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1 Local theory near asimple turning point
Let $11\mathrm{S}$ consider aformal differential operator of infinite order in one variable $x$ with a
large parameter $\eta$ that has the following form:

$P(x, \partial_{x}, \eta)=P(x, \partial_{x}/\eta)=\sum_{j,k=0}^{\infty}a_{j,k}x^{j}\eta^{-k}\partial_{x}^{k}$ , (1)

where $a_{j,k}$ are complex constants. We assume that its Borel transform

$P_{B}=P(x, \partial_{x}/\partial_{y})=\sum_{j,k=0}^{\infty}a_{j,k}x^{j}\partial_{x}^{k}\partial_{y}^{-k}$ (2)

is amicrodifferential operator of order 0defined outside $\{\eta=0\}$ ;that is, we assume that
the symbol $P(x, \xi/\eta)$ of $P_{B}$ is an entire function of $\zeta=\xi/\eta$ which depends holomorphically
on $x$ . Otherwise stated, $P(x, \zeta)$ is aholomorphic function in $U\cross \mathbb{C}$ , where $U$ is an open
set in C.

Suppose that the system of equations

$P(x, \zeta)=\partial_{\zeta}P(x, \zeta)=0$ (3)

has asolution $(x, \zeta)=(x_{*}, \zeta_{*})(x_{*}\in U)$ . Then $x_{*}$ is said to be a turning point of
the operator $P$ with the characteristic value $\zeta_{*}$ . Let $x_{*}$ be a turning point with the
characteristic value $\zeta_{*}$ . We say that $x_{*}$ is simple if

$\partial_{x}P(x_{*}, \zeta_{*})\neq 0$ and $\partial_{\zeta}^{2}P(x_{*}, \zeta_{*})\neq 0$ . (4)

Near asimple turning point $x_{*}$ we can find two multivalued analytic functions $\zeta_{\pm}(x)$ of
the equation $P(x, \zeta)=0$ for which

$\zeta_{\pm}(x_{*})=\zeta_{*}$ and $\zeta_{+}(x)-\zeta_{-}(x)=\sqrt{x-x_{*}}f(x)$ (5)

hold with aholomorphic function $f(x)$ that does not vanish at $x=x_{*}$ , and we further
find that $\zeta(x_{*})\neq\zeta_{*}$ for any other analytic solution $\zeta(x)$ of $P(x, ()$ $=0$ . We also note that
$\zeta_{+}(x)+\zeta_{-}(x)$ and $\zeta_{+}(x)\zeta_{-}(x)$ are holomorphic functions in a neighborhood of $x_{*}$ .

Theorem 1Suppose that for every $x\in U$ , there is a solution $\langle$ $=\zeta(x)$ of the equation
$P(x, ()$ $=0$ and $(\partial P/\partial\zeta)(x, \zeta(x))$ is not identically zero. Then there exists aformal
solution $\psi$ of the differential equation

$P(x, \partial_{x}, \eta)\psi=0$ (6)
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that is of the form

$\psi$ $= \exp(\int S(x, \eta)dx)$ (7)

with

$S(x, \eta)=\sum_{j\geq-1}\eta^{-j}S_{j}(x)$
and $S_{-1}(x)=\zeta(x)$ . (8)

Here $S$ is unique up to the choice of abranch of $\zeta(x)$ .

Asolution (7) is called aWKB solution of (6).

Theorem 2Let $x_{*}$ be asimple turning point with the characteristic value $\zeta_{*}$ and let
$\zeta_{\pm}(x)$ be solutions of $P(x, \zeta)=0$ satisfying (5). Let $r(x, \zeta)$ denote aquadratic polynomial
$(\zeta-\zeta_{+}(x))(\zeta-\zeta_{-}(x))$ with holomorphic coefficients in asmall neighborhood $V$ of $x_{*}$ . Then
there exists adifferential operator of infinite order with the large parameter yy

