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A Sharp Existence and Uniqueness Theorem for
Linear Fuchsian Partial Differential Equations

Jose Ernie C. LOPE

Abstract

This paper considers the equation Pu = f, where u and f are contin-
uous with respect to ¢t and holomorphic with respect to 2z, and P is the
linear Fuchsian partial differential operator

m-—1
P=(D)™+) Y 6ja(t2)(ut)D:)* (D).

i=0 ja|<m—j
We will give a sharp form of unique solvability in the following sense: we

can find a domain 2 such that if f is defined on 2, then we can find a
unique solution u also defined on Q.

1 Introduction and Result

Denote by N the set of nonnegative integers, and let (¢,2) = (t,21,...,25) €
RxC". Let R > 0 be sufficiently small, and for p € (0, R}, let B, be the polydisk
{z€C™ |zl <p fori=1,2,...,n}.

Given any bounded, open subset D of C", we define by A(D) the Banach
space of all functions g(z) holomorphic in D and continuous up to D; the norm
in this space is given by ||g||p = max, .5 |g(z)|- Let T > 0. Then we denote by
C°([0, T, A(D)) the set of functions continuous on the interval [0, T] and valued
in the space A(D).

We say that a continuous, positive-valued function x(t) on the interval (0, T)
is a weight function if u(t) is increasing and the function

p(t) = /Ot ZOPA (1.1)

8

is well-defined on (0, T'), i.e., the integral on the right is finite. (See Tahara [7].)
Consider now the linear partial differential operator

m-—1
P=(@D)™+ ) Y. ajalt,2)((t)D;)*(tDe). (12)

J=0 |a|<m~j

Here, Dy = 3/0t and D, = (8/8z,...,0/0z,); u(t) is a weight function; and
the coefficients a;o(t,z) belong in the space C°([0,T], A(Bg)), ie., for any
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s € [0,T], each of the functions a;,(s,2), when viewed as a function of z,
is holomorphic in Bg and continuous up to Bg. We associate a polynomial with
this operator, called the characteristic polynomial of P, and we define it by

C(\2) = X™ + a1 0(0, )AL + - - + a0 0(0, 2). (13)

Its roots A1(2),...,Am(2) will be referred to as characteristic exponents. In
what follows, we will assume that there exists a positive number L such that

RAj(2) <=L <0 forallz€ Bgand1<j<m. (1.4)

Baouendi and Goulaouic [1] studied the above operator in the case when
p(t) = t* (a > 0). They called such operator a Fuchsian partial differential
operator, which for them is the “natural” generalization of a Fuchsian ordinary
differential operator. In their paper, they gave some generalizations of the
classical Cauchy-Kowalewski and Holmgren theorems for this type of operators.
Their method has been applied and extended to various cases as can be seen,
for example, in Tahara [6], Mandai [5] and Yamane [8].

In a previous paper [4], the author proved existence and uniqueness theorems
similar to those given in [1], but for general u(t). Essentially, he proved the
following unique solvability result. ’

Theorem 1. Let P be as in (1.2). Then given any p € (0, R), there exists an
e € (0,T) such that for any f(t,z) € C°([0,T), A(Br)), the equation Pu = f
has a unique solution u(t,z) € C°([0,¢], A(B,)) satisfying for 1 < p < m the
relation (tD¢)Pu € C°([0,¢], A(B,)). .

We remark that although f(t, z), viewed as a function of z, is defined on B,
the existence of the solution u(t,z) is only guaranteed up to B,, with p < R.
Moreover, any two solutions of Pu = f can only be shown to coincide in a
neighborhood of the origin which is smaller than the neighborhood on which
the two are defined.

In this paper, we shall present a formulation leading to an existence and
uniqueness result sharper than the one given above. The result is sharper in the
sense that the solution u(t, z) of the equation Pu = f will now have the same
domain of definition as the inhomogeneous part f(t, z).

To proceed, we will need the following definitions.

Definition 1. Let 7 € (0,T), v > 0 and ¢(t) be the one in (1.1). We define
(1) wr[y] ={z €C |zi] < R—yp(r) fori=1,2,...,n}, and
(i1) Qrly] = {(r,2) e RxC™"; 0< 7 <T and z € w,[7]}.

Definition 2. Let p € Nand v > 0.

(i) We say that f(t,z) belongs in Ko(Qr[7]) if for each 7 € [0,T], we have
f(t) € C°([0, 7], A(w-[]))-
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(i) We say that w(t, z) belongs in Cp([0, 7], A(w-[y])) if for all 0 < j < p, we
have (tD;}'w(t) € C°([0, 7], A(wr [1]))-

(#1) We say that u(t, z) belongs in Kp(Q2r[y]) if for each 7 € [0,T], we have
u(t) € C3([0, 7], A(w- [7]))-

Under the above assumptions, we now state the following main result.

