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Abstract

This paper presents asurvey of arecent work by the author on
an intersection theory for twisted de Rham cohomology and its ap-
plications to special function theory. While Witten used atwisted
Laplacian, twisted by aMorse function, to develop his Morse theory
as asuper-symmetric quantum mechanics, we use atwisted Laplacian,
twisted by an isolated singularity, in aquite different situation.
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1Introduction
In his famous paper [24], Witten used atwisted Laplacian, twisted by a
Morse function, to develop his Morse theory as asuper-symmetric quantum
mechanics. Afterwards, in their studies on puits multiples en mecanique semi-
classique, Helffer and Sj\"ostrand [8] made adetailed investigation of Witten’s
complexes in amathematically rigorous formulation.

Recently, with asimilar philosophy but in aquite different situation,
Iwasaki [9] made use of atwisted Laplacian, twisted by aversal deformation
of an isolated singularity (invariant under afinite unitary reflection group),
to construct aduality between apair of polynomial twisted de Rham c0-

homology groups associated with the isolated singularity. Then Iwasaki and
Matsumoto [11] applied this construction to calculate the intersection matrix
of ageneralized Airy function in terms of skew-Schur polynomials. The aim
of this expository article is to survey the results in the papers $[9, 11]$ .
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Amotivation for developing atwisted de Rham cohomology theory comes
from its (possible) applications to the theory of hypergeometric functions in
their broadest sense. This is because, from the standpoint of Euler integral
representations, ahypergeometric function is defined to be an integral of
aclosed twisted differential form along atwisted cycle. See Aomoto and
Kita [2] and Matsumoto and Yoshida [16] for more information.

Let $Z=\mathbb{C}^{n}$ be the complex $n$-space with coordinates $z$ $=$ $(z_{1}, \ldots, z_{n})$ ,
and let $W$ be afinite subgroup of the unitary group $U(n)$ . The case where
$W$ is afinite unitary reflection group is of particular interest to us. Consider
a $W$-invariant polynomial $f\in \mathbb{C}[z]^{W}$ of degree $N=\deg f$ satisfying the
following assumption, which will be made throughout the paper.

Assumption 1.1 The top homogeneous component $f_{0}$ of f has the origin
O $\in Z$ as the only isolated singular point of it.

The first aim of this paper is to discuss a $W$-invariant duality between the
pair of twisted polynomial de Rham cohomology groups $H.(\Omega_{Z}. , d_{\pm f})$ , where
$\Omega_{Z}$

. denotes the space of polynomial differential forms on $Z$ and $d_{\pm f}$ are the
twisted exterior differentials defined by

$d_{\pm f}=e^{\mp f}de^{\pm f}=d\pm df\wedge$ .
Before entering into the duality, we should describe some elementary prop-

erties of the cohomology group $H^{\cdot}(\Omega_{Z}^{\cdot}, d_{f})$ and its $W$-invariant component
$H^{\cdot}(\Omega_{Z}. , d_{f})^{W}$ . Let $\Omega_{Z/W}$.be the space of polynomial differential forms on $Z$

invariant under the action of $W$ . Standard techniques in finite group ac-
tions, such as transfer and the vanishing of the first cohomology of $W$ , imply
that the inclusion of cochain complexes $(\Omega_{Z/W}., d_{f})\llcornerarrow(\Omega_{Z}. , d_{f})$ induces an
isomorphism of cohomology groups (the transfer isomorphism):

$H^{\cdot}(\Omega_{Z/W}^{\cdot}, d_{f})\simarrow H^{\cdot}(\Omega_{Z}^{\cdot}, d_{f})^{W}$ . (1)

When $W$ is afinite unitary reflection group, adetailed description of
$H^{\cdot}(\Omega_{Z}. , d_{f})^{W}$ is possible. Aclassical theorem of Chevalley [6] and Shep-
hard and Todd [21] tells us that if $W$ is afinite unitary reflection group,
then there exists an $n$-tuple of algebraically independent, homogeneous, W-
invariant polynomials, say, $t=$ $(t_{1}, \ldots, t_{n})$ , that generates the invariant alge-
bra $\mathbb{C}[z]^{W}=\mathbb{C}[t]$ . Thus $f$ can be thought of as apolynomial of $t$ . Let $T=\mathbb{C}^{n}$

be the complex $n$-space with coordinates $t$ . Then the twisted de Rham com-
plex $(\Omega_{T}. , d_{f})$ makes sense, and there exists an inclusion of cochain complexes
$(\Omega_{T}. , d_{f})\epsilonarrow(\Omega_{Z/W}., d_{f})$ . Atheorem of Solomon [22] asserts that this inclusion
is an isomorphism. This, together with (1), yields isomorphisms:

$H^{\cdot}(\Omega_{T}^{\cdot}, d_{f})\simarrow H^{\cdot}(\Omega_{Z/W}^{\cdot}, d_{f})arrow H^{\cdot}(\sim\Omega_{Z}^{\cdot}, d_{f})^{W}$ . (2)
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Assumption 1.1 tells us that $f_{0}$ , as apolynomial of $t$ , has the origin $\mathrm{O}\in T$

as the only isolated singular point of it. It is natural to compare $H.(\Omega_{T}. , d_{f})$

with the cohomology group $H^{\cdot}(\Omega_{T}^{\cdot}, df_{0}\wedge)$ of the Koszul complex $(\Omega_{T}^{\cdot}, df_{0}\wedge)$ .
Aclassical result on isolated surface singularities (see e.g., Arnold, Gusein-
Zade and Varchenko [4, Chap. 12] $)$ implies that

$H^{p}(\Omega_{T}^{\cdot}, df_{0}\wedge)\cong\{J0(p\neq 0)(p=n)$

where $J=\mathbb{C}[t]/(\partial f_{0}/\partial t_{1}, \ldots, \partial f_{0}/\partial t_{n})$ is the Jacobian ring of the isolated
singularity $f_{0}=0$ . Let $d=$ $(d_{1}, \ldots, d_{n})$ denote the degrees of $W$ , namely,
$d_{j}=\deg t_{j}$ . By aformula of Milnor and Orlik [17] and Arnold [3], the
complex dimension $\mu=\dim_{\mathbb{C}}J$ of $J$ , or the Milnor number of $f_{0}$ , is given by

$\mu=\prod_{i=1}^{n}(\frac{N}{d_{i}}-1)<\infty$ .