$Q(x, \partial_{x}/\eta, \eta)=\sum_{j=0}^{\infty}$ rt $-jQ_{j}(x, \partial_{x}/\eta)$ (9)

and asecond-0rder differential operator with the large parameter $\eta$

$R(x, \partial_{x}/\eta, \eta)=\sum_{j=0}^{\infty}$ rt $-jR_{j}(x, \partial_{x}/\eta)$ (10)

so that the following conditions are satisfied:
(i) $Q_{j}(x$ , (;) and $R_{j}(x, \langle)$ are holomorphic in $V\cross \mathbb{C}$ and $Q(x, \partial_{x}/\partial_{y}, \partial_{y})$ , $R(x, \partial_{x}/\partial_{y}, \partial_{y})$

are microdifferential operators of order 0.
(ii) $P(x, \partial_{x}/\eta)=Q(x, \partial_{x}/\eta, \eta)R(x, \partial_{x}/\eta, \eta)$ .
(ii) $R_{0}(x, ()$ $=r(x, \zeta)$ .
(iv) For each $j>0$ , $R_{j}(x, \langle)$ is of degree at most one in $($ .

Theorem 2above implies that, near asimple turning point $x_{*}$ , WKB solutions of (6)
with the leading term $S_{-1}(x)=\zeta\pm(x)$ satisfy asecond-0rder differential equation

$R(x, \partial_{x}/\eta, \eta)\psi=0$ . (11)

Hence Stokes curves emanating from $x_{*}$ should be defined by

${\rm Im} \int_{x_{*}}^{x}(\zeta_{+}(s)-\zeta_{-}(s))ds=0$ , (12)

and alocal connection formula for WKB solutions can be obtained by reducing the prob-
lem to the second order case.

2Study of the global configuration of Stokes curves
–an example

To illustrate the general theory discussed in \S 1 and to try to find what occurs globally,
we consider the following example:

$P(x, \partial_{x}/\eta)\psi=0$ , $P(x, \partial_{x}/\eta)=\cosh(\sqrt{\partial_{x}}/i\eta)-.’\iota.$ . (10)
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Turning points for (13) are r $\ovalbox{\tt\small REJECT}$ 1 and x $\ovalbox{\tt\small REJECT}$ -1, and they are simple in the sense of (4)
The leading term $S_{=1}(\ovalbox{\tt\small REJECT} \mathrm{r})$ of a WKB solution is given as follows:

$S_{-1}=f_{n}$ , $f_{n}(x)=i(2n\pi i+\log(x+\sqrt{x^{2}-1}))^{2}$ $(n\in \mathbb{Z})$ . (14)

Hence there are infinitely many phases for (13) and Stokes curves emanating from $x=1$

(resp. $x=-1$ ) are defined by

${\rm Im} \int_{1}^{x}(f_{n}(s)-f_{-n}(s))ds=0$ (resp. ${\rm Im} \int_{-1}^{x}(f_{n}(s)-f_{-n-1}(s))ds=0$ ). (15)

Their configuration is shown in Fig.1; note that all these Stokes curves sit on the same
curves.

Fig. 1

Since Stokes curves in Fig.l have two crossing points $x_{0}$ and $x_{1}$ , we need to introduce
new Stokes curves to obtain the complete description of Stokes regions, i.e., the regions
in which WKB solutions become Borel summable (cf. [BNR], [AKTI]).

Let us determine new Stokes curves passing through thc crossing point $x_{0}$ . To make
the argument explicit we place cuts along $\{x;x\geq 1\}$ and $\{x;x\leq-1\}$ in $x$-plane, and fix
abranch of $\log(x+\sqrt{x^{2}-1})$ so that

$\sqrt{x^{2}-1}|_{x=0}=i$ and $\log(x+\sqrt{x^{2}-1})|_{x=0}=\frac{\pi}{2}i$ (16)

hold. Then we can verify that $\psi_{n}$ is dominant over $\psi_{-n}$ along the Stokes curve which
emanates from $x=1$ and passes through $x=x_{0}$ ; that is,

${\rm Re} \int_{1}^{x}(f_{n}(s)-f_{-n}(s))ds>0$ $(n=1,2, \ldots)$ (17)

holds along this Stokes curve. (In what follows, this dominance relation (17) is denoted
by $” 7l$ $>-n$” .) We also find $”-r\iota-1>n$” $(n>0)$ holds along the Stokes curve
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which emanates from x $\ovalbox{\tt\small REJECT}$ -1 and passes through $\ovalbox{\tt\small REJECT} 1\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$

$\mathrm{f};_{0}$ . Thus we obtain the following
dominance relation at $\ovalbox{\tt\small REJECT} \mathrm{r}\ovalbox{\tt\small REJECT}$

