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Solvability of a class of differential equations in
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1 Introduction

We study solvability of some class of differential equations in the sheaf of
2-analytic functions, that is, microfunctions with holomorphic parameters.
For that purpose, we introduce an integral formula of Mellin’s type for holo-
morphic functions.

Let V and X be the following regular involutive and Lagrangian subman-
ifolds of T3, X with M = R", X = C” respectively:

V= {(az,\/——_lf-dx)ETj{,,X;fl='-'=§n—1=0},
2 ={(z,V=1¢ - dr) €Ty X; &1 =+ = ooy =70 = 0},

where T%X = T3, X \ M. One sets ¢ = (2',,) with ' = (z1,...,2,—1) and
€ = (¢,&) with & = (&,...,€a-1)- Let P be a differential operator with
analytic coefficients defined near a point 0 € M. Assume P is transversally
elliptic in a neighborhood of p, = (0,v/—1dz,) € X, that is, P satisfies the

property:
lo(P)(z, V=1¢/I€])| ~ (Izal + €'l/1€])’

for some non-negative integer [ in a neighborhood of p,. Here o(P) denotes
the principal symbol of P. Grigis-Schapira-Sjostrand [3] has given a theorem
on the propagation of analytic singularities for this operator P along the
bicharacteristic leaf of V' passing through p..
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On the other hand, assume P satisfies the property:

|o(P)(z, V=1E/|€])| ~ (|zal* + |€']/1€])"

for some non-negative integers k and [ in a neighborhood of p, € X~. We have
proved in [1] unique solvability in the sheaf 67‘2, of small second microfunc-
tions for this operator P. This result was obtained by using our elementary
construction of 67‘2, and the estimate of the support of solution complexes
with coefficients in C3. In this case, the structure of solutions of Pu = f in
the sheaf Cjs of Sato microfunctions is reduced to that in the sheaf A2 of
2-analytic functions. Therefore our result implies the above theorem due to
Grigis-Schapira-Sjostrand [3] because any section of A%, has the property of
the uniqueness of analytic continuation along the bicharacteristic leaves of
V.

In connection with these operators, we consider a new class of differential
operators with analytic coefficients defined near 0 € M:

P(2, Dy, 2nDs,) = Y 6a(z) DY (20D, )™, (1.1)

la|<m

where |a| = a1+ + an, DT = D2} ... D2, and D,; = 0/0z; for a0 =

Tn?

(o, o) = (01,...,a,) € N*. Recall that the sheaf A2, of second analytic
functions on V is defined by:

A, = H' (un(Ox))lv,

where N = {2z € X;Im 2, = 0} and py denotes the functor of Sato’s microlo-
calization along N. Any germ f(z) € A% at p, = (0,+/—1dz,) is obtained
as boundary value of a holomorphic function:

f(z) = bpp1,y, (F(2)), (1.2)
where F(z) € O(D*! x U,) for some r > 0, open sets:

Drt={zeC" |z <rji=1,...,n—1},
U, = {2z, € C;|za| < r,Im 2, > 0}.

Now one makes the hypothesis:

a(m,,..., 0)(0) 7é Oa ajo,..., O,m)(O) 74 0. (13)

By introducing an integral formula of Mellin’s type for holomorphic func-
tions, one has obtained the following theorem in [2] on the solvability for the
operator P: A} — A% at p..
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Theorem 1.1. Assume (1.3) for the differential operator (1.1). We assume,
furthermore, a germ f € A%, represented by (1.2) satisfies the following
growth condition. There exist positive constants p < 1, C such that

|F(2)| < C|Imz,|™, z€ DI *!'xU,. (1.4)
Then we can find a solution u € A%, of Pu= f.

In Theorem 1.1, we need the growth condition (1.4) because of some con-
dition in the integral formula. Here we will remove the growth condition (1.4)
by improving an integral formula of Mellin’s type.

Wakabayashi [5] also proved solvability of microhyperbolic operators and
some second order operators in a different way.

2 Statements of the main theorems

Let D, D' ¢ C*! be pseudoconvex domains with D’ CC D and let 7, a,
3 be constants with 0 < r < 1,0 < 8 —a < 2r. We set I, = (0,7/2),
I_=(-n/2,0).