If we provide the complex $(\Omega_{T}. , d_{f})$ with the degree filtration by assigning
degree $d_{j}$ to $t_{j}$ and $dt_{j}$ , then the principal term of the exterior differential
$d_{f}=d+df\wedge=d+df_{0}\wedge+\cdots$ with respect to the filtration is $\mathrm{d}/\mathrm{o}\mathrm{A}$ , and
the graduation of the complex $(\Omega_{T}. , d_{f})$ becomes isomorphic to the Koszul
complex $(\Omega_{T}. , df_{0}\wedge)$ . This observation readily leads to the formula:

$\dim H^{p}(\Omega_{T}^{\cdot}, d_{f})=\{\begin{array}{l}\mu(p=n)0(p\neq n)\end{array}$ (3)

In particular, if $W$ is the trivial group then $d=(1, \ldots, 1)$ and the Milnor
number is given by $\mu=(N-1)^{n}$ . Since $T=Z$ in this case, (3) implies that
$H^{p}(\Omega_{Z}^{\cdot}, d_{f})=0$ unless $p=n$ and $\dim H^{n}(\Omega_{Z}^{\cdot}, d_{f})=(N-1)^{n}$ . So only the
$n$-th cohomology group is nontrivial. Note that for any finite subgroup $W$ of
$U(n)$ , which may or may not be aunitary reflection group, $H^{n}(\Omega_{Z}. , d_{f})^{W}$ is
finite-dimensional, as asubspace of the finite-dimensional space $H^{n}(\Omega_{Z}. , d_{f})$ .

Now our duality theorems are stated in the following manner.

Theorem 1.2 Let $W$ be a finite subgroup of $U(n)$ . Under Assumption 1.1,
there exists a natural $W$-invariant duality:

$H^{n}(\Omega_{Z}^{\cdot}, d_{f})\cross H^{n}(\Omega_{Z}^{\cdot}, d_{-f})arrow \mathbb{C}$ . (4)

In view of (2), Theorem 1.2 leads to the following corollary.

Corollary 1.3 Let $W$ be a finite unitary reflection group and set $T=Z/W$ .
Under Assumption 1.1, there exists a natural duality:

$H^{n}(\Omega_{T}^{\cdot}, d_{f})\cross H^{n}(\Omega_{T}^{\cdot}, d_{-f})arrow \mathbb{C}$. (5)
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Although the statement of the duality does not involve analysis, our con-
struction requires analysis and PDE theory in an essential way. We remark
that another approach based on algebraic $D$-module theory, which uses a
result of Sabbah [19], is also possible. In \S 2 we explain how to construct the
duality (4). The construction is based on two kinds of comparison theorems
for several types of twisted de Rham cohomology groups. The first compari-
son theorem (Theorem 2.1) is proved by using Liouville’s theorem in several
complex variables and twisted versions of the Poincare’ lemma (see \S 3). The
second comparison theorem (Theorem 2.2) is based on atwisted version of
Hodge-Kodaira decomposition (see \S 4). It involves apseud0-differential cal-
culus of Witten’s twisted Laplacian $\Delta_{f}=d_{f}d_{f}^{*}+d_{f}^{*}d_{f}$ . There are natural
real structures on the cohomology groups compatible with the duality (The-
orem 5.1). We introduce the notion of super-symmetric in \S 6. What we call
asuper-symmetry is such atransformation that permutes $\mathrm{t}\mathrm{h}\mathrm{e}\pm \mathrm{c}\mathrm{o}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$

groups $H^{n}(\Omega_{Z}. , d_{\pm f})$ and induces symmetric or skew-symmetric self-duality
on $H^{n}(\Omega_{Z}^{\cdot}, d_{f})^{W}$ (Theorem 6.2).

The construction of Iwasaki [9] was applied to the theory of (generalized)
Airy functions by Iwasaki and Matsumoto [11]. The second aim of this article
is to introduce their result to the reader (see \S 7). Further applications to
singularity theory and special function theory should be made in the future.

2Comparison Theorems and Duality

The construction of the duality (4) is based on two kinds of comparison
theorems. The first comparison theorem is stated as follows.

Theorem 2.1 Let $\mathcal{T}_{Z}^{\cdot}$ be the space of tempered currents on Z. Then the
inclusion of complexes $(\Omega_{Z}. , d_{f})\mathrm{e}arrow(\mathcal{T}_{Z}^{\cdot}, d_{f})$ induces a $W$ -equivariant isomor-
phism of cohomology groups:

$H^{\cdot}(\Omega_{Z}^{\cdot}, d_{f})\simarrow H^{\cdot}(\mathcal{T}_{Z}^{\cdot}, d_{f})$ . (6)

We remark that this theorem holds without Assumption 1.1; the only essential
assumption needed is the condition that $f$ is acomplex polynomial. The
second comparison theorem is stated as follows.

Theorem 2.2 Let $S_{Z}^{\cdot}$ be the space of smooth differential forms of Schwartz
class on Z. Then the inclusion of complexes $(S_{Z}^{\cdot}, d_{f})\mathrm{c}arrow(\mathcal{T}_{Z}^{\cdot}, df)$ induces $a$

$W$ -equivariant isomorphism of cohomology groups:

$H^{\cdot}(S_{Z}^{\cdot}, d_{f})\simarrow H^{\cdot}(\mathcal{T}_{Z}^{\cdot}, d_{f})$ . (7)
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We remark that Assumption 1.1 is essential in this theorem.
Once Theorems 2.1 and 2.2 are established, the construction of the du-

ality (4) proceeds along the same line as in the classical counterparts: the
Poincare duality for de Rham cohomology, and the Serre duality for Dol-
beault cohomology on acompact (complex in the latter case) manifold. To
explain this, consider the diagram:

$H^{n}(\Omega_{Z}. , d_{f})arrow(\mathrm{a})H^{n}(\tau_{1^{Z}(\mathrm{d})}.,d_{f})$
$H^{n}(\Omega_{Z}^{\cdot},d_{-f})\downarrow(\mathrm{b})$

$H^{n}(S_{Z}. , d_{-f})arrow(\mathrm{c})H^{n}(\mathcal{T}_{Z}^{\cdot}, d_{-f})$ ,

where the arrows (a), (b), (c) are $W$-equivariant isomorphisms; (a) and (b)
come from Theorem 2.1, and (c) comes from Theorem 2.2, respectively. The
arrow (d) indicates anatural $W$-invariant duality between $H^{n}(\mathcal{T}_{Z}^{\cdot}, d_{f})$ and
$H^{n}(S_{Z}^{\cdot}, d_{-f})$ induced from the topological duality between the space of tem-
pered distributions and that of smooth functions of Schwartz class. The
reduction to the former situation from the latter is made by astandard
functional-analytical method as in Serre [20], based on the finite dimension-
ality of $H^{n}(\mathcal{T}_{Z}^{\cdot}, d_{f})$ and $H^{n}(S_{Z}^{\cdot}, d_{-f})$ , which in turn follows from the finite
dimensionality of $H^{n}(\Omega_{Z}^{\cdot}, d_{\pm f})$ through the isomorphisms (6) and (7). In
this manner, establishing the duality (4) has been reduced to proving the
comparison theorems, Theorems 2.1 and 2.2.

Putting Theorems 2.1 and 2.2 together yields natural $W$-equivariant is0-
morphisms of cohomology groups:

$H^{n}(\Omega_{Z}^{\cdot}, d_{\pm f})\simarrow H^{n}(S_{Z}^{\cdot}, d_{\pm f})$ . (8)

Therefore every cohomology classes $\emptyset\pm\in H^{n}(\Omega_{Z}. , d_{\pm f})$ can be represented by
same $d_{\pm f}$-closecl smooth $n$-forms of Schwartz class on $Z$ , say, $\emptyset\pm\cdot$ Then the
duality (4) is expressed by the integrals:

$\langle\phi_{+}, \phi_{-}\rangle=\int_{Z}\psi_{+}\wedge\phi_{-}=\int_{Z}\phi_{+}\wedge\psi_{-}=\int_{Z}\psi_{+}\wedge\psi_{-}$ .

Note that these integrals are convergent, since $\emptyset\pm \mathrm{a}\mathrm{r}\mathrm{e}$ of polynomial growth
and $\psi_{\pm}$ are rapidly decreasing as $|z|arrow\infty$ .

3Twisted Poincar\’e Lemmas
We present an outline of the proof of Theorem 2.1. Amain idea is to represent
the polynomial de Rham complex $(\Omega_{Z}.$,$d_{f})$ in terms of the double complex
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0 0 0 0

111 1
$0 arrow\Omega_{Z}^{0}arrow\Omega_{Z}^{1}\frac{d_{f}}{r}d_{f}\Omega_{Z}^{2}arrow\cdots\frac{d_{f}}{r}d_{f}\Omega_{Z}^{n}arrow 0$

111 1
$F_{z_{\overline{\partial}}}^{0} \frac{\partial_{f_{\mathrm{t}}}}{r}\tau_{Z}’\frac{\partial_{f_{1}}}{r}\tau_{z_{\overline{\partial}}}^{2,0}\cdots\underline{\backslash },\tau_{Z}^{n,0}arrow 0\iota’\iota^{10}-\overline{\partial}\iota^{\frac{\partial_{f_{1}}}{r}}\downarrow\pm\overline{\partial}\partial_{f}$

$\tau z^{0,1^{\partial_{f}}}arrow\tau_{z_{\overline{\partial}}}^{1,1}\frac{\partial_{f1}}{r}\mathcal{T}_{Z}\underline{\iota},\ldots\underline{\mathrm{c}},$

$7_{Z}^{\mathrm{m},1_{arrow 0}}\downarrow-\partial\downarrow\iota^{2,1}-\overline{\partial}\iota_{\mp}\partial\partial_{f}\partial$

,

... ... ... ...
$\mathcal{T}_{Z}^{0,n}\downarrow\pm\overline{\partial}\underline{\partial_{f1}}$

,

$\mathcal{T}_{Z}^{1,n}\frac{\partial_{f_{1}}}{r}\mathcal{T}_{Z}^{2,n}\frac{\partial_{f_{1}}}{\sim}\cdots\frac{\partial_{f_{\iota}}}{\neg}\mathcal{T}_{Z}^{\mathrm{n},n}\downarrow\mp\overline{\partial}\downarrow\pm\overline{\partial}\downarrow\overline{\partial}arrow 0$

$\downarrow$ $\downarrow$ 1 1
0 0 0 0

Figure 1: Double Complex

$(\mathcal{T}_{Z’}^{\cdot}\cdot, \partial_{f},\overline{\partial})$ in amanner indicated in Figure 1, where $\mathcal{T}_{Z}^{p,q}$ is the space of
tempered $(p, q)$-currents on $Z$ , and $\partial_{f}$ is the holomorphic twisted exterior
differential $\mathrm{d}_{1}\mathrm{e}$fined by

$\partial_{f}=e^{-f}\partial e^{f}=\partial+df\wedge$ . (9)

Since $f$ is acomplex polynomial, the exterior differential $d_{f}$ is decomposed
into the $(1, 0)$-and $(0, 1)$ -components as $d_{f}=\partial_{f}+\overline{\partial}$. The key ingredients of
the proof consist of the Liouville theorem in several complex variables and
two kinds of Poincare’ lemmas.

