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Abstract

Let us consider the following nonlinear singular partial differential equation:
$(t\partial_{t})^{m}u=F(t,x, \{(t\partial_{t})^{j}\partial_{x}^{\alpha}u\}_{j+|\alpha|\leq m,j<m})$ in the complex domain. Denote by $S_{+}$

[resp. $S_{log}$ ] the set of all the solutions $u(t,x)$ with asymptotics $u(t,x)=O(|t|^{a})$

[resp. $u(t,x)=O(1/|\log t|^{a})$] (as $tarrow \mathrm{O}$ uniformly in $x$ ) for some $a>0$ . Clearly
$S_{log}\supset S_{+}$ . The paper gives asufficient condition for $S_{log}=S_{+}$ to be valid.

The paper deals with nonlinear singular partial differential equations of the form

(E) $(t\partial/\partial t)^{m}u=F(t,x,$ $\{(t\partial/\partial t)^{j}(\partial/\partial x)^{\alpha}u\}_{j+|\alpha|\leq m,j<m})$

in the complex domain. In G\’erard-Tahara [1] the author has determined all the singular
solutions $u(t, x)$ of (E) under the condition that $u(t, x)=O(|t|^{a})$ (as $tarrow \mathrm{O}$ uniformly
in $x$ ) for some $a>0$ .

The present paper investigates singular solutions $u(t,x)$ of (E) under aweaker
condition that $u(t, x)=O(1/|\log t|^{a})$ (as $tarrow \mathrm{O}$ uniformly in $x$) for some $a>0$ .

\S 1. Equations.

Notations: $t\in C$ , $x=$ $(x_{1}, \ldots,x_{n})\in C^{n}$ , $N=\{0,1,2, \ldots\}$ , and $N^{*}=\{1,2, \ldots\}$ .
For $\alpha=$ $(\alpha_{1}, \ldots, \alpha_{n})\in N^{n}$ we write $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and

$( \frac{\partial}{\partial x})^{\alpha}=(\frac{\partial}{\partial x_{1}})^{\alpha_{1}}\cdots(\frac{\partial}{\partial x_{n}})^{\alpha_{n}}$

Let $m\in N^{*}$ , $N=\#\{(j,\alpha)\in N\cross N^{n} ; j+|\alpha|\leq m,j<m\}$ , and write the variable
$Z$ as

$Z=\{Z_{j,\alpha}\}_{j}$

$j<m+|\alpha|\leq m,$

$\in C^{N}$ .
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Let $F(t,$ x, Z) be afunction in the variables (t , Z) defined in aneighborhood of the
origin (0, 0, 0) CE $C_{g}$ x $C’;$ x $C\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ , and assume the following:

$(\mathrm{A}_{1})$ $F(t,x, Z)$ is holomorphic near (0, 0, 0);
(A2) $F(0,x, 0)\equiv 0$ near $x=0$;

$(\mathrm{A}_{3})$ $\frac{\partial F}{\partial Z_{j,\alpha}}(0, x,0)\equiv 0$ near $x=0$, if $|\alpha|>0$ .

In this paper we always assume the conditions $(\mathrm{A}_{1})$ , (A2), $(\mathrm{A}_{3})$ , and we will consider
the following nonlinear partial differential equation

(E) $(t \frac{\partial}{\partial t})^{m}u=F(t,x,$
$\{(t\frac{\partial}{\partial t})^{j}(\frac{\partial}{\partial x})^{\alpha}u\}_{j<m}j+|\alpha|\leq m)$

with $u=u(t,x)$ as an unknown function.
For (E) we set

$C( \lambda,x)=\lambda^{m}-\sum_{j<m}\frac{\partial F}{\partial Z_{j,0}}(0, x, 0)\lambda^{j}$

and denote by $\lambda_{1}(x)$ , $\ldots$ , $\lambda_{m}(x)$ the roots of the equation $C(\lambda, x)=0$ in A. These
$\lambda_{1}(x)$ , $\ldots$ , $\lambda_{m}(x)$ are called the characteristic exponents of (E).

The following is our basic problem:

Problem. Determine all kinds of local singularities which appear in the solutions
of (E).

