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Abstract
This paper considers the equation $Pu=f$ , where $u$ and $f$ are contin-

uous with respect to $t$ and holomorphic with respect to $z$ , and $\mathcal{P}$ is the
linear Fuchsian partial differential operator

$P$ $=(tD_{t})^{m}+ \sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}aj,\alpha(t, z)(\mu(t)D_{z})^{\alpha}(tD_{t})^{j}$ .

We will give asharp form of unique solvability in the following sense: we
can find adomain $\Omega$ such that if $f$ is defined on $\Omega$ , then we can find a
unique solution $u$ also defined on Q.

1Introduction and Result
Denote by $\mathrm{N}$ the set of nonnegative integers, and let $(t, z)=(t, z_{1}, \ldots, z_{n})\in$

$\mathbb{R}\cross \mathbb{C}^{n}$ . Let $R>0$ be sufficiently small, and for $\rho\in(0, R]$ , let $B_{\rho}$ be the polydisk
{ $z\in \mathbb{C}^{n}$ ; $|z:|<\rho$ for $i=1,2$ , $\ldots,n$ }.

Given any bounded, open subset $D$ of $\mathbb{C}^{n}$ , we define by $A(D)$ the Banach
space of all functions $g(z)$ holomorphic in $D$ and continuous up to $\overline{D},\cdot$ the norm
in this space is given by $||g||_{D}= \max_{z\in\overline{D}}|g(z)|$ . Let $T>0$ . Then we denote by
$C^{0}([0, T], A(D))$ the set of functions continuous on the interval $[0, T]$ and valued
in the space $A(D)$ .

We say that acontinuous, positive-valued function $\mu(t)$ on the interval $(0, T)$

is aweight function if $\mu(t)$ is increasing and the function

$\varphi(t)=\int_{0}^{t}\frac{\mu(s)}{s}ds$ (1.1)

is well-defined on (0, T), i.e., the integral on the right is finite. (See Tahara [7].)
Consider now the linear partial differential operator

$\mathcal{P}=(tD_{t})^{m}+\sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}a_{j,\alpha}(t, z)(\mu(t)D_{z})^{\alpha}(tD_{t})^{j}$ . (1.2)

Here, $D_{t}=\partial/\partial t$ and $D_{z}=$ $(\partial/\partial z_{1},$

\ldots ,
$\partial/\partial z_{n});\mu(t)$ is aweight function; and

the coefficients $a_{j,\alpha}(t,$z) belong in the space $C^{0}([0,$ T],$A(B_{R}))$ , i.e., for any
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sE [0,$\ovalbox{\tt\small REJECT} \mathrm{I}]$ , each of the functions $a_{\mathrm{j}_{\mathrm{t}}\mathrm{o}}(’?z)_{7}$ when viewed as afunction of z,
is holomorphic in B. and continuous up to Br. We associate apolynomial with
this operator, called the characteristic polynomial of $7^{\ovalbox{\tt\small REJECT}}$ , and we define it by

$C(\lambda, Z)=\lambda^{m}+a_{m-1,0(\mathrm{o},z)\lambda^{m-1}+\cdots+a_{0,0}(0,z)}$ . (1.3)

Its roots $\lambda_{1}(z)$ , $\ldots$ , $\lambda_{m}(z)$ will be referred to as characteristic exponents. In
what follows, we will assume that there exists apositive number $L$ such that

$\Re\lambda_{j}(z)\leq-L<0$ for all $z\in B_{R}$ and $1\leq j\leq m$ . (1.4)

Baouendi and Goulaouic [1] studied the above operator in the case when
$\mu(t)=t^{a}(a>0)$ . They called such operator aFuchsian partial differential
operator, which for them is the “natural” generalization of aFuchsian ordinary
differential operator. In their paper, they gave some generalizations of the
classical Cauchy-Kowalewski and Holmgren theorems for this type of operators.
Their method has been applied and extended to various cases as can be seen,
for example, in Tahara [6], Mandai [5] and Yamane [8].

In aprevious paper [4], the author proved existence and uniqueness theorems
similar to those given in [1], but for general $\mu(t)$ . Essentially, he proved the
following unique solvability result.

