implies AB € Y**t*(W;g o
h;vow), wheregoh = (y,y - (u+v)), vow = (E,F;J~,J*t), and we have

0(AB) = a(A)o(B)

(with componentwise multiplication).

Remark 10 The edge algebra is also closed under formal adjoints A* with
respect to the W%0- and H®-scalar products and we have a corresponding rule
o(A*) = a(A)*.

The basics on edge operators are elaborated in [25], [6] or [28]. A new version
of edge symbol calculus is given in [10].

Definition 11 An operator A € Y*(W, g; v) is said to be elliptic if both oy, ¢(A)
and oa(A) are isomorphisms.

The condition concerning oA (.A) is an analogue of the Shapiro-Lopatinskij
condition in elliptic boundary value problems.

Remark 12 Smooth manifolds with boundary may be regarded as manifolds with
edges, where the boundary is interpreted as an edge and the inner normal (with
respect to a Riemannian metric) as the model cone of the local wedge. Classical
symbols that are smooth up to the boundary may be viewed (modulo smoothing
symbols) as particular edge-degenerate ones. So the calculus of boundary value
problems for pseudo-differential operators with and without the transmission
property can be regarded as a subcalculus of the edge algebra in general.

Theorem 13 Let A € Y*(W,g;v) where g = (v,y—u), v = (E,F;J~,J%).
Then the following conditions are equivalent,

(i) A s elliptic,
(ii) A s a Fredholm operator (12) for some s € R.

Remark 14 If (12) is Fredholm for s = so € R then so is for all s € R.

Remark 15 If A € Y*(W, g;v) is elliptic, there is a parametriz P € Y~#(W,g~!
where g~ = (y — u,v), v = (F,E;Jt,J7), in the sense that T — AP and
I - PA are of order —oo in the respective classes (and as such compact in our
weighted edge Sobolev spaces).

12
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The assertion (i) — (ii) of Theorem 13 as well as Remarks 14, 15 may be
found in [28]. The converse (ii) — (i) has been proved in [2].

Remark 16 Let A € Y*(W, g;v) be elliptic, and let
ue W YW, E)Ye H (Y, J7).
Then Au = f € Ws—H#Y"H(W, F) @ H*~#(Y,J*) implies
u € W(W, E) @ H*(Y,J").

An analogous result holds for subspaces with asymptotics, i.e., when the first
component of f has (say, continuous) edge asymptotics near Y then the first
component of u has asymptotics, too, of some type that is determined by f and
the operator, cf. [25].

5 Higher algebras on manifolds with geometric
singularities

As noted in the beginning (pseudo-) manifolds with geometric singularities such
as conical points, edges, boundaries, corners, etc. play a role in many applica-
tions. Let us first give a list of examples of “regular” singular spaces that directly
occur in models of mechanics, theoretical physics, etc., and let us describe the
principal symbol hierarchies in corresponding algebras. If we talk about degen-
erate symbols we refer to stretched coordinates near the singularities.

(i) Closed manifolds B with conical singularities. Symbols of operators A in
the “cone algebra” are

o(4) = (0y(4),om(4)) (14)

where 0, (A) is the Fuchs type homogeneous principal symbol outside
the singularity and os(A) is the principal conormal symbol (the latter is
operator—valued and takes values in pseudo—differential operators on the
base X of the cone), cf. [23], [25], [27], [40], [17].

(i) Manifolds B with boundary and conical singularities. Symbols of opera-
tors A in the cone algebra of boundary value problems are

a(A) = (0y(A),05(A),am(4)), (15)

where oy (A), om(A) are analogues of the corresponding components in
(14) while o5(A) is the boundary symbol (which is operator-valued and
acts in Sobolev spaces in normal direction to the boundary, if we talk

about the transmission property at the smooth part of the boundary), cf.
[21], [22], [5].

(iii) Closed manifolds W with edges. Operators constitute the “edge algebra”;
a particular case is the algebra of boundary value problems without the
transmission property. Symbols of operators A in the edge algebra are

o (A) = (o4(A4),97(4));

13



HIGHER ALGEBRAS

here oy (A) is the edge-degenerate homogeneous principal symbol and
o (A) the homogeneous principal edge symbol. It takes values in operators
in weighted Sobolev spaces on the infinite model cone, cf. [25], [6], [28],
[27].

(iv) Manifolds W with boundary and edges. Symbols of operators A in the
edge algebra of boundary value problems are

o(A) = (9y(A),05(4), 0 (4)), (16)

where subscripts indicate the meaning of components as before, cf. [12],
[31], [9]-

(v) Manifolds K with corners (that are locally cones where the base manifolds
have also conical singularities. There are then one-dimensional edges con-
necting the corner singularities.) Let A be an element in the corresponding
“corner algebra”. The corner induces a corner conormal symbol compo-
nent o.(A) that takes values in the cone algebra of the local base of the
corner, while the other symbol components have a similar meaning as
before, and we have

o(A) = (oy(A),0n(A4),0.(4)) (17)
for the boundaryless case,
0(A) = (0y(A),08(A4),07(A),0.(A4)) (18)

where K has a boundary, where, in particular, the homogeneous principal
symbol o (A) is corner degenerate in both cases (and, for boundary value
problems, has the transmission property with respect to the smooth part
of the boundary), cf. [26], [31], [30], 18], [36].

In general, if M is a stratified space in the sense of notation in Section 1,
there is a general method of building up higher analogues of the edge and cor-
ner algebras of pseudo—differential operators by an iterative method. Details
are published [30]. The idea consists of repeatedly applying a machinery, called
“conification” and “edgification” of an already achieved calculus. Conification
yields a calculus on a cone, starting from an already constructed calculus on
a (compact) base space with singularities. Edgification yields a calculus on a
wedge, starting from an already constructed calculus on a cone. Invariance con-
siderations and patching together such local calculi gives us operator algebras
globally on manifolds with singularities that are locally modelled by correspond-
ing local cones and wedges. Then the procedure can start again, and we reach
in this way the full hierarchy of operator algebras on stratified spaces. The
construction in [30] assumes a certain regularity of the singularities in the sense
of some transversality of intersections of faces near lower—dimensional strata.
The cuspidal case should be possible as well. Special such theories for cuspidal
cones, wedges or corners have been elaborated in [37], [34].

A result of [30] is that each conification step contributes an extra “conormal
symbol” and an extra weight in the Sobolev spaces. Each edgification step
contributes additional edge conditions along the new arising edge and a new
symbol that encodes a higher analogue of the Shapiro-Lopatinskij condition in
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the elliptic case. Ellipticity of edge conditions in such a sense requires that
a certain topological obstruction vanishes. This is analogous to the Atiyah-
Bott condition in boundary value problems, cf. Atiyah and Bott [1], Boutet
de Monvel [3], Rempel and Schulze [19], Seeley [39], or the author’s joint paper
with Sternin and Shatalov [35]. The methods developed in Schulze [29] may also
be applied to edge singularities, cf. the author’s joint paper with Seiler [32].

Let us finally note that ellipticity in operator algebras with symbol hierar-
chies gives rise to many interesting new elements of the index theory, and it is a
very ambitious program to express the Fredholm index in terms of the symbol
structure. This is a wide field with contributions by many authors, cf. the
papers [7], [33], (8], [9], [20], [16] and the references there.
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