Lemma 3.1 (Liouville Theorem) There following sequence is exact:

$0arrow\Omega_{Z}^{p,0}arrow \mathcal{T}_{Z}^{p,0}arrow^{\overline{\partial}}\mathcal{T}_{Z}^{p,1}$
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Lemma 3.2 ( $\mathrm{d}$-Poincare Lemma) The following sequence is exact

$\mathcal{T}_{Z}^{p,0}arrow\overline{\partial}\mathcal{T}_{Z}^{p,1}arrow\overline{\partial}$ . $..arrow\overline{\partial}\mathcal{T}_{Z}^{p,n}arrow 0$ . (10)

Lemma 3.3 ( $\partial_{f^{-}}\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{r}\acute{\mathrm{e}}$ Lemma) The following sequence is exact:

$\mathcal{T}_{Z}^{0,q}arrow\partial_{f}\mathcal{T}_{Z}^{1,q}arrow\partial_{f}$ . . . $arrow\partial_{f}\mathcal{T}_{Z}^{n,q}arrow 0$ . (11)

These lemmas are incorporated into the commutative diagram in Fig-
ure 1in which all the horizontal sequences except the top one, as well as all
the vertical sequences, are exact. In view of these exactness, ageneral the-
orem in homological algebra implies that there is anatural isomorphism of
cohomology groups $H^{\cdot}(\Omega_{Z}^{\cdot}, d_{f})arrow H^{\cdot}(\sim \mathcal{T}_{Z}^{\cdot}, d_{f})$ , since the total complex of the
double complex $(\mathcal{T}_{Z’}^{\cdot}\cdot, \partial_{f},\overline{\partial})$ is given by $(\mathcal{T}_{Z}^{\cdot}, d_{f})$ . One can easily check that
this isomorphism is actually induced from the inclusion $(\Omega_{Z}^{\cdot}, d_{f})\mapsto(\mathcal{T}_{Z}^{\cdot}, d_{f})$.
Hence Theorem 2.1 is proved if Lemmas 3.1, 3.2 and 3.2 are established.

Lemma 3.1 is quite standard in several complex variables. The proofs of
Lemmas 3.2 and 3.3 are reduced to showing the exactness of the sequence:

$\mathcal{T}_{Z}^{0,q}arrow\partial \mathcal{T}_{Z}^{1,q}arrow^{\partial}$ . . . $arrow\partial \mathcal{T}_{Z}^{n,q}arrow 0$ . (12)

Indeed, (10) is transformed into (12) by just taking complex conjugate. As
for (11), we notice that there is acommutative diagram:

$\tau_{Z,\iota^{0q^{\partial_{f}}}}’arrow e^{2i1\mathrm{m}f}\mathcal{T}_{Z,\downarrow e^{2i1\mathrm{m}f}}^{1,q^{\partial}},arrow^{f}$

. . .
$arrow\partial_{f}\mathcal{T}_{Z,\downarrow e^{2i1\mathrm{m}f}}^{n,q},arrow 0$

(13)

$\mathcal{T}_{Z}^{0,q}arrow\partial \mathcal{T}_{Z}^{1,q}arrow^{\partial}$ . . . a
$\mathcal{T}_{Z}^{n,q}arrow 0$ ,

where the vertical arrows are the multiplications by the function $e^{2i{\rm Im} f}$ . I $\mathrm{n}$

view of (9), they should be the multiplication by the function $e^{f}$ . However,
since $f$ is acomplex polynomial, the function $e^{-\overline{f}}$ is aconstant with respect
to the differential $\partial$ , namely, it is an anti-holomorphic function, and s$\mathrm{o}$

$e^{f}$

can be replaced by $e^{f}e^{-\overline{f}}=e^{f-\overline{f}}=e^{2i{\rm Im} f}$ . This replacement is acrucial
trick in our argument. Since the function $e^{2i{\rm Im} f}$ and all its derivatives are
at most of polynomial growth as $|z|$ $arrow\infty$ , each vertical arrow in (13) is an
isomorphism, yielding an isomorphism between (11) and (12). In this manner
(11) has been untwisted and transformed into (12). Finally the exactness of
(12) is obtained from Lemma 3.4 below by dualizing the sequence (14).

Lemma 3.4 Let $S_{Z}^{p,q}$ denote the space of smooth $(p, q)$ -forms of Schwartz
class on Z. The following sequence is exact:

$0arrow S_{Z}^{0,q}arrow^{\partial}S_{Z}^{1,q}arrow\partial$ . . . $arrow^{\partial}S_{Z}^{n,q}$ . (14)
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This lemma is established by using the Fourier transform, the Borel-Litt
theorem, adivision theorem for smooth functions, the flatness of the formal
power series ring over the polynomial ring and the exactness of an algebraic
Koszul complex.

4Twisted Hodge-Kodaira Decomposition
The strategy for proving Theorem 2.2 is to develop atwisted version of
Hodge-Kodaira theory and acrucial role is played by the twisted Laplacian:

$\Delta_{f}=d_{f}d_{f}^{*}+d_{f}^{*}d_{f}$ ,

where $d_{f}^{*}$ is the formal Hermitian adjoint of $d_{f}$ . Asimple inspection shows
that $\Delta_{f}$ is unitarily equivalent to the real twisted Laplacian $\Delta_{g}=d_{g}d_{g}^{*}+d_{g}^{*}d_{g}$

associated with the real part $g$ of $f$ , namely,

$\Delta_{f}=e^{:{\rm Im} f}\Delta_{g}e^{-i{\rm Im} f}$ wwiitthh g $={\rm Re}$ f. (15)

It should be mentioned here that Witten [24] used the twisted Lapla-
cian $\Delta_{tg}$ on aRiemannian manifold to develop his Morse theory as asuper-
symmetric quantum mechanics, where $g$ is aMorse function and $t$ is alarge
parameter. Afterwards, Helffer and Sj\"ostrand [8] worked out to justify some
of Witten’s speculations mathematically. On the other hand, we use the
twisted Laplacian rather differently; we are not concerned with Morse the-
ory but with Hodge-Kodaira theory. Moreover our function $g={\rm Re} f$ is not
necessarily aMorse function.