Theorem 1. Let $P$ be as in (1.2). Then given any $\rho\in(0, R)$ , there exists an
$\epsilon\in(0, T]$ such that for any $f(t, z)\in C^{0}([0, T], A(B_{R}))$ , the equation $Pu=f$
has a unique solution $u(t,z)\in C^{0}([0,\epsilon], A(B_{\rho}))$ satisfying for $1\leq p\leq m$ the
relation $(tD_{t})^{p}u\in C^{0}([0,\epsilon], A(B_{\rho}))$ .

We remark that although $f(t, z)$ , viewed as afunction of $z$ , is defined on $B_{R}$ ,
the existence of the solution $u(t, z)$ is only guaranteed up to $B_{\rho}$ , with $\rho<R$ .
Moreover, any two solutions of $Pu=f$ can only be shown to coincide in a
neighborhood of the origin which is smaller than the neighborhood on which
the two are defined.

In this paper, we shall present aformulation leading to an existence and
uniqueness result sharper than the one given above. The result is sharper in the
sense that the solution $u(t, z)$ of the equation Pu $=f$ will now have the same
domain of definition as the inhomogeneous part $f(t, z)$ .

To proceed, we will need the following definitions.

Definition 1. Let $\tau\in(0,T)$ , $\gamma>0$ and $\varphi(t)$ be the one in (1.1). We define

(i) $\omega_{\tau}[\gamma]=$ { $z\in \mathbb{C}^{n}$ ; $|z_{i}|<R-\gamma\varphi(\tau)$ for $i=1,2$ , $\ldots$ , $n$}, and

(ii) $\mathrm{Q}\mathrm{T}[\mathrm{y}]=$ { $(\tau,$ $z)\in \mathbb{R}\cross \mathbb{C}^{n};0\leq\tau\leq T$ and $z\in\omega_{\tau}[\gamma]$ }.

Definition 2. Let p $\in \mathrm{N}$ and $\gamma>0$ .

(i) We say that $f(t, z)$ belongs in $\mathcal{K}_{0}(\Omega_{T}[\gamma])$ if for each $\tau\in[0, T]$ , we have
$f(t)\in C^{0}([0,\tau], A(\omega_{\tau}[\gamma]))$ .
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$(\mathrm{i}\ovalbox{\tt\small REJECT})$ We say that $\mathrm{w}(\mathrm{t},$z) belongs in ($\ovalbox{\tt\small REJECT}([0,$r],$\ovalbox{\tt\small REJECT} 4(\mathrm{c}\mathrm{p}.[\mathrm{t}]))$ if for all 0 $\ovalbox{\tt\small REJECT}$ j $\ovalbox{\tt\small REJECT}$ p, we
have $(\ovalbox{\tt\small REJECT}_{t})^{j}w(t)’-\ovalbox{\tt\small REJECT}([0_{\ovalbox{\tt\small REJECT}}\mathrm{r}]_{:}\mathrm{J}(\mathrm{u}.[\mathrm{y}]))$.

(iii) We say that $u(t, z)$ belongs in $\mathcal{K}_{p}(\Omega_{T}[\gamma])$ if for each $\tau\in[0,T]$ , we have
$u(t)\in C_{p}^{0}([0,\tau],A(\omega_{\tau}[\gamma]))$ .

Under the above assumptions, we now state the following main result.

Theorem 2. Let $P$ be the operator given in (1.2). The$n$ there exist constants
$T_{\mathrm{O}}>0$ and $\gamma_{0}>0$ depending on $P$ such that for any $f(t, z)\in \mathcal{K}_{0}(\Omega_{T_{0}}[\gamma_{0}])$ , the
equation

$Pu=f$ in $\Omega_{T_{0}}[\gamma_{0}]$ (1.5)

has a unique solution $u(t,$z) in $\mathcal{K}_{m}(\Omega_{T_{0}}[\gamma 0])$ .
Moreover the solution satisfies the a priori estimate

$\sum_{p=0}^{m}\max_{\Delta}|(tD_{t})^{p}u|\leq C\max_{\Delta}|f|$, (1.6)

where Ais the closure of $\Omega_{T_{0}}[\gamma_{0}]$ and C $>0$ is some constant dependent on the
above equation and on the domain $\Omega_{T_{0}}[\gamma 0]$ .