\S 2. G\’erard-Tahara 1993)

Let us recall the result in G\’erard-Tahara [1]. Denote:

$\bullet$ $R(C\backslash \{0\})$ denotes the universal covering space of $C\backslash \{0\}$ ;

$\bullet$ $S_{\theta}=\{t\in \mathcal{R}(C\backslash \{0\});|\arg t|<\theta\}$ ;

$\bullet$ $S(\epsilon(s))=\{t\in R(C\backslash \{0\}) ; 0<|t|<\epsilon(\arg t)\}$ , where $\epsilon(s)$ is apositive-valued
continuous function on $R_{s}$ ;

$\bullet D_{f}=\{x\in C^{n} ; |x|\leq r\}$ ;

$\bullet$ $C\{x\}$ denotes the ring of convergent power series in $x$ , or equivalently the ring of
germs of holomorphic functions at the origin of $C^{n}$ .
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Definition 1. We denote by $\tilde{\mathcal{O}}_{+}$ the set of all $u(t,x)$ satisfying the following con-
ditions i) and $\mathrm{i}\mathrm{i}$ ):

i) $u(t,x)$ is aholomorphic function on $S(\epsilon(s))\cross D_{f}$ for some positive-
valued continuous function $\epsilon(s)$ and some $r>0$ ;

$\mathrm{i}\mathrm{i})$ there is an $a>0$ such that for any $\theta>0$ we have

$\max_{\Gamma}|x|\leq|u(t,x)|=O(|t|^{a})$ (as $tarrow \mathrm{O}$ in $S_{\theta}$ ).

For the characteristic exponents $\lambda_{1}(x)$ , $\ldots$ , $\lambda_{m}(x)$ , we set

$\mu=\#\{i;{\rm Re}\lambda_{i}(0)>0\}$ .

When $\mu=0$ , this is equivalent to the fact that ${\rm Re}\lambda:(0)\leq 0$ for all $i=1$ , $\ldots$ , $m$ . When
$\mu\geq 1$ , by arenumeration we may assume

(1.1) $\{$

${\rm Re}\lambda:(0)>0$ for $1\leq i\leq\mu$ ,
${\rm Re}\lambda_{i}(0)\leq 0$ for $\mu+1\leq i\leq m$ .

Then we already have:

Theorem 1(G\’erard-Tahara [1]). Denote by $S_{+}$ the set of all $\tilde{\mathcal{O}}_{+}$ -solutions of (E).
Then we have:

(I) When $\mu=0$ , we have $S_{+}=\{u_{0}\}$ where $u_{0}=u\mathrm{o}(t, x)$ is the unique holomorphic
solution of (E) satisfying $u\mathrm{o}(0,x)\equiv 0$ .

(II) When $\mu\geq 1$ , under (1.1) and the following additional conditions
1) $\lambda_{i}(0)\neq\lambda_{j}(0)$ for $1\leq i\neq j\leq\mu$ ,
2) $C(1,0)\neq 0$ ,
3) $C(i+j_{1}\lambda_{1}(0)+\cdots+j_{\mu}\lambda_{\mu}(0), 0)\neq 0$ for any $(i,j)\in N\cross N^{\mu}$

satisfying $i+|j|\geq 2$ (where $j=(j_{1}$ , $\ldots$ , $j_{\mu}$ )),
we have

$S_{+}=\{U(\phi_{1}, \ldots, \phi_{\mu});(\phi_{1}, \ldots, \phi_{\mu})\in(C\{x\})^{\mu}\}$ ,

where $U(\phi_{1}, \ldots, \phi_{\mu})$ is an $\overline{\mathcal{O}}_{+}$ -solution of (E) determined by $(\phi_{1}, \ldots, \phi_{\mu})\in(C\{x\})^{\mu}$

and having the expansion of the follow $ing$ $fom$:

$U(\phi_{1}, \ldots,\phi_{\mu})$ $=$
$\sum_{i\geq 1}u_{i}(x)t^{i}$

$+\phi_{1}(x)t^{\lambda_{1}(x)}+\cdots+\phi_{\mu}(x)t^{\lambda_{\mu}(x)}$

$+:+$
$(|.,|j|) \neq(0’,1)2m|j|\geq k+2m\sum_{|j|\geq 1}\varphi i,j,k(x)t+j_{1}\lambda_{1}(x)+\cdots+j_{\mu}\lambda_{\mu}(x)(:\log t)^{k}$

.
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\S 3. Problems.