We need an explicit formula for the twisted Laplacian $\Delta_{g}$ . To state it
we introduce some notation. Setting $m=2n$ and $z_{j}=x_{2j-1}+ix_{2j}(j=$
$1$ , $\ldots$ , $n$), we think of $Z=\mathbb{C}^{n}$ as the real Euclidean space $\mathbb{R}^{m}$ with real
coordinates $x=$ $(x_{1}, \ldots, x_{m})$ . For an ordered subset $I$ $=(i_{1}, \ldots, i_{p})\subset$

$\{1, \ldots, m\}$ , we write $dxi=dx_{i_{1}}\wedge\cdots\wedge dx_{\dot{\iota}_{\mathrm{p}}}$ and $|I|$ $=p$. We employ a
formula of Witten [24, formula (13)]. In our case this formula reads:

Proposition 4.1 The twisted Laplacian $\Delta_{g}$ acting on $p$-forrms is written

$\Delta_{g}$ :
$\sum_{|I|=p}\phi_{I}dx_{I}\vdash\neq\sum_{|I|=p}\sum_{|J|=p}A_{IJ}\phi_{J}dx_{I}$

,

where the matrix elements $A_{IJ}$ are described as follows:
(i) Diagonal: if $I$ $=J$, then

$A_{II}= \Delta+|dg|^{2}+\sum_{i=1}^{m}\epsilon_{i}(I)$ $\frac{\partial^{2}g}{\partial x_{i}^{2}}$ ,
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where a $=-(\partial^{2}/\partial x_{1}^{2}+\cdots+\partial^{2}/\partial x_{m}^{2})$ is the usual Laplacian and $\epsilon_{i}(I)$

is a sign function defined by

$\epsilon_{i}(I)$ $=\{$
$+1$ $(i\in I)$ ,
-1 $(i\not\in I)$ .

(ii) First off-diagonals: if $|I$ $\cap J|=p-1$ , then

$A_{IJ}=2(-1)^{\ell_{i}(I)+\ell_{j}(J)} \frac{\partial^{2}g}{\partial x_{i}\partial x_{j}}$ ,

where $i\in I\backslash J$ and $j\in J\backslash I$ , and $\ell_{i}(I)$ $=k$ if $i\in I$ is the $k$ -th smallest
element of $I$ .

(iii) Remaining entries: if $|I$ $\cap J|<p-1$ , then $A_{IJ}=-0$ .

This proposition shows that the twisted Laplacian $\Delta_{g}$ may be thought of
as aSchrodinger operator with matrix-valued potential: $\Delta_{g}=\Delta+|dg|^{2}+V$ ,
where the potential term consists of the scalar part $|dg|^{2}$ and the tri-diagonal
matrix part $V$ . Since $f$ is acomplex polynomial having $g$ as its real part, the
Cauchy-Riemann equation for $f$ yields $|dg|^{2}=|df|^{2}$ . Moreover, since $f$ is a
polynomial of degree $N$ having $f_{0}$ as its top homogeneous component, $|dg|^{2}$

is expressed as the sum of the real homogeneous polynomial $|df_{0}|^{2}$ of degree
2 $(N-1)$ with areal polynomial of degree less than 2 $(N-1)$ . On the other
hand, Proposition 4.1 implies that each entry of $V$ is areal polynomial of
degree less than $N-1$ . Hence $\Delta_{g}$ is written in the form:

$\Delta_{g}=\Delta+|df_{0}|^{2}+U$,

where $U$ is a $\mathrm{t}\mathrm{r}\mathrm{i}$-diagonal symmetric matrix whose entries are real polynomials
of degree less than $2(N-1)$ . Assumption 1.1 then assures that the principal
term $|df_{0}|^{2}$ of the potential has auniform polynomial growth of degree $2(N-$
$1)\geq 2$ as $|x|arrow\infty$ . This fact leads us to atwisted version of Hodge-Kodaira
decomposition on the open manifold $Z=\mathbb{R}^{m}$ .

Theorem 4.2 (Twisted Hodge-Kodaira Decomposition) Every $\Delta_{g^{-}}$

harmonic tempered current is necessarily a $\Delta_{g}$ -harmonic smooth differential
form of Schwartz class, and vice versa, namely,

$\{\phi\in \mathcal{T}_{Z}^{\cdot} : \Delta_{g}\phi=0\}=\{\phi \in S_{Z}^{\cdot} : \Delta_{g}\phi=0\}$. (16)

The linear space $\mathcal{H}_{g}^{\cdot}$ defined by the both sides of (16) is finite dimensional
There exists a $W$ -equivariant, contin tous, linear operator $G_{g}$ : $\mathcal{T}_{Z}^{\cdot}arrow \mathcal{T}_{Z}^{\cdot}$

{Green operator), which restricts to a continuous operator $G_{g}$ : $S_{Z}^{\cdot}arrow S_{Z}^{\cdot}$ ,
such that the following conditions are satisfied
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(i) There exist $W$-equivariant direct sum decompositions:

$\mathcal{T}_{Z}^{\cdot}$

$=\mathcal{H}_{g}^{\cdot}\oplus d_{g}d_{g}^{*}G_{g}\mathcal{T}_{Z}^{\cdot}\oplus d_{g}^{*}d_{g}G_{g}\mathcal{T}_{Z}.$ , (17)
$S_{Z}^{\cdot}$ $=\mathcal{H}_{g}^{\cdot}\oplus d_{g}d_{g}^{*}G_{g}S_{Z}$

.
$\oplus d_{g}^{*}d_{g}G_{g}S_{Z}^{\cdot}$ . (18)

(ii) Let $H_{g}$ : $\mathcal{T}_{Z}^{\cdot}arrow \mathcal{H}_{g}^{\cdot}$ be the projection relative to the decomposition (17).
Then it restricts to the projection $H_{g}$ : $S_{Z}^{\cdot}arrow \mathcal{H}_{g}^{\cdot}$ relative to the de-
composition (18). Moreover, as operators acting on $\mathcal{T}_{Z}^{\cdot}$ or on $S_{Z}$

.
’ the

following commutation relations are valid:

(a) I $=H_{g}+\Delta_{g}G_{g}=H_{g}+G_{g}\Delta_{g}$ ,

(b) $H_{g}G_{g}=G_{g}H_{g}=H_{g}\Delta_{g}=\Delta_{g}H_{\mathit{9}}=0$,

(c) $d_{g}G_{g}=Ggdg$ , $d_{g}^{*}G_{g}=G_{g}d_{g}^{*}$ .

Theorem 4.2 implies that both of the cohomology groups $H.(\mathcal{T}_{Z}., d_{g})$ and
$H^{\cdot}(S_{Z}. , d_{g})$ are $W$-equivariantly isomorphic to the harmonic space $\mathcal{H}_{g}^{\cdot}$ . In
view of (15), Theorem 4.2 clearly leads to the same type of decomposition
theorem for the twisted Laplacian $\Delta_{f}$ . Thus we obtain the following corollary.

Corollary 4.3 There exist $W$-equivariant isomorphisms:

$H^{\cdot}(S_{Z}^{\cdot}, d_{f})\simarrow \mathcal{H}_{f}^{\cdot}arrow H^{\cdot}(\sim \mathcal{T}_{Z}^{\cdot}, d_{f})$ ,

where $\mathcal{H}_{f}^{\cdot}$ is the space of 1 $f$ -harmonic tempered $p$-currents on $Z$ , or equiva-
lently the space of $\Delta_{f}$ -harmonic smooth forms of Schwartz class on $Z$ .

Once Theorem 4.2 is established, Theorem 2.2 readily follows from Corol-
lary 4.3. Basically the proof of Theorem 4.2 follows the standard arguments
as in Wells [23, Chap. 4]. An essential difference here is to make use of the
pseud0-differential calculus of KumanO-go and Taniguchi [14]. They devel-
oped aglobal calculus which allows for weight functions of polynomial growth
as $|x|arrow\infty$ and permits aglobal treatment of operators $1\mathrm{i}\mathrm{k}\mathrm{e}-\Delta+|x|^{2k}$ and
its inverse (see also Beals [5]).

5Real Structure
There are natural real structures on $H^{n}(\Omega_{Z}. , d_{\pm f})$ compatible with the duality.
Let us recall some terminology. Areal structure on acomplex vector space,
say, $V$ , is an anti-CMinear automorphism $J$ : $Varrow V$ such that $J^{2}=1$ .
Given areal structure $J$ on $V$ , let $V_{\mathbb{R}}=\{v\in V : Jv=v\}$ . Then $V_{\mathbb{R}}$ is a
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real vector space such that $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}\mathrm{H}(3_{1}\mathrm{C}\ovalbox{\tt\small REJECT}$
$\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}$ . We refer to 6 as the real part

of V relative to J. When agroup W acts on V, areal structure J on V is
said to be $W$-equivariant if J commutes with the action of W on V. If J is
$\mathrm{I}\mathrm{I}^{\ovalbox{\tt\small REJECT}}$-equivariant, then 6 is acted on by W in anatural manner.

Theorem 5.1 The cohomology groups $H^{n}(\Omega_{Z}. , d_{\pm f})$ admit W-equivariant
real structures $J_{\pm f}$ : $H^{n}(\Omega_{Z}. , d_{\pm f})arrow H^{n}(\Omega_{Z}. , d_{\pm f})$ such that the W-invariant
complex duality (4) restricts to a $W$-invariant real duality:

$H_{\mathbb{R}}^{n}(\Omega_{Z}^{\cdot}, d_{f})\cross H_{\mathbb{R}}^{n}(\Omega_{Z}^{\cdot}, d_{-f})arrow \mathbb{R}$ , (19)

where $H_{\mathbb{R}}^{n}(\Omega_{Z}.$,$d_{\pm f})$ denote the real par ts of $H^{n}(\Omega_{Z}^{\cdot}, d_{\pm f})$ relative to $J_{\pm f}$ .

The real structures mentioned in Theorem 5.1 are constructed as follows.
There exists (well-defined) anti-C linear automorphisms:

$J_{\pm f}$ : $S_{Z}^{p}arrow S_{Z}^{p}$ , $\psi$ }$arrow e^{\mp 2i{\rm Im} f}\overline{\psi}$ .

It is easy to see that $J_{\pm f}$ give real structures on $S_{Z}^{p}$ . Asimple check shows that
$J_{\pm f}$ commute with the twisted exterior differentials $d_{\pm f}$ and so $J_{\pm f}$ define
real structures on the twisted de Rham complexes $(S_{Z}. , d_{\pm f})$ of Schwartz
class. Passing to cohomology, they induce $W$-equivariant real structures $J_{\pm f}$

on $H^{n}(S_{Z}^{\cdot}, d_{\pm f})$ . Then, through the $W$-equivariant isomorphism (8), one
obtains $W$-equivariant real structures $J_{\pm f}$ on $H^{n}(\Omega_{Z}. , d_{\pm f})$ . The complex
duality (4) induces the real duality (19), when restricted to the real parts.

Corollary 5.2 Let $W$ be a finite unitary reflection group and set $T=Z/W$ .
Then there exist natural real structures on $H^{n}(\Omega_{T}. , d_{\pm f})$ such that the complex
duality in Corollary 1.3 restricts to a real duality:

$H_{\mathbb{R}}^{n}(\Omega_{T}^{\cdot}, d_{f})\cross H_{\mathbb{R}}^{n}(\Omega_{T}^{\cdot}, d_{-f})arrow \mathrm{R}$ .

6Super-symmetry
It is interesting to consider atransformation that permutes the $\pm \mathrm{c}\mathrm{o}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$

groups $H^{n}(\Omega_{Z}.$,$d_{\pm f})$ under which the duality behaves naturally.

Definition 6.1 Given afinite subgroup $W$ of $U(n)$ and a $W$-invariant poly-
nomial $f$ , aunitary transformation $\tau\in U(n)$ is called asuper-symmetry
relative to $(W, f)$ , if the following conditions are satisfied:

$\tau^{2}\in W$ and $\tau^{*}f=-f$.

11



Here is asimple example. Let $W$ be the symmetric group $S_{n}$ acting on
$\mathbb{C}^{1}$ by permuting the coordinates, and $f$ be asymmetric polynomial having
only odd homogeneous components. Then $\tau=-1$ is asuper-symmetry.