Note that $f(t, z)$ and $u(t, z)$ both have $\Omega_{T_{0}}[\gamma_{0}]$ as their domain of definition.
This fact allows us to restate our theorem in the following manner: for any
$T$, $\gamma>0$ , let $X_{T,\gamma}$ and $\mathrm{Y}_{T,\gamma}$ be the spaces $\mathcal{K}_{m}(\Omega_{T}[\gamma])$ and $\mathcal{K}_{0}(\Omega_{T}[\gamma])$ , respec-
tively. Let $W_{T,\gamma}$ be the subspace of $X_{T,\gamma}$ consisting of functions $u\in X_{T,\gamma}$ such
that Pu belongs in $\mathrm{Y}_{T,\gamma}$ . Define alinear operator Ifrom $X_{T,\gamma}$ to $\mathrm{Y}_{T,\gamma}$ with
domain $W_{T,\gamma}$ by $\Psi u$ $=Vu$ . Let $|||\cdot|||\tau_{\gamma}$,denote the maximum norm in the closure
of $\Omega_{T}[\gamma]$ . Then $X_{T,\gamma}$ and $\mathrm{Y}_{T,\gamma}$ are Banach spaces; given $u\in X_{T,\gamma}$ and $f\in \mathrm{Y}_{T,\gamma}$ ,
we define their norms by $\sum_{p=0}^{m}|||(tD_{t})^{p}u\mathrm{N}|\tau_{\gamma}$,and $|||f|||\tau_{\gamma},$ , respectively. Note
further that the operator $\Psi$ is aclosed linear operator from $X_{T,\gamma}$ to $\mathrm{Y}_{T,\gamma}$ . The
above theorem can now be stated as

Theorem 2’. There eist $T_{0}$ , $\gamma 0>0$ depending on $P$ such that the operator $\Psi$

is $a$ one-One, closed linear operator from $X_{T_{0},\gamma 0}$ onto $\mathrm{Y}_{T_{0},\gamma 0}$ .

Since $\Psi$ is an injection, $\Psi^{-1}$ exists and is also closed. The Closed Graph
Theorem further implies that $\Psi^{-1}$ is continuous. The estimate given in (1.6) is
just aconsequence of the continuity of $\Psi^{-1}$ .

2Preliminary Discussion
We can rewrite the operator $\mathcal{P}$ as

P $=Q$ $+ \sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}c_{j,\alpha}(t, z)(\mu(t)D_{z})^{\alpha}(tD_{t})^{j}$ ,
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where the operator $Q$ is defined by

$Q$ $=(tD_{t})^{m}+a_{m-1,0}(0,z)(tD_{t})^{m-1}+\cdots+a_{0,0}(0, z)$ (2.1)

and

$c_{j,\alpha}(t, z)=\{$

$a_{j,\alpha}(t, z)$ if $|\alpha|\neq 0$ ,
$aj,\alpha(t, z)-aj,\alpha(0, z)$ if $|\alpha|=0$ .

Note that the coefficients of $Q$ are holomorphic functions of $z$ in $B_{R}$ . Note
further that the characteristic exponents of $Q$ are the same as that of $P$ , and
hence satisfy (1.4).

Lemma 1. Fix $\tau>0$ and let $g(t)\in C^{0}([0, \tau], A(\omega_{\tau}[\gamma]))$ . Then the equation
$Qu$ $=g$ has a unique solution $u(t)\in C_{m}^{0}([0, \tau], A(\omega_{\tau}[\gamma]))$ given by

$u(t)$ $=$ $\frac{1}{m!}\sum_{\sigma\in S_{m}}\int_{0}^{ts_{2}}\int_{0}^{s_{m}}\ldots\int \mathrm{o}(\frac{s_{m}}{t})^{-\lambda_{\sigma(m)}}(\frac{s_{m-1}}{s_{m}})^{-\lambda_{\sigma(m-1)}}\ldots$

$\cross(\frac{s_{1}}{s_{2}})^{-\lambda_{\sigma(1)}}g(s_{1})\frac{ds_{1}}{s_{1}}\frac{ds_{2}}{s_{2}}\cdots\frac{ds_{m}}{s_{m}}$ . (2.2)

Here, $S_{m}$ is the group of per mutations of $\{$ 1, 2, $\ldots$ , $m\}$ .
Aresult in symmetric entire functions asserts that $u(t, z)$ is holomorphic

with respect to $z$ . The fact that it belongs in $C_{m}^{0}([0,\gamma],A(\omega_{\tau}[\gamma]))$ is seen in the
integral expression, but may actually be obtained a priori. (See [1].)