Theorem 2.1. Let f(z) be a holomorphic function on D x {2, € C;a <
argz, < B, 0 < |z,| < r}. Then there ezist & > 0, fo(z) € O(D' x {2z, €
C;|za| < 6}), 9+(2',A) € D'({(,p,0) € D' x R x I.}) with XA = pe such
that for 2/ € D', |z,| < 9, a < argz, < B, we have:

£(2) = fol2) + L (2ae=®)P g4 (2, A) dA
+/ (zne_w)'i’\g_(z',)\) d,

and the following conditions are fulfilled.
(1) suppgs C {(#,p,0) € D' xR x I+;p > 0}.

(2) (p0/0p+i8/00)gs+ =0, Bg+/0Z; = 0 for j = 1,...,n—1; in particular,
g+ are holomorphic functions of (2',X) in {\ # 0}.

(3) For any € > 0 there ezists a positive constant C, such that one has
|g+(2',pe®)| < C; for 2 € D', p> 1, (7/2) —e 2 16| 2 €.

Here, we choose the infinite paths I'y as follows:

Ti:d=As(p) = pe®2?) peR, (2.1)
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where each 0+(p) € C*(R) satisfies the following conditions respectively:

0<0.(p) < m/2

+6+(p) 40, F0.(p) L0 as p— +oo (2.2)
p~t1log Clo,(p) = 0 as p— +oo.

We apply Theorem 2.1 to the explicit construction of microlocal solutions
for some differential operators treated in [2]. Let p, = (0,1/—1dz,) € X. We
consider the following differential operator with analytic coefficients defined
near 0 € M:

P(z, Dy, 7,D5,) = Y aa(z) D% (22D,,)>, (2.3)

la|<m

where || = a1 + -+ + an, Df = D$*...D2~, and D,, = §/0z; for a =
(,an) = (0, ...,0a,) € N*. This type of operators covers the transversally
elliptic operators treated by Grigis-Schapira-Sj6strand [3] as for the symbols
under the following condition:

A(m,,..,0(0) #0, a,.0m(0) #0. (2.4)

Before giving the statements of theorems, we recall the sheaf C;lfl x of holo-
morphic microfunctions on Ty X defined by:

Cgl}p( = HI(MY(OX)),

where Y = {z € X;z, = 0}. Any germ f(z) € 05|X7po is written:
f(z) = bpp-1,y, (F(2)),

where F'(z) € O(D*! x V,) for some r > 0, open sets:

D t={zeC" Y|z <rji=1,...,n—1},
V., ={2z, € C;|zn| < r,Imz, > —r|Re z,|}.

Then we have natural inclusion morphisms:
R 2
CY|X|2 = Ay |z = Culs,

where Cpr(= pp(Ox)[n]) is the sheaf of Sato microfunctions on M.
Let us consider the following Cauchy problem:

{P(z, Dy, 22D, Ju(2) = f(2) (2.5)

07 w(0,22,...,2n) = hi(22,...,2,), 7=0,...,m—1,
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where P(z,D,, z,D, ) is the complexification of P at (2.3) satisfying the
condition (2.4). We set complex submanifolds X', Y’ of X as follows:

XDOX' ={2€X;21=0}DY' =YNX'={z€ X';2, =0}
Further we set
V={(z2 12, G) €T X Imzy = - =Imzpg = 2, = 0,
G@=+=C(-1=Re( =0}~ X nr (X
with a natural projection 7 : T* X — X.

Theorem 2.2. Let P(z, Dy, z,D,,), po, X', Y', X' be as above, and
f(z) € C§|X,po ,  hi(za,...,2,) € 05,|X,,pg (i=0,...,m=1)

with p, = (0,v/~1dz,) € T3, X' be any holomorphic microfunctions. We
suppose the condition (2.4) for P. Then Cauchy problem (2.5) has a unique
solution u(z) € C$I xo- In other words, we have the following ezact sequence
and isomorphism in a neighborhood of po:

R P R P, AR
0 —Cyix |z — Cyixlz — Cyixls — 0,
R P ~ R m
Cix Isnm-roey = (Coaxr) " |
P P » .
where C3x" = Ker(C}x — C}x) and a natural trace morphism:

C&IXIZQ”—I(XI) S U(Z) — (aiIU(O, 22,44, Zn));‘n':_ol = (c$’|XI)m IEI.

Remark 2.3. According to Professor M. Uchida, this result is obtained
also by the usual Cauchy-Kovalevski theorem and the method of the micro-
support theory. However, our method is much more useful to get explicit
forms of solutions; indeed, we use only once the Cauchy-Kovalevski theorem
with a large parameter in solving the problems and never use arguments of
analytic continuation.