Theorem 2. Let P be the operator given in (1.2). Then there exist constants
To > 0 and o > 0 depending on P such that for any f(t,2) € Ko(Qr,[0]), the
equation

Pu=f in Qm, )] (1.5)

has a unique solution u(t, z) in K., (21, [7))-
Moreover, the solution satisfies the a priori estimate

Z:;) m2x|(tDt)"u| < Cm§x|f|, (1.6)

where A is the closure of Q1,[v0] and C > 0 is some constant dependent on the
above equation and on the domain Qg [0).

Note that f(t,2) and u(t, z) both have Qr,[7o] as their domain of definition.
This fact allows us to restate our theorem in the following manner: for any
T, v > 0, let X1, and Yr . be the spaces K,,,(Qr[7]) and Ko(Qr[7]), respec-
tively. Let W , be the subspace of Xt consisting of functions u € X7, such
that Pu belongs in Y7 . Define a linear operator ¥ from Xr, to Y7, with
domain Wr ., by Yu = Pu. Let || ||7,, denote the maximum norm in the closure
of Qr[y]). Then X, and Y7, are Banach spaces; given u € X, and f € Y7 ,,
we define their norms by Z;;n=o l(tD¢)Pulir,y and ||fllz,y, respectively. Note
further that the operator ¥ is a closed linear operator from X7, to Yr . The
above theorem can now be stated as

Theorem 2'. There exist Ty, Yo > 0 depending on P such that the operator ¥
is a one-one, closed linear operator from X, ,, onto Yr, ~,.

Since ¥ is an injection, ¥~! exists and is also closed. The Closed Graph
Theorem further implies that ¥~! is continuous. The estimate given in (1.6) is
just a consequence of the continuity of ¥!.

2 Preliminary Discussion

We can rewrite the operator P as

m-—1 v
P=0+> 3 cialt,2)(wt)D:)*(tD),

=0 |a|<m-j
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where the operator Q is defined by

Q = (tDy)™ + am—1,0(0,2)(tDe)™ ! + - - + ag,0(0, 2) (2.1)
and
. if
cialt) = { 426 el £0
aja(t,2) —a;a(0,2) if|a| =

Note that the coefficients of Q are holomorphic functions of z in Bg. Note
further that the characteristic exponents of Q are the same as that of P, and
hence satisfy (1.4).

Lemma 1. Fiz 7 > 0 and let g(t) € C°([0,7], A(w:[7])). Then the equation
Qu = g has a unigue solution u(t) € C%, ([0, 7], A(w-[7Y])) given by

1 t prSm §2 s _)\o’(m) Sm—1 _'Aa(m—l)
wey = oo 3 [ () T () T
: 0€Sm 0 0 0 "

81\ ~Aen) ds d32 dsm
— —_——— 2.2
X (82) 9(81 S1 82 Sm ( )

Here, Sy, is the group of permutations of {1,2,...,m}.

A result in symmetric entire functions asserts that u(¢, z) is holomorphic
with respect to z. The fact that it belongs in C3, ([0,7], A(w-[7])) is seen in the
integral expression, but may actually be obtained a priori. (See [1].)

To facilitate computation, we define for A = (Aq,..., A;n) the function
. Ao(m 1\ " Ao(m-1) 0\ o)
) def (sm) ( )(sm 1) (_) ’ 9.3
o= Z - - (23)
for some dummy variables ss, ..., sy,. Define, too, the integral operator

(m) Sm
/ def // / (0) dé d82 ) dsm (2.4)
[t:6]

Using the above, we can now write the solution u(t) of the equation Qu = g as

(m
u(t) = G sNg.

[t:s]

In our proof of the main theorem, it will be necessary to consider the action
of the differential operator (tD;)? on integral expressions similar to the one in
(2.2). One can easily verify the following

Lemma 2. Let u(t) be the solution of Qu = g. Then for a natural number p
less than m, we have

(?)

(tDy)Pu = Z/t

i=m—p 31]

{m| Z hi( a,,\)(s') S
x (38:1) TAeti=n) (Z_:)_A"”}, (2.5)

99



where the functions hi(o,\) are suitable polynomial functions of the character-
istic exponents A1 (2),...,An(2).