To facilitate computation, we define for $\lambda=(\lambda_{1}, \ldots, \lambda_{m})$ the function

$G_{\theta}{}^{t}( \lambda)\mathrm{d}\mathrm{e}\mathrm{f}=\frac{1}{m!}\sum_{\sigma\in S_{m}}(\frac{s_{m}}{t})^{-\lambda_{\sigma(m)}}(\frac{s_{m-1}}{s_{m}})^{-\lambda_{\sigma(m-1)}}\ldots(\frac{\theta}{s_{2}})^{-\lambda_{\sigma(1)}}$, (2.3)

for some dummy variables $s_{2}$ , $\ldots$ , $s_{m}$ . Define, too, the integral operator

$\int_{[t_{j}\theta]}^{(m)}g$ $\mathrm{d}\mathrm{e}\mathrm{f}=\int_{0}^{ts_{2}}\int_{0}^{s_{m}}\cdots\int \mathrm{o}g(\theta)\frac{d\theta}{\theta}\frac{ds_{2}}{s_{2}}\ldots\frac{ds_{m}}{s_{m}}$ (2.4)

Using the above, we can now write the solution $u(t)$ of the equation $Qu$ $=g$ as

$u(t)= \int_{[t_{j}s]}^{(m)}G_{s}^{t}(\lambda)g$ .

In our proof of the main theorem, it will be necessary to consider the action
of the differential operator $(tD_{t})^{p}$ on integral expressions similar to the one in
(2.2). One can easily verify the following

Lemma 2. Let $u(t)$ be the solution of $Qu$ $=g$ . Then for a natural number $p$

less than $m$ , we have

$(tD_{t})^{p}u$ $=$ $\sum_{i=m-p}^{m}\int_{[t_{j}s_{1}]}^{(i)}g\cross\{\frac{1}{m!}\sum_{\sigma\in S_{m}}h_{i}(\sigma, \lambda)(\frac{s_{i}}{t})^{-\lambda_{\sigma(i)}}$

$\cross(\frac{s_{i-1}}{s_{i}})^{-\lambda_{\sigma(:-1)}}\cdots(\frac{s_{1}}{s_{2}})^{-\lambda_{\sigma(1)}}\}$ , (2.5)
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t here the functions $7^{\ovalbox{\tt\small REJECT}_{\mathrm{g}}}\ovalbox{\tt\small REJECT}(_{\mathrm{c}\mathrm{r}},$ A) are suitable polynomial functions of the character-
istic exponents $\mathrm{A}_{\mathrm{Z}}(z)_{\ovalbox{\tt\small REJECT}}\ldots$ , A.(s)

For brevity, let us set, for anatural number k,

$H_{\theta}{}^{t}(k, \lambda)=\frac{1}{m!}\sum_{\sigma\in S_{m}}h_{k}(\sigma, \lambda)(\frac{s_{k}}{t})^{-\lambda_{\sigma(k)}}(\frac{s_{k-1}}{s_{k}})^{-\lambda_{\sigma(k-1)}}.\ldots(\frac{\theta}{s_{2}})^{-\lambda_{\sigma(1)}}$ (2.6)

By symmetry, the functions $H_{s}^{t}(k, \lambda)$ are holomorphic with respect to $z$ and thus
belong in $A(B_{R})$ .

The next lemma is useful in evaluating some integral expressions in the proof.

Lemma 3. Let $k$ be natural number. Then the following equalities hold:

(a) $\int_{0}^{s_{k}}\int_{0}^{s_{k-1}}.\ldots\int 0(\frac{s_{0}}{s_{k}})^{L}\frac{ds_{0}}{s_{0}}\ldots\frac{ds_{k-1}}{s_{k-1}}\epsilon_{1}=\frac{1}{L^{k}}$

(b) $\int_{0}^{t\epsilon_{k}\epsilon_{1}}\mathit{1}_{0}\ldots \mathit{1}0\frac{\mu(s_{k})}{s_{k}}\frac{\mu(s_{k-1})}{s_{k-1}}\ldots\frac{\mu(s_{1})}{s_{1}}$

x $( \frac{s_{0}}{t})^{L}\frac{s_{0}^{-1}}{[\varphi(t)-\varphi(s_{0})]^{k}}ds_{0}\ldots ds_{k}=\frac{1}{Lk!}$

The first equality is obvious. The second can be proved by reversing the order
of integration and recalling that $t\varphi’(t)=\mu(t)$ .