Theorem 2.4. Let P(z,D,,z,D,_), p, be as above. We suppose the condi-
tion (2.4) for P. Then we have the following ezact sequence and isomorphism
in a neighborhood of p,:

P P
0— A% g — Ab|zs — A s — 0,
P ~ P
c5|X 12 } A%/ IZ’)

where A27 .= Ker(A42, 2> A2).
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Remark 2.5. i) The last isomorphism is already obtained in Theorem 3.1 of
[2]. We quoted it here for the reader’s convenience. ii) In Theorem 3.2 of the
former paper [2], we needed essentially an additional hypothesis concerning
the growth order of the defining function F(2) of f(z):

|F(2)] < C|Imz,|™

for some p € (0,1) as Imz2, — +0. We can remove this condition by the
new idea in the decomposition of holomorphic functions, though the main
arguments about the explicit construction of solutions are the same as in the
former paper [2].

Together with our former results in [1], we obtain the following theorem
as a direct corollary of Theorems 2.2 and 2.4.

Theorem 2.6. Let P(x, D, z,D,,. ), po, X', Y', X' be as above. We suppose
the transversal ellipticity for the principal symbol o(P):

|o(P) (@, V=1¢/IED] ~ (lzal + 1€'l/1ED™ (2.6)

in a netghborhood of p, in T3, X. Then we have the following exact sequence
and isomorphisms in a neighborhood of p.:

0 — CuPls — Curls = Curlz — 0, (2.7)
Cor” | mrm-1(xry +— C5|XP|):mr-1(X') = (Cix)" |z (2.8)
where Cpr” = Ker(Cpy £, Cur).
Proof. By the solvability result of [1] in small second microfunctions for a
transversally elliptic equation Pu = f, we have the isomorphisms
Az Oz, (AV/PAY) 2 (Cu/PCu) |

in a neighborhood of p,. We remark here that condition (2.6) implies our
main condition (2.4) for P. Therefore the exactness of (2.7) follows from
Theorem 2.4. Further the isomorphisms (2.8) follow from Theorems 2.4 and
2.2. O

3 A sketch of proof of Theorem 2.1

We can suppose from the beginning that 0 < a < # < 27. Further we choose
a pseudoconvex open set D” as D' CC D" CC D. We set:

UO = {zn € C; |zn| < T})
Uy =P'\ {2z, € C;|z4| <7, B< arg 2, < 0 + 2m}.
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Proposition 3.1. One can find functions f;(z) € O(D x U;) for j = 1,2
such that f = fo+ f1 in D x {z, € C;a < argz, < 3,0 < |z,| < r} and
fi(2/,00) = 0.

Next, choose the system of local coordinates (2/,w) = (21,...,2,_1,w)
with
w=1logz, a<argz,<)/,
and set w = u + 1. Then we will decompose the second function f,(z/,e%)
into a sum f,(2',w) + f-(2',w) of holomorphic functions fy € O(D" x Q)
satisfying some growth order conditions. Here we set:

Q={weCRew>logr or a <Imw < g},
QO = {we C;Rew > logr or Imw > o},
Q” ={weC;Rew >logr or Imw < 8}.

To this end, we will solve a f-equation under some growth order condition
as follows: We choose a C'*°-function ¢: R — R such that 0 < ¢(v) < 1 for
vER, Y(v) =0for v < a+4d and Y(v) =1 for v > B — 6;, where §; > 0 is
a small constant. Using this function, we define:

9, 0) = o (i, )0(0) = S (2, €W/ (0)

for o < v < . We can consider g(z’,w) as a C®°-function on D x C by
setting g(z’,w) =0 for Imw € R\ (¢, B). |

Lemma 3.2. There exists a C*™-function x: R — R such that g(2',w) €
L}(D" x C,x), X' (u) <0, x"(u) >0 for any u € R and that x(u) =1/2 - u
foru > 0.

Lemma 3.3. There ezists a subharmonic function p(w) € C*(C) such that
o(w) > x(u) fora+6 <v< -8 and p(w) =0 forw & {w € C;u <
1, a<v< g}

From Lemmas 3.2 and 3.3, it follows that g(2’,w) € L*(D" x C, ). Then
we can apply Theorem 4.4.2 in Hérmander [4] to g(¢',w)dw € L§,, (D" x
C, ), that is to say, there is a solution h(z’,w) € L?*(D" x C,loc) of the
equation Oh = g dw such that

[ e i@ wp)?avs [ jgevay
D'"xC D"xC

In fact, h € L2(D” x C, ¢), where ¢(2/, w) := o(w) + 21log(1 + |(Z, w)|?).
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f+(2,w) = fi(Z, €)1 = 4(v)) + h(2, w),
f-(#,w) = fi(2,€* ) (v) — h(Z', w).

