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0 Introduction

We study the asymptotic behavior in the semiclassical limit of the scattering phase and
the time delay for the one-dimensional Schrodinger equation
2

—hz% + V(z)u = Eu (0.1)
when the energy F is near a critical value of the potential V(z). We suppose here that
the critical value is the maximum Vj; of the potential and consider two cases where V(z)
attains the maximum at one point (case I) and two points (case II). We assume moreover
that these maxima are non-degenerate, i.e. the radii of curvature are finite.

We will show the following facts. Near the critical value Vj, the leading term of the
asymptotic expansion as h tends to 0 of the time delay function (the derivative with
respect to the energy of the scattering phase) is logarithmic in both cases. Moreover its
coefficient is, in case I, the radius of curvature of the barrier top and in case 1, it is the
average of the radii of curvature of the two barrier tops, plus a contribution from the
potential well. This contribution from the potential well is an oscillating function with
wavelength O(h/log h™!) near the barrier top and it can be continued analytically into
the well, where its behavior is like in the Breit- Wigner formula.

This physical problem is closely related to the purely mathematical problem originated
by H.Weyl [We| on the eigenvalue asymptotics for the Laplace operator in a bounded do-
main §) € R with regular boundary. If N(E) is the number of eigenvalues not excedding
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FE (counting multiplicity), then
N(E) ~

(2m)"

where 7, = n™2/T'(n/2 + 1) is the volume of the unit ball in R*. L.Hoérmander [Ho)
generalized this result to compact Riemannian manifolds without boundary with the best
estimate of the error.

On the other hand, the asymptotic behavior of the scattering phase 8(E) for the
exterior problem with an obstacle {2 was studied, say, by A.Jensen and T.Kato [Je-Kal],
V.Petkov and G.Popov [Pe-Po] and R.Melrose [Me]. This is defined to be the half of the
argument of the determinant of the scattering matrix which is unitary on L2(S"~1). They
showed that 6(E) also has the Weyl type asymptotic formula when F — +o0:

vol(Q)E™?, E — +o0,

Tn

(2m)"

9(E) = — vol(Q) E™2 + O(E(~1/2),

In the case of Schrodinger operator on R™ with a scalar potential V(z), the semiclas-
sical problem is also important. Let V(z) € C§°(R™) for simplicity. Then the spectrum
of the Schrodinger operator P = —h2A +V(z) on L2(R™) consists of negative eigenvalues
and the essential spectrum lying on R;. We can define the eigenvalue counting function
N (E, h) for negative E and the scattering phase 8( E, h) for positive E both depending on
the small parameter h. The semiclassical problem is to describe the asymptotic behavior
of N(E, h) or §(E, h) as h tends to 0 while E is restricted near a fixed energy E;. Remark
that the high energy regime (E — +o00) is a particular case of the semiclassical regime
(h — 0) with h = E~Y/2 (see [Ro]). |

The spectral shift function s(E,h) combines these two notions. It is defined as a
Schwartz distribution on R modulo a real constant by the following equation:

T(/(P) -~ f(Ro) == [ F(B)s(E, W)E,

where Py = —h?A and f is an arbitrary function in the Schwartz space. s(E, h) is uniquely
determined by asking s(E, h) = 0 