To estimate the derivatives with respect to $z$ , we have the following lemma.
(For aproof, see H\"ormander [3], Lemma 5.1.3.)

Lemma 4. Let the function $v(z)$ be holomorphic in $B_{R}$ , and suppose there are
positive constants $K$ and $c$ such that

$||v||_{\rho} \leq\frac{K}{(R-\rho)^{c}}$ for every $\rho\in(0, R)$ . (2.7)

Then we have

$||D_{z}^{\alpha}v||_{\rho} \leq\frac{Ke^{|\alpha|}(c+1)_{|\alpha|}}{(R-\rho)^{c+|\alpha|}}$ for every $\rho\in(0,R)$ . (2.8)

In the above, we define $(c)_{p}=(c)(c+1)\cdots(c+p-1)$ .

3Proof of Main Theorem
Let $f$ be any element of $\mathcal{K}_{0}(\Omega_{T_{0}}[\gamma_{0}])$ . Here, the constants $T_{0}>0$ and $\gamma_{0}>0$

satisfy some conditions which will later be specified. For convenience, we will
drop the subscript in both and instead use $T$ and $\gamma$;we will again use the
subscript upon stating the conditions that these constants need to satisfy
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We will use the method of successive approximations to solve the equation
Pu $\ovalbox{\tt\small REJECT}$ f. Define the approximate solutions as follows:

$u_{0}(t)= \int_{[tS]}^{(m)}G_{s}^{t}(\lambda)f$ (3.1)

and for $k\geq 1$ ,

$u_{k}(t)= \int_{[t_{j}s]}^{(m)}G_{s}{}^{t}(\lambda)[f-S(s)u_{k-1}]$ . (3.2)

Here, $t\in[0,T]$ , and for brevity, we have set $S(t)= \sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}c_{j,\alpha}(t, z)$ .
$(\mu(t)D_{z})^{\alpha}(tD_{t})^{j}$ . Note that for all $k$ , the approximate solutions $u_{k}(t, z)$ are
defined on $\Omega_{T_{0}}[\gamma_{0}]$ . Furthermore, they are continuous with respect to $t$ and
holomorphic with respect to $z$ on this region.

For each $k$ , we also define the sequence of functions $v_{k}(t)=u_{k}(t)-u_{k-1}(t)$ ,
with $u_{-1}\equiv 0$ . Then the $v_{k}(t, z)’ \mathrm{s}$ are also defined on the same region as the
$uk(t, z)’ \mathrm{s}$ , and are also continuous with respect to $t$ and holomorphic with respect
to $z$ . Using the expression for $u_{k}(t)$ , we have $v_{0}(t)= \int_{[t_{j}s]}^{(m)}G_{s}{}^{t}(\lambda)f$ and for $k\geq 1$ ,

$v_{k}(t)=- \int_{[t_{j}s]}^{(m)}G_{s}{}^{t}(\lambda)S(s)v_{k-1}$ . (3.3)

To prove that the approximate solutions converge to the real solution, we
will henceforth fix one $t\in[0, T]$ , and estimate the functions $v_{k}(t)$ . Let $C$ be the
bound on $[0, T]$ $\cross\overline{B}_{R}$ of all $c_{j,\alpha}(t, z)$ , and $K$ be the bound in $\overline{\overline{\Omega_{T}[\gamma]}}$ of $\mathrm{S}(\mathrm{t})z)$ .
As $G_{s}{}^{t}(\lambda)$ and $H_{s}^{t}(k, \lambda)$ , we have for $1\leq k\leq m$ and for some $D>0$ :

$z \in_{R}\mathrm{s}\mathrm{u}_{\frac{\mathrm{p}}{B}}|G_{s}{}^{t}(\lambda)|\leq(\frac{s}{t})^{L}$ and $z \in_{R}\mathrm{s}\mathrm{u}_{\frac{\mathrm{p}}{B}}|H_{\mathit{8}}^{t}(k, \lambda)|\leq D(\frac{s}{t})^{L}$ (3.1)