In Theorem 1we have restricted ourselves to the study of singular solutions in $\tilde{\mathcal{O}}_{+}$ .
But, there seems to be apossibility that (E) has singular solutions which do not belong
in the class $\tilde{\mathcal{O}}_{+}$ , as is seen in the following example.

Example 1. The equation

$t \frac{\partial u}{\partial t}=u(\frac{\partial u}{\partial x})^{k}$

(where ($t$ , $x)\in C^{2}$ a $\mathrm{d}$ $k\in N^{*}$ ) has afamily of singular solutions

$u(t,x)=( \frac{1}{k})^{1/k}\frac{x+\alpha}{(c-1\mathrm{o}\mathrm{g}t)^{1/k}}$ , $\alpha,c\in C$ ,

which do not belong in the class $\tilde{\mathcal{O}}_{+}$ .

In order to include this kind of singular solutions in our ffamework, we introduce
the following new class of singular solutions:

Definition 2. We denote by $\tilde{\mathcal{O}}_{lw}$ the set of all $u(t, x)$ satisfying the following
conditions i) and $\mathrm{i}\mathrm{i}$):

i) $u(t,x)$ is aholomorphic function on $S(\epsilon(s))\cross D_{f}$ for some positive-
valued continuous function $\epsilon(s)$ and some $r>0$ ;

$\mathrm{i}\mathrm{i})$ there is an $a>0$ such that for any $\theta>0$ we have

$\max_{l}|x|\leq|u(t,x)|=O(\frac{1}{|\log t|^{a}})$ (as $tarrow \mathrm{O}$ in $S_{\theta}$).

Clearly we have $\tilde{\mathcal{O}}_{lw}\supset\tilde{\mathcal{O}}_{+}$ . Therefore, if we denote by $S_{l\eta}$ the set of all $\tilde{\mathcal{O}}_{log^{-}}$

solutions of (E), we have $S_{log}\supset S_{+}$ .
We will say that $u(t,x)$ is asolution with temperate singularities if $u(t, x)\in S_{+}$ ,

and that $u(t,x)$ is asolution with logarithmic singularities if $u(t,x)\in S_{log}\backslash S_{+}$ .
Our next problems can be set up as follows:

Problem 1. When does $S_{l\eta}=S_{+}$ hold ?

Problem 2. When does $S_{l\eta}\neq S_{+}$ hold ?

Note that the problem 1asserts that new singular solutions do not appear and that
the problem 2asserts that new singular solutions really appear in the solutions of (E).

In this paper we will give apartial answer and aconjecture on the problem 1. The
problem 2will be discussed in the forthcoming paper

108



\S 4. Aresult and aconjecture.

In this section we will give aresult on the problem 1in ageneral form.
Afunction $\mu(t)$ on $(0, T)$ is called a weight function if it satisfies the following

conditions $\mu_{1}$ ) $\sim\mu_{3}$ ):

$\mu_{1})$ $\mu(t)\in \mathcal{O}((0, T))$ ,
$\mu_{2})$ $\mu(t)>0$ on $(0, T)$ and $\mu(t)$ is increasing in $t$ ,

$\mu_{3})$ $\int_{0}^{T}\frac{\mu(s)}{s}ds<\infty$ .

By $\mu 2$ ) and $\mu 3$ ) the condition $\mu(t)arrow 0$ (as $tarrow+\mathrm{O}$) is clear. In this paper we impose
the additional condition on $\mu(t)$ :

(4.1) $\mu(t)\in C^{1}((0,T))$ and $(t \frac{d\mu}{dt})(t)=o(\mu(t))$ (as $tarrow+\mathrm{O}$).

The following functions are typical examples:

$\mu(t)=\frac{\mathrm{l}}{(-1\mathrm{o}\mathrm{g}t)^{b}}$ , $(-\log t)(1\mathrm{o}\mathrm{g}(-\log t))^{c}\mathrm{l}$

with $b>1$ , $c>1$ . Note that the function $\mu(t)=t^{d}$ with $d>0$ does not satisfy the
condition (4.1).