$\ovalbox{\tt\small REJECT} \mathrm{r}_{0^{\ovalbox{\tt\small REJECT}}}$

“ $\cdots>3>-3>2>-2>1>-1>0"$ . (18)

This suggests that new Stokes curves should be given by

${\rm Im} \int_{x0}^{x}(f_{m}(x)-f_{n}(x))dx=0$ $(m, 7l \in \mathbb{Z})$ , (19)

or equivalently,

${\rm Im} \int_{x_{0}}^{x}(k\pi i +\log(x+.\sqrt{\prime r^{2}-|1}))dx=0$ $(k\in \mathbb{Z})$ . (20)

Among them $m=-n$ and $m=-n-1$ (i.e., $k=0,$ -1) are ordinary Stokes curves. These
curves $(\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-4\leq k\leq 3)$ are shown in Fig.2.

Fig.2 Fig.3

As [AKTI] observed, each new Stokes curve is associated with (a family of) new
turning points. In our case, we can readily locate new turning points by explicitly writing
down the equations for bicharacteristic strips for $P_{B}$ ;they are given by $x=\pm\cos w$ ,
where $w$ should satisfy $w=\tan w$ . All solutions of this equation $w=\tan w$ are real and
symmetric with respect to the origin. Let $w_{1}<w_{2}<\cdots$ be positive solutions of this
equation. Then by numerical calculation we can check that anew Stokes curve defined
in (20) passes through anew turning point $x=\cos w_{k}$ for $k>0$ or $x=-\cos w_{-k-1}$ for
$k<-1$ . Furthermore no Stokes phenomena are expected to occur near anew turning
point (cf. [AKTI, PP.77]). In Fig.3 we use adotted line to denote the portion of anew
Stokes curve along which no Stokes phenomena occur.

The above description of the Stokes geometry for the operator $P$ is akind of ansatz.
We validate it by using the steepest descent method to the integral representation

$\psi(x, \eta)=[$ $\exp(\eta h(x, \xi))d\xi$ (20)
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of solutions of (13) (cf. [T], [AKT2]), where

$h(x, \xi)=x\xi-2i\sqrt{\xi}/i\sinh(\sqrt{\xi}/i)+2i\cosh(\sqrt{\xi}/i)$ . (22)

Let us first consider the configuration of steepest descent paths near $x=1$ (notice
that $x$ is included as aparameter in the integrand of (21) $)$ . By its definition, saddle points
of (21) are give by $\xi$ $=\xi_{n}(x)$ , where

$\xi_{n}(x)=i(2\pi i+\log(x+\sqrt{x^{2}-1}))^{2}$ , (23)

and our interest is in the steepest descent path $C_{n}$ of ${\rm Re} h(x, \xi)$ which passes through
$\xi$ $=\xi_{n}(x)$ . FigA-k shows the configuration of such saddle points and steepest descent
paths for

$x=1+0.2\exp(0.1i\pi k)$ $(k=0,1,2, \ldots, 20)$ . (24)

Fig.4-0 Fig.4-1 Fig.4-2

Fig.4-3 Fig.4-4 Fig.4-3
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Fig.4-6 Fig.4-7 Fig.4-8

Fig.4-9 Fig.4-10 Fig.4-11

Fig.4-12 Fig.4-13 Fig.4-11

202



Fig.4-15 Fig.4-16 Fig.4-17

Fig.4-18 Fig.4-19 Fig.4-20

We can observe from these figures that atopological change of their configuration occurs
at three places; between Fig.4-6 and Fig.4-7, between Fig.4-13 and Fig.4-14, and near
Fig.4-20 (i.e., Fig.4-0). This corresponds to the fact that three Stokes curves emanate
from the turning point $x=1$ ;each change occurs exactly when we cross aStokes curve
emanating from $x=1$ . This implies that Fig.3 describes the Stokes geometry for (13)
correctly, at least, near $x=1$ . In asimilar manner we can confirm that Fig.3 describes
the Stokes geometry correctly also near $x=-1$ .