We can easily see that $||v_{0}(t)||_{\omega_{t}}$ is bounded by $KL^{-m}$ for any $0\leq t\leq T$ .
Here, we have written for convenience $||\cdot||_{\omega_{t}}$ in place of $||\cdot||_{\omega_{t}[\gamma]}$ . For general $k$ ,
we note that $v_{k}(t)$ is given by the iterated integral

$v_{k}(t)$ $=$ $(-\mathrm{l})^{}$ $\int_{[ts_{k}]}^{(m)}G_{s_{k}}^{t}(\lambda)S(s_{k})\int_{[s_{k},s_{k-1}]}^{(m)}.G_{s_{k-1}^{k}}^{\mathit{8}}(\lambda)S(s_{k-1})\cdots$

. . . $\int_{[s_{2j}s_{1}]}^{(m)}G_{s_{1}^{2}}^{s}(\lambda)S(s_{1})\int_{[\epsilon_{1j}s\mathrm{o}]}^{(m\rangle}G_{\mathit{8}0}^{s_{1}}(\lambda)f(s_{0})$ . (3.5)

The expression above can be expanded using Lemma 2, and thus obtain afinite
sum whose number of terms is less than $(mJ)^{k}$ , where $J$ is the cardinality of
the set {($j$ , $\alpha$ ) $;0\leq j\leq m-1$ and $|\alpha|\leq m-j$ }. Each term of the finite sum
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has the form

$I$ $=$ $(-\mathrm{l})^{}$ $\int_{1t_{j\mathit{8}]}}^{(m_{k})}G_{s_{k}}^{t}(\lambda)c_{j_{k},\alpha_{k}}(\mu D_{z})^{\alpha_{k}}\int^{(i_{k})}[s_{kj}s_{k-1}H_{\partial_{k-1}}^{s_{k}}(i_{k}, \lambda)c_{j_{k-1},\alpha_{k-1}}(\mu D_{z})^{\alpha_{k-1}}]$

. .. $\int_{[\epsilon_{2j\partial_{1}]}}^{(i_{2})}H_{s_{1}}^{s_{2}}(i_{2}, \lambda)c_{j_{1},\alpha_{1}}(\mu D_{z})^{\alpha_{1}}\int_{[\epsilon_{1}\epsilon 0]}^{(i_{1})}H_{\epsilon_{0}}^{s_{1}}(i_{1}, \lambda)f(s_{0})$ , (3.6)

where for each $p$ , the relations $m-j_{p}\leq i_{p}\leq m$ and $|\alpha_{p}|\leq m-j_{p}$ hold. (Here,
$\alpha_{p}$ is amulti-index and should not be confused with the $p\mathrm{t}\mathrm{h}$ component of $\alpha.$ )
The above is further equal to

$I$ $=$ $(-\mathrm{l})^{}$ $\int_{[t_{j\partial}]}^{(m_{k})}\int_{[_{\mathit{8}_{k}j\partial_{k-1}}]}^{(i_{k})}\ldots\int_{[\epsilon_{1j}\mathrm{s}\mathrm{o}]}^{(\dot{l}_{1})}G_{k}^{t},c_{j_{k\prime}\alpha_{k}}(s_{k})(\mu(s_{k})D_{z})^{\alpha_{k}}$

$\cross H_{\epsilon_{k-1}}^{\epsilon_{k}}c_{j_{k-1\prime}\alpha_{k-1}}(s_{k-1})(\mu(s_{k-1})D_{z})^{\alpha_{k-1}}\cdots$

$\cross H_{\epsilon_{1}}^{\mathit{8}2}c_{j_{1},\alpha_{1}}(s_{1})(\mu(s_{1})D_{z})^{\alpha_{1}}H_{\epsilon_{0}}^{s_{1}}f(s_{0})$. (3.7)

Let $F_{k}(s)$ denote the integrand of the above integral. Let $R_{\epsilon_{0}}=R-\gamma\varphi(s_{0})$ .
Then all the functions above, when viewed as afunction of $z$ , belong in $A(\omega_{\epsilon_{0}}[\gamma])$ .
(This explains the necessity of the assumption that the coefficients be defined
up to $B_{R}$ , for all $t$ in the interval $[0, T].)$

We can therefore aPPly Lemma 4repeatedly, starting from the rightmost
expression, to obtain the following estimate: for any $\rho\in(0, R_{\epsilon_{0}})$ , we have