Definition 3. Let $\mu(t)$ be aweight function.
(1) For $a>0$ we denote by $\tilde{\mathcal{O}}_{a}(\mu(t))$ the set of all $u(t, x)$ satisfying the following

conditions i) and $\mathrm{i}\mathrm{i}$ ):
i) $u(t, x)$ is aholomorphic function on $S(\epsilon(s))\cross D_{r}$ for some positive-

valued continuous function $\epsilon(s)$ and some $r>0$ ;
$\mathrm{i}\mathrm{i})$ for any $\theta>0$ we have

$\max_{\Gamma}|x|\leq|u(t,x)|=O(\mu(|t|)^{a})$ (as $tarrow \mathrm{O}$ in $S_{\theta}$).

(2) We define $\overline{\mathcal{O}}_{+}(\mu(t))$ by

$\tilde{\mathcal{O}}_{+}(\mu(t))=\cup\overline{\mathcal{O}}_{a}(\mu(t))a>0^{\cdot}$

Lemma 1. (1) $\tilde{\mathcal{O}}_{log}=\tilde{\mathcal{O}}_{+}(\mu(t))$ if $\mathrm{n}\{\mathrm{t}$ ) $=1/(-\log t)^{b}$ with $b>1$ .
(2) If $\mu(t)$ satisfies (4.1) we have $\tilde{\mathcal{O}}_{+}\subset\tilde{\mathcal{O}}_{1}(\mu(t))(\subset\tilde{\mathcal{O}}_{+}(\mu(t)))$ .

Proof. (1) is clear. (2) is verified as follows. By (4.1), for any $\epsilon>0$ there is a
$\delta>0$ such that $t\mu_{t}’(t)\leq\epsilon\mu(t)$ holds on $(0, \delta]$ and therefore we have

$\frac{d}{dt}(t^{-\epsilon}\mu(t))\leq 0$ for $0<t\leq\delta$.
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Integrating this ffom $t$ to 6we have

$\delta^{-\epsilon}\mu(\delta)\leq t^{-\epsilon}\mu(t)$ for $0<t\leq\delta$

and so

(4.2) $( \frac{\mu(\delta)}{\delta^{\epsilon}})t^{e}\leq\mu(t)$ for $0<t\leq\delta$ .

Since $\epsilon>0$ is arbitrary, (4.2) leads us to the conclusion of (2). $\square$

Denote by $S_{+}(\mu(t))$ (resp. $S_{a}(\mu(t))$ ) the set of all $\tilde{\mathcal{O}}_{+}(\mu(t))$-solutions of (E) (resp.
$\tilde{\mathcal{O}}_{a}(\mu(t))$ solution of (E) $)$ . By (2) of Lemma 1we have

$S_{+}\subset S_{1}(\mu(t))\subset S_{+}(\mu(t))$ .

The following theorem gives asufficient condition for $S_{+}(\mu(t))=S_{+}$ to be valid.

Theorem 2. Let $\mu(t)$ be a weight function satisfying (4.1). Then, $S_{+}(\mu(t))=S_{+}$

is valid if
(4.3) $\mathrm{R}\epsilon\lambda:(0)<0$ for all $i=1$ , $\ldots$ , $m$

or if
(4.4) ${\rm Re}\lambda:(0)>0$ for all $i=1$ , $\ldots$ , $m$.

In the case (4.3), by Theorem 1we have $S_{+}=\{u_{0}\}$ and therefore the condition
$S_{+}(\mu(t))=S_{+}$ is equivalent to the fact that the local uniqueness of the solution is valid
in $S_{+}(\mu(t))$ which is already proved in Tahara $[4],[5]$ .

In the case (4.4) the proof of Theorem 2consists of the following two parts:
$\mathrm{C}_{1})$ if $u\in S_{+}(\mu(t))$ we have $u\in S_{m}(\mu(t))$ ;
C2) if $u\in S_{m}(\mu(t))$ we have $u\in S_{+}$ .

The proofs of thses $\mathrm{C}_{1}$ ) and C2) will be published in Tahara [6].

Corollary. If (4.3) or (4.4) holds, we have $S_{log}=S_{+}$ .

Remark. The author believes that the following conjecture is true, though at
present he has no idea to prove this conjecture:

Conjecture. $S_{lw}=S_{+}$ is valid if
(4.3) $\mathrm{R}\epsilon\lambda:(0)\neq 0$ for all $i=1$ , $\ldots$ , $m$ .
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