Asuper-symmetry $\tau$ induces $W$-equivariant isomorphisms of de Rham
complexes $\tau$ : $(F_{Z}^{\cdot}, d_{\pm f})arrow\sim(\mathcal{F}_{Z}^{\cdot}, d_{\mp f})$ , where $F_{Z}^{\cdot}=\Omega_{Z}$

.
’

$S_{Z}^{\cdot}$ , $\mathcal{T}_{Z}^{\cdot}$ , and then
$W$-equivariant isomorphisms of de Rham cohomology groups:

$\tau$ : $H^{n}(F_{Z}^{\cdot}, d_{\pm f})\simarrow H^{n}(F_{Z}^{\cdot}, d_{\mp f})$ $(\mathcal{F}_{Z}^{\cdot}=\Omega_{Z}^{\cdot}, S_{Z}^{\cdot}, \mathcal{T}_{Z}^{\cdot})$ . (20)

Note that they are compatible with the isomorphisms (8). Thus asuper-
symmetry permutes the $\pm \mathrm{c}\mathrm{o}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ groups. The duality (4), combined
with the super symmetry (20), induces a $W$-invariant self-duality:

$H^{n}(\Omega_{Z}^{\cdot}, d_{f})\cross H^{n}(\Omega_{Z}^{\cdot}, d_{f})arrow \mathbb{C}$ , $(\phi_{1}, \phi_{2})-\rangle\langle\langle\phi_{1}, \phi_{2}\rangle\rangle:=\langle\phi_{1}, \tau\phi_{2}\rangle$ . (21)

Note that (21) is compatible with the real structure $J_{f}$ . The self-duality (21)
has abeautiful property, when restricted to the $W$-invariant components.

Theorem 6.2 For a super-symmetry $\tau$ relative to $(W, f)$ , the associated self-
duality (21) induces a nondegenerate bilinear $fom$:

$H^{n}(\Omega_{Z}^{\cdot}, d_{f})^{W}\cross H^{n}(\Omega_{Z}^{\cdot}, d_{f})^{W}arrow \mathbb{C}$ ,

which is symmetric when $n$ is even, and skew-symmetric when $n$ is odd.

Let $H_{\mathbb{R}}^{n}(\Omega_{Z}. , d_{f})^{W}$ denote the $W$-invariant component of the real cohomology
group $H_{\mathbb{R}}^{n}(\Omega_{Z}. , d_{f})$ , or equivalently the real part of the $W$-invariant complex
cohomology group $H^{n}(\Omega_{Z}^{\cdot}, d_{f})^{W}$ . The compatibility of the self-duality (21)
with the real structure $J_{f}$ leads to arefinement of Theorem 6.2.

Theorem 6.3 For a super-symmetry $\tau$ relative to $(W, f)$ , the self-duality
(21) induces a real nondegenerate bilinear form:

$H_{\mathbb{R}}^{n}(\Omega_{Z}^{\cdot}, d_{f})^{W}\cross H_{\mathbb{R}}^{n}(\Omega_{Z}^{\cdot}, d_{f})^{W}arrow \mathrm{R}$,

which is symmetric when $n$ is even, and skew-symmetric when $n$ is odd.

When $W$ is afinite unitary reflection group, Theorem 6.3 yields:

Corollary 6.4 Let $W$ be a finite unitary reflection group and set $T=Z/W$ .
For a super-symmetry $\tau$ relative to $(W, f)$ , there exists a real nondegenerate
bilinear $fom$:

$H_{\mathbb{R}}^{n}(\Omega_{T}^{\cdot}, d_{f})\cross H_{\mathbb{R}}^{n}(\Omega_{T}^{\cdot}, d_{f})arrow \mathrm{R}$ . (22)

which is symmetric when n is even, and skew-symmetric when n is odd.

12



We pose the problem of constructing abasis of $H_{\mathbb{R}}^{n}(\Omega_{T}. , d_{f})$ and computing
the intersection matrix of the self-duality (22) relative to that basis for various
finite unitary reflection groups $W$ and various $W$-invariant polynomials $f$

satisfying Assumption 1.1. It is also an interesting problem to discuss the
connection of our construction with the classical Picard-Lefschetz theory for
isolated surface singularities, vanishing cycles, Hodge structures, and so on.

7Generalized Airy functions
The classical Airy function in single-variable is defined by an integral:

Ai(a) $= \int_{c}e^{\frac{1}{3}t^{3}+at}dt$ (a $\in \mathbb{C})$ ,

where $c$ is acycle chosen in such away that the integrand is exponentially de-
creasing at infinity along $c$ (see Figure 2). The Airy function is an important
special function arising in mathematical optics (see Airy [1]). Ageneraliza-
tion of the Airy function into several variables was introduced by Gel’fand,
Retakh and Serganova [7] and was studied in some depth by Kimura $[12, 13]$ .

Figure 2: Cycles for the Airy integral

Following [7, 12], we recall the definition of ageneralized Airy function.
First, let $\theta_{k}(t)$ be the $k$-th coefficient of agenerating series:

$\log(1+t_{1}X+\cdots+t_{n}X^{n})=\sum_{k=1}^{\infty}\theta_{k}(t)X^{k}$ .