$||F_{k}(s)||_{B_{\rho}}$ $\leq$ $K(CD)^{k} \mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{k})^{|\alpha_{k}|}(\frac{s_{0}}{t})^{L}\mathrm{x}$

$( \frac{e}{R_{\epsilon 0}-\rho})^{|\alpha_{1}+\cdots+\alpha_{k}|}|\alpha_{1}+\cdots+\alpha_{k}|!$ . (3.8)

If $|\alpha_{1}+\cdots+\alpha_{k}|=0$ , then for sufficiently small $T=To$ , the bound for any
$Cj,0(t, z)=aj,0(t, z)-aj,0(0, z)$ is actually small, since $a_{j,0}(t, z)$ is continuous
with respect to $t$ . In other words, by choosing asmall $T=T\mathrm{o}$ , we could find a
small constant $\delta$ such that for any $t\in[0, T_{0}]$ and $0\leq s\leq t$ , the following holds:

$||F_{k}(s)||_{\omega_{\ell}} \leq K\delta^{k}(\frac{s_{0}}{t})^{L}$ (3.9)

Going back to the integral, we have

$||I||_{\omega_{t}}$

$= \leq\int_{K}[t_{j}\ldots\int_{[\epsilon_{1j}\epsilon_{0}]}^{(i_{1})}K\delta^{k}(\frac{s_{0}}{t})^{L}\frac{(m)\epsilon_{k}]\int^{(\dot{l}_{k})}[s_{kj}\epsilon_{k-1}]\delta^{k}}{L^{m+\dot{l}_{1}+\cdots+\dot{l}_{k}}}\leq K(\frac{\delta}{L_{0}})^{k},$

(3.10)

for some constant $L_{0}$ dependent on L. This is possible since $i_{p}\leq m$ for all p.
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If $|\alpha_{1}+\cdots+\alpha_{k}|\neq 0$ , set the $\rho$ in (3.8) to be equal to $R-\gamma\varphi(t)$ . This gives

$||F_{k}(s)||_{\omega_{t}}$ $\leq$ $K(CD)^{k} \mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{k})^{|\alpha_{k}|}(\frac{s_{0}}{t})^{L}$

$\cross|\alpha_{1}+\cdots+\alpha_{k}|!(\frac{e}{\gamma[\varphi(t)-\varphi(s_{0})]})^{|\alpha_{1}+\cdots+\alpha_{k}|}$ (3.11)

By renaming if necessary, assume that for $p=1$ , $\ldots$ , $q$ , we have $|\alpha_{p}|\neq 0$ .
Note that $q\geq 1$ . We will again use the continuity of $a_{j,0}(t, z)$ to estimate those
expressions which are not acted upon by $D_{z}$ , i.e., the $k-q$ cases when $|\alpha_{p}|=0$ .
Just like before, we can show that for small $\delta$ ,

$||F_{k}.(s)||_{\omega_{t}}$ $\leq$
$K(CD)^{q} \delta^{k-q}\mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{q})^{|\alpha_{q}|}(\frac{s_{0}}{t})^{L}$

$\cross|\alpha_{1}+\cdots+\alpha_{q}|!(\frac{e}{\gamma[\varphi(t)-\varphi(s_{0})]})|\alpha_{1}+\cdots+\alpha_{q}|$ (3.11)

Thus, the integral I can now be estimated as follows:

$||I||_{\omega_{t}}$ $\leq$ $K(CD)^{q} \delta^{k-q}(\frac{e}{\gamma})^{|\alpha_{1}+\cdots+\alpha_{q}|}|\alpha_{1}+\cdots+\alpha_{q}|!$

$\cross\int_{[t_{j}s_{k}]}^{(m)}\int_{[s_{kj}s_{k-1}]}^{(i_{k}\rangle}\ldots\int_{[\sigma_{1j}s_{\mathrm{O}}]}^{(i_{1})}(\frac{s_{0}}{t})^{L}\frac{\mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{q})^{|\alpha_{q}|}}{[\varphi(t)-\varphi(s_{0})]^{|\alpha_{1}+\cdots+\alpha_{g}|}}$ . (3. 8)