For brevity, let us set, for a natural number k,

Hi(k,\) = E hi (0, A ( )-*«w(sk-l)-*«“-f{.(i)'*"‘”. (2.6)

S 8
= k 2

By symmetry, the functions H:(k, \) are holomorphic with respect to z and thus
belong in A(Bg).
The next lemma is useful in evaluating some integral expressions in the proof.

Lemma 3. Let k be natural number. Then the following equalities hold:

/373" 1/81 30 LdSO dsk_l _ 1
Sk—1 - Lk

//_8.“_/8’ M(Sk)ﬂ(sk—l) . p(s1)

oJo Jo Sk Sk-1 81

so\L st 1
( 0) 70 _0<p(30)]k dso...ds, = A7

The first equality is obvious. The second can be proved by reversing the order
of integration and recalling that ty'(t) = u(t).

To estimate the derivatives with respect to z, we have the following lemma.
(For a proof, see Hérmander [3], Lemma 5.1.3.)

Lemma 4. Let the function v(z) be holomorphic in Bgr, and suppose there are
positive constants K and ¢ such that

K

lvll, < (R_—p)—c for every p € (0, R). (2.7)
Then we have
Ke""'(é +1)
1D vll, E- p)c+|a'|a| for every p € (0, R). (2.8)

In the above, we define (¢)p = (c)(c+1)---(c+p—1).

3 Proof of Main Theorem

Let f be any element of Ko(Qr,[y0]). Here, the constants To > 0 and 7o > 0
satisfy some conditions which will later be specified. For convenience, we will
drop the subscript in both and instead use T and 7; we will again use the
subscript upon stating the conditions that these constants need to satisfy.
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We will use the method of successive approximations to solve the equation
Pu = f. Define the approximate solutions as follows:

0= e £ (3.1)
U, = s .
° [t;8]
and for k£ > 1,
(m
Cug(t) = ] G s(A) [f S(s)ug— 1] (3.2)

Here, t € [0,T7], and for brevity, we have set S(t) = Eg_o 2 lal<m—j Cira(t 2) -
(u(t)D;)*(tD)?. Note that for all k, the approximate solutions ug(t,z) are
defined on Q,{y0]. Furthermore, they are continuous with respect to ¢ and
holomorphic with respect to z on this region.

For each k, we also define the sequence of functions vy (t) = ur(t) — ug—1(t),
with u_; = 0. Then the wvi(t, 2z)’s are also defined on the same region as the
ug(t, z)’s, and are also continuous with respect to t and holomorphic with respect

to z. Using the expression for ug(t), we have vy (t) = f[grzl)G YA f andfor k > 1,

. (m)
ve(t) = /[ | GLOSE. 33)

To prove that the approximate solutions converge to the real solution, we
will henceforth fix one ¢ € [0, T, and estimate the functions v (t). Let C be the
bound on [0,T] x Bg, of all ¢ja(t,2), and K be the bound in Q7[y] of f(¢,z2).
As GY()\) and H!(k,)), we have for 1 < k < m and for some D > 0:

sup |GI(V)| < ( )L and  sup |Hi(k,N)| < D(%)L. (3.4)
2€BR 2€Bgr

We can easily see that |[uo(t)]|,, is bounded by KL~™ for any 0 < ¢t < T.
Here, we have written for convenience ||-[|,, in place of |||, [)- For general k,
we note that v (t) is given by the iterated integral

m)
ve(t) = (- l)k/ G? (N)S(sk) [ G (N)S(sk—1)--
(m)
G55 () (s0)- (3.5)

[s1550]

. /[ | ]Gs2(A)S(sl)

The expression above can be expanded using Lemma 2, and thus obtain a finite
sum whose number of terms is less than (mJ)*, where J is the cardinality of
the set {(j,a); 0 <j<m—1and |a] <m—j}. Each term of the finite sum
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has the form

(m) (r)
I = (—l)k Gstk ()‘) Cik,an (/J‘Dz)ak/ H;: 1(2’“’ ’\) Clk—1,00-1 (“Dz)ak—l

[t;s] (8%:8k-1]

(i2) (1)
. /[ HE2(i3,)) ¢y (uD3)™ / Ho (i, ) f(so), (3.6

82;81 [81380

where for each p, the relations m — j, < i, < m and |a,| < m — j, hold. (Here,
ap is a multi-index and should not be confused with the pth component of a.)
The above is further equal to

L [0 [0 (1)
= (-1) ' Gs.,cy.,a,.(Sk)(u(sk)D )%

[t;sr] / [8k:8k~ 1] [51380)

X H::-lcjk—hak-x(sk—l)(l‘(sk—l)Dz)ak-l T

x Hglcjy ay(81)(1(81)D2)* Hy} f(s0). (3.7)

Let Fi(s) denote the integrand of the above integral. Let R,, = R — yy(so).
Then all the functions above, when viewed as a function of z, belong in A(ws, [7])-
(This explains the necessity of the assumption that the coefficients be defined
up to Bg, for all ¢ in the interval [0, T).)