Then $\theta_{k}(t)$ is aweighted homogeneous polynomial of degree k in variables
t $=$ $(t_{1},$

\ldots ,
$t_{n})$ , where $t_{j}$ is assumed to be of degree j. For small values of k,
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$\theta_{1}(t)=t_{1}$

$\theta_{2}(t)=t_{2}-\frac{1}{2}t_{1}^{2}$

03 $(t)=t_{3}-t_{2}t_{1}+ \frac{1}{3}t_{1}^{3}$

$\theta_{4}(t)=t_{4}-t_{3}t_{1}-\frac{1}{2}t_{2}^{2}+t_{2}t_{1}^{2}-\frac{1}{4}t_{1}^{4}$

$\theta_{5}(t)=t_{5}-t_{4}t_{1}-t_{3}t_{2}+t_{3}t_{1}^{2}+t_{2}^{2}t_{1}-t_{2}t_{1}^{3}+\frac{1}{5}t_{1}^{5}$

Table 1: Polynomials $\theta_{k}(t)$

polynomials $\theta_{k}(t)$ are illustrated in Table 1. Set

$f=f(a, t)= \sum_{k=0}^{N}(-1)^{k}e_{k}(a)\theta_{N-k+1}(t)$ ,

where $e_{k}(a)$ is the $k$-th elementary symmetric polynomial of $a=(a_{1}, \ldots, a_{N})$

with $N\geq n$ . Let $T=\mathbb{C}^{n}$ be the complex $n$-space with coordinates $t=$

$(t_{1}, \ldots, t_{n})$ . Next we define afamily $\Phi$ of supports in $T$ as follows: an element
of $\Phi$ is aclosed subset $c$ of $T$ such that ${\rm Re}\theta_{N+1}(t)|_{c}arrow-\infty$ , quicker than
$-||t||^{q}$ for some $q>0$ as $||t||:= \sum_{j=1}^{n}|t_{j}|^{1/j}arrow \mathrm{o}\mathrm{o}$ (see Pham [18]). A
generalized Airy function is now defined by an integral:

$A(a)= \int_{\mathrm{c}}e^{f(a,t)}\omega$ ,

where $\omega$ $\in\Omega_{T}^{n}$ is a $d_{f}$-closed polynomial $n$-form and $c$ is an $n$-cycle with
support in $\Phi$ . This integral depends only on the cohomology class $[\omega]\in$

$H^{n}(\Omega_{T}. , d_{f})$ and the homology class $[c]\in H_{n}^{\Phi}(T)$ , where $H_{n}^{\Phi}(T)$ denote the
integral $n$-th homology group of $T$ with supports in $\Phi$ .

If we introduce new variables $z=$ $(z_{1}, \ldots, z_{n})$ such that
$t_{j}=(-1)^{j}e_{j}(z)$ $(j=1, \ldots, n)$ ,

where $e_{j}(z)$ is the $j$-th elementary symmetric polynomial of $z$ , then we can
easily see that $f$ , as apolynomial of $z$ , satisfies Assumption 1.1. In this case
the group $W$ is the symmetric group $S_{n}$ acting on $Z=\mathbb{C}^{n}$ by permuting the
coordinates, having degrees $d=$ $($ 1, 2, $\ldots$ , $n)$ . Thus we have

$\dim H^{n}(\Omega_{T}^{\cdot}, d_{\pm f})=\mu$ , where $\mu=(\begin{array}{l}Nn\end{array})$ .
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There are bases of the cohomology groups $H^{n}(\Omega_{T}. , d_{\pm f})$ written in terms
of Schur polynomials. Given aYoung diagram $\lambda$ , let $s_{\lambda}(z)$ denote the Schur
polynomial in $z$ attached to the diagram A(see Macdonald [15]). Let $R(p, q)$

be the rectangular Young diagram with $p$ rows and $q$ columns, and let $\mathcal{Y}(p, q)$

be the set of all Young subdiagrams of $R(p, q)$ .

Theorem 7.1 Denote by $\phi_{\lambda}^{\pm}$ the cohomology classes in $H^{n}(\Omega_{T}. , d_{\pm f})$ reprer
sented by the polynomial differential $n$ -form $s_{\lambda}(z)dt_{1}\wedge\cdots\wedge dt_{n}$ . Then the sets
{ $\phi_{\lambda}^{\pm}$ : A $\in \mathcal{Y}(n,$ $N-n)$ } form bases of the cohomology groups $H^{n}(\Omega_{T}^{\cdot}, d_{\pm f})$ .

We are interested in the intersection matrix of the duality (5) relative to
the bases in Theorem 7.1. Iwasaki and Matsumoto [11] were able to calculate
it explicitly in terms of skew-Schur polynomials. Let $s_{\lambda/\mu}(a)$ denote the
skew-Schur polynomial of $a=$ $(a_{1}, \ldots, a_{N})$ attached to apair $(\lambda, \mu)$ of Young
diagrams (see Macdonald [15]). To state the result, we need the concept of
complementary diagrams. Given aYoung diagram $\lambda$ $=$ $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p})\in$

$\mathcal{Y}(p, q)$ , its complementary diagram A $\in \mathcal{Y}(p, q)$ is defined by

$\check{\lambda}=(q-\lambda_{p}, q-\lambda_{p-1}, \ldots, q-\lambda_{1})$ .

Pictorially, $\check{\lambda}$ is obtained by rotating the rectangle $R(p, q)$ , together with $\lambda$ ,
around its center by 180 and then deleting Afrom $R(p, q)$ . For instance, a
Young diagram $\lambda=(5,3,3,3,2,1,1)$ has the complementary diagram $\lambda=$

$(4,4,3,2,2,2,0)$ in $\mathcal{Y}(7,5)$ (see Figure 3). Taking complementary diagrams
$\lambda\vdasharrow\check{\lambda}$ defines an involution on the set $\mathcal{Y}(p, q)$ .

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$

$\bullet$

$\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$ $\bullet$

$\bullet$ $\bullet$

$\bullet$ $\bullet$

$\bullet$ $\bullet$

$rightarrow$

A $=(5,$ 3,3,3,2,1,1) A $=(4,$ 4,3,2,2,2,0)

Figure 3: Complementary Diagram$\mathrm{s}$
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Theorem 7.2 With respect to the bases $\{+\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\}$ constructed in Theorem 7.1,
the intersection pairing $H^{n}(0\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}, d_{f})\mathrm{x}H^{n}(*\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT},$d $f)-+\mathrm{C}$ is represented as

$\langle\phi_{\lambda}^{+}, \phi_{\mu}^{-}\rangle=(-1)^{\frac{1}{2}n(n-1)}n!s_{\lambda/\overline{\mu}}(a)$ for $\lambda$ , $\mu\in \mathcal{Y}(n, N-n)$ .

This theorem provides us with acohomological interpretation of skew-Schur
polynomials by means of atwisted intersection theory.
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