Let $d=m+i_{1}+\ldots+i_{k}$ and $b=|\alpha_{1}+\ldots+\alpha_{q}|$ . Note that $b\geq q$ . Since for
each $p$ , we have $|\alpha_{p}|\leq m-j_{p}\leq i_{p}$ , and using the fact that both $\varphi(t)$ and $\mu(t)$

are increasing on $(0, T_{0})$ , we have

$||I||_{\omega_{t}} \leq K(CD)^{q}\delta^{k-q}(\frac{e}{\gamma})^{b}b!$

$\cross\int_{0}^{t}\int_{0}^{\xi_{b}}\ldots\int_{0}^{\xi_{1}}\frac{\mu(\xi_{b})}{\xi_{b}}\cdots\frac{\mu(\xi_{1})}{\xi_{1}}(\frac{\xi_{0}}{t})^{L}\frac{1}{[\varphi(t)-\varphi(\xi_{0})]^{b}}\frac{d\xi_{0}}{\xi_{0}}d\xi_{1}\cdots d\xi_{b}$

$\cross\int_{0}^{\xi_{0}}\int_{0}^{\eta 1}\ldots\int_{0}^{\eta d-b-2}(\frac{s_{0}}{\xi_{0}})^{L}\frac{ds_{0}}{s_{0}}\cdots\frac{d\eta_{1}}{\eta_{1}}$ (3.14)

By (a) of Lemma 3, the second integral is equal to $L^{-d+b+1}$ . Thus, the above
simplifies into

$||I||_{\omega_{t}} \leq K(CD)^{q}\delta^{k-q}(\frac{e}{\gamma})^{b}L^{-d+b+1}b!$

$\cross\int_{0}^{t}\int_{0}^{\xi_{b}}\ldots\int_{0}^{\xi_{1}}\frac{\mu(\xi_{b})}{\xi_{b}}\cdots\frac{\mu(\xi_{1})}{\xi_{1}}(\frac{\xi_{0}}{t})^{L}\frac{\xi_{0}^{-1}}{[\varphi(t)-\varphi(\xi_{0})]^{b}}d\xi_{0}\cdots d\xi_{b}$. (3.15)

The last integral is equal to $(Lb!)^{-1}$ , by (b) of Lemma 3. Meanwhile, since
$d\leq m(k+1)$ , we can find aconstant $L_{1}$ , depending on $L$ , such that $L^{-d}\leq L_{1}^{k}$ .
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Substituting these results into the above equation, we get

$||I||_{\omega_{t}}$ $\leq$ $K(CD)^{q} \delta^{k-q}(\frac{eL}{\gamma})^{b}L_{1}^{k}$ $=K( \frac{CD}{\delta})^{q}(\delta L_{1})^{k}(\frac{eL}{\gamma})^{b}$ (3.16)

By taking asufficiently small To, we can find a $\delta$ small enough such that $\delta L_{1}$

above and $\delta L_{0}^{-1}$ in (3.10) are both less than $(mJ)^{-1}$ . Now, since $q\leq b$ , we can
make the remaining expression less than one by choosing alarge $\gamma=\gamma_{0}$ .

To summarize, we have shown that if $T_{0}$ is sufficiently small and 70 is suf-
ficiently large, some constants $K>0$ and $\delta_{0}<1$ exist such that for all $k$ , we
have

$||v_{k}(t)||_{\omega_{t}[\gamma 0]}\leq K\delta_{0}^{k}$

. for any $t\in[0, T_{0}]$ . (3.17)

It follows that the series $\sum_{k=0}^{\infty}.v_{k}(t, z)$ is majorized by aconvergent geometric
series, and hence is itself convergent in $C^{0}([0, \tau], A(\omega_{\tau}[\gamma 0]))$ for all $\tau\in[0, T_{0}]$ .
This means that $u_{k}(t)$ converges uniformly to $u(t)$ on $\Omega_{T_{0}}[\gamma_{0}]$ .

By following the steps above, we can also show that for $1\leq p\leq m-1$ ,
the sequence $(tD_{t})^{p}uk(t)$ converges uniformly to $(tD_{t})^{p}u(t)$ on $\Omega_{T_{0}}[\gamma_{0}]$ . Thus,
it follows that on acompact subset of $\Omega_{T_{0}}[\gamma_{0}]$ , the sequence $D_{z}^{\alpha}(tD_{t})^{p}u_{k}(t)$

converges to $D_{z}^{\alpha}(tD_{t})^{p}u(t)$ . This implies the convergence of the approximate
solutions to the true solution $u(t)$ .

Uniqueness may be proved in asimilar manner.
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