Next we consider the configuration of steepest descent paths when $x$ runs parallel with
the real axis. Fig.5-fc shows the configuration for

$x=(-1.5+0.2i)+0.2k$ $(k=0,1,2, \ldots, 14)$ . (25)

The configuration of steepest descent paths changes topologically at two places (between
Fig.5-3 and Fig5-4, between Fig.5-11 and Fig.5-12), i.e., exactly when we cross aStokes
curve emanating from $x=1$ or $x=-1$ . In particular, no topological changes of the
configuration occur when we cross the portion of new Stokes curves designated by dotted
lines in Fig.3
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Fig.5-O Fig.5-1 Fig.5-2

Fig.5-3 Fig.5-4 Fig.5-5

Fig.5-6 Fig.5-7 Fig.5-0
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Fig.5-9 Fig.5-10 Fig.5-11

Fig.5-12 Fig.5-13 Fig.5-14

Let us now consider the configuration of steepest descent paths near $x=x_{1}$ , acrossing
point of Stokes curves in the lower half plane (cf. Fig. 1). Fig.6-fc shows the configuration
of steepest descent paths for

$x=x_{1}+0.2\exp$ (O.link) $(k=0,1,2, \ldots, 20)$ . (26)

Fig.6-O Fig.6-1 Fig.6-2
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Fig.6-3 Fig.6-4 Fig.6-5

Fig.6-6 Fig.6-7 Fig.6-8

Fig.6-9 Fig.6-10 Fig.6-10
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Fig.6-12 Fig.6-13 Fig.6-14

Fig.6-15 Fig.6-16 Fig.6-17

Fig.6-18 Fig.6-19 Fig.6-20

From these figures, we first find that the configuration of steepest descent paths changes
topologically when we cross a Stokes curve emanating from $x=1$ (between Fig.6-2 and
Fig.6-3, between Fig.6-13 and Fig.6-14) and that from $x=-1$ (between Fig.6-7 and Fig.6-
8, between Fig.6-16 and Fig.6-17). We can also verify that no topological changes occur
when we cross new Stokes curves designated by a dotted line in $\mathrm{F}\mathrm{i}\mathrm{g}.3$ . In contrast with it,
topological $\mathrm{c}1_{1}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{s}$ of the configuration can be observed when we cross new Stokes curves
designated by asolid line in $\mathrm{F}\mathrm{i}\mathrm{g}.3$ (from Fig.6-15 to Fig.6-17). These changes can be
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visualized clearly by more precise numerical calculations; Fig.7-A shows the configure
of steepest descent paths for

$x=x_{1}+0.2\exp(i\pi(1.25+0.01k))$ $(k=0,1,2, \ldots, 25)$ .

Fig.7-0 Fig.7-1 Fig.7-2

Fig.7-3 Fig.7-4 Fig.7-5

Fig.7-6 Fig.7-7 Fig.7-8
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Fig.7-9 Fig.7-10 Fig.7-11

Fig.7-12 Fig.7-13 Fig.7-14

Fig.7-15 Fig.7-16 Fig.7-17
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Fig.7-18 Fig.7-19 Fig.7-20

Fig.7-21 Fig.7-22 Fig.7-23

Fig.7-24 Fig.7-25

First topological change of the configuration occurs between Fig.7-5 and Fig.7-6, i.e.,
when we cross aStokes curve emanating from $x=1$ . Next topological change occurs
between Fig.7-17 and Fig.7-18, $\mathrm{i}.\mathrm{e}.$ , when we cross anew Stokes curve given by

${\rm Im} \int_{x_{1}}^{x}(f_{n}(x)-f_{-n+1}(x))dx=0$. (28)
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Another topological change of the configuration can be observed between Fig.7-22 and
Fig.7-23, $\ovalbox{\tt\small REJECT}.\mathrm{e}.$ , when we cross anew Stokes curve given by

${\rm Im} \int_{x_{1}}^{x}(f_{n}(x)-f_{-n+2}(x))dx=0$ . (29)

Surmising from these observations, we then expect that on the new Stokes curve defined
by

${\rm Im} \int_{x_{1}}^{x}(f_{n}(x)-f_{-n+k}(x))dx=0$ $(k\geq 1)$ (30)

the steepest descent path passing through the saddle point $\xi=\xi_{0}$ (which is located at
the “top”) goes down and flows into a saddle point $\xi=\xi_{k}$ . (At the same time, two saddle
points $\xi$ $=\xi_{n}$ and $\xi$ $=\xi_{-n+k}$ are connected by asteepest descent path for every $n.$ ) Thus
we conclude that Stokes phenomena occur when we cross new Stokes curves designated
by asolid line in $\mathrm{F}\mathrm{i}\mathrm{g}.3$ . Similar results can also be checked near $x=x_{0}$ , the crossing point
in the upper half plane.
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