We can therefore apply Lemma 4 repeatedly, starting from the rightmost
expression, to obtain the following estimate: for any p € (0, R,,), we have

IFe@)lls, < K(CDY:u(sy)ll ... p(se)le (s_to)L )
e lea+---+a]
(Rso - P)

log + - + o' (3.8)

If Joy + -+ - + ag| = 0, then for sufficiently small T = T, the bound for any
cjo(t, 2) = ajo(t, 2) — a;,0(0, 2) is actually small, since a;o(t,2) is continuous
with respect to ¢. In other words, by choosing a small T' = Tj, we could find a
small constant 4 such that for any ¢ € [0,To] and 0 < s < ¢, the following holds:

8o\ L
IFe@)ll, < K8* ()" (3.9)
Going back to the integral, we have

(m) plin) (ir)
W, < / K6’°

[t 8k} [81. 8h— 1] [81,80]

d\k
= Km < K(L—o) , (3.10)

for some constant Lo dependent on L. This is possible since i, < m for all p.



If |a; + - - - + ax| # 0, set the p in (3.8) to be equal to R — y¢(t). This gives

1B, < KED) ulesn)™! (e (22)

e [og -+ -ak|
< loat oo+ ouf ('r[w(t) - <p(30)]> - G0

By renaming if necessary, assume that for p = 1,...,q, we have |a,| # 0.
Note that ¢ > 1. We will again use the continuity of a; (¢, z) to estimate those
expressions which are not acted upon by D, i.e., the k — g cases when |a,| = 0.
Just like before, we can show that for small 4,

IFx(s)ll,, < K(CD)18%1 u(sl)lall...#(sq)laql(§t2>"

e Jor+-+aq]
< loa o ol (v[cp(t) - cp(So)]>

Thus, the integral I can now be estimated as follows:

(3.12)

k— I ay+-- +aq[
”I“w: < K(CD)% q(fy) la1+"‘+aq|!

(i) (41) 80 L p(sy)lenl... pu(sy)ledl
lor+-taq| -~ (313)
(t;isk] V [sk380k~ 1] [31,30] [‘P(t) <P(30)] o a4

Letd=m+i,+...+4; and b= |a; + ...+ a4|. Note that b > ¢. Since for
each p, we have |a,| < m — j, < ip, and using the fact that both ¢(t) and u(t)
are increasing on (0, Tp), we have

I7|l,, < K (CD)? 8%~ q(e) B!

& e @) p) ¢ 1 dg
/ / / e '”511( )[cp(w SEP & s

/ﬁynl /nd b—2 30 L dso dm (3.14)
So T .

By (a) of Lemma 3, the second integral is equal to L~9+%+1  Thus, the above
simplifies into

I1ll,, < K(CD)6*~ q( ) Ld+b+1p)

& ]
SRR ) gy e @19

The last integral is equal to (Lb!)~!, by (b) of Lemma 3. Meanwhile, since
d < m(k + 1), we can find a constant L;, depending on L, such that L=¢ < L¥.
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Substituting these results into the above equation, we get

e-a(EY' 1 — g (CRY (ort(2E)
Irl,, < K(CD)% ( , ) Lk = K( . ) (6Ly) ( - ) . (3.16)
By taking a sufficiently small T, we can find a § small enough such that 6L,
above and 6Ly in (3.10) are both less than (mJ)~!. Now, since ¢ < b, we can
make the remaining expression less than one by choosing a large v = 7o.
To summarize, we have shown that if Ty is sufficiently small and -y, is suf-
ficiently large, some constants K > 0 and dp < 1 exist such that for all k, we

have
10k (D)l e < K6k for any t € [0, To). (3.17)

It follows that the series 3", vk(¢, 2) is majorized by a convergent geometric
series, and hence is itself convergent in C°([0, 7], A(w-[0])) for all T € [0, Tp).
This means that u(t) converges uniformly to u(t) on Qr; [yo].

By following the steps above, we can also show that for 1 < p < m -1,
the sequence (tD;)Pug(t) converges uniformly to (¢D;)Pu(t) on Qr,[v)]. Thus,
it follows that on a compact subset of Qr,[v0], the sequence D% (tD;)Puy(t)
converges to D%(tD;)Pu(t). This implies the convergence of the approximate
solutions to the true solution u(t).

Uniqueness may be proved in a similar manner.
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