We find immediately that fy € O(D” x Q%) and that
fi(Z,e¥) = fo(Z,w) + f-(Z,w) for (2, w)e€ D" xQ.

Proposition 3.4. There ezist positive-valued locally bounded functions C’;h
on I+ such that one has

|22, w)] <Cy (1+|wf?) forVZe € D', w=ivs & (u+iv)e ™
withuy e R,v>0,v.=a, v =0.
Now, we define the following holomorphic functions:

fi(z’, ’LU)

Fi(Z,w) = :
+(7,w) (w — iy £1)*

(3.1)

By Proposition 3.4, we can get the following estimates.

Corollary 3.5. There ezist positive-valued locally bounded functions C;':' on
I, such that one has

Cy’ .
|FL(Z,w)| < T o for 2 €D w=iys+(p+iv)e ™

M2+V2
with p € R, v > 0.

Definition 3.6. One defines

oo

G+(Z,A) = e““’/ Fi(2,ive £ pe)e " dy, (3.2)

for2 e D', A= pe? withpeR, 0 € L.

Note that the integrals in (3.2) absolutely converge by Corollary 3.5 and
that these functions are continuous in (2/, p,#). Note, moreover, that G is
written as:

Gi(Z',A) = ﬂ:/ Fu(2,w)eT @A gy
C+(0)

where C4(0) is the path Cy(0): w =i+ + ue™, u € R.
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Lemma 3.7. (1) suppGs: C {(#,p,0) € D' xR x Iy;p > 0}.
(2) (p0/0p+1i0/00)Gx =0, 8G+/0Z; =0 for j =1,...,n — 1; in partic-
ular, G+ are holomorphic functions of (2',A) in {\ # 0}.

(3) There ezist positive-valued locally bounded functions C’o on I+ such
that one has |G+(2', pe®®)| < CE" for V2',Vp.

Definition 3.8. We set the distributions g+(2',A) € D'({(,p,6) € D' x
R x I.}) with A = pe®? in the statement of Theorem 2.1 by

/ 1 —1 a 4 /
g+(2',A) = ﬂ(e 05; + 1) G+(Z', ).

Further we give the constant C, by

4! 1 41 € T
= e . =< < = -
Co=Cape =5 (s +1) (G5 <01 < 7

27 \sin(e/2) }

N M

for 0 <e < 7w/4.

Then, since pd, + 10 commutes with e=*9,, we obtain the conditions
(1) ~ (3) of g+ in Theorem 2.1 directly from Lemma 3.7 and the Cauchy
estimates. Hereafter, let Iy be any paths satisfying conditions (2.1), (2.2).

Lemma 3.9. Forany 2 € D', w=dy+ £ (u+iwv)e ™™ withp e R, v > 0
and with 0 € I, we have in a classical sense

e [ e
Fi(?,w) = E/ Gt(z’,pe'o)e‘("“”)” dp.
Further by the change of the path of the integration, we finally obtain that
F:l:(z 'w / G:i: Z pew:l:(P)) i‘(’w_”:t)Pe'oi(P)(l + pel ( ))61,01 P)dp

forany 2’ € D'w € {£Imw > +v.}.

Here, recalling the relationship (3.1) between fi and Fy, we have
fe(Z,w) = (w—iye £19)*Fu(,w)

0 1 0

= / (p)Gi(Z A+(p)) - ( ~ () 3o

4
Fi(w—iv+)A+(p)
e dp
—o 2 Xe(p) p)

_ [: eTilw—i7£)A2(p) (1 + o (p)) i(p) G+(#, )\i(p)))dp

=/_‘: 27(:)) i(w—ire)Ae (p) ( = 1( );) G+ (2, As(p))dp.
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8,Gx (2, Ax(p)) = [0,Gx (2, pe®) + 0. (0)BsG (2, pe®)] o=t ()
= [0,G+ (2, pe®) + ip0(p)0,G (2, pe®)]lo=0. (o)
= e~ )\, (0)[0,G+ (2, pe™)]|0=04(0)>

we get

(1+Xe(0)710,)*G(2, Ax(p)) = [(1 4 €7°8,)* G (2, pe®)]l0=b. (o)
= 2mgs (2, Ax(p))-

Therefore we obtain
fuld ) = [ B gy (2 A ()Xe)p

_ / Ew=1 g (1 A)dA.
Iy

This completes the proof of Theorem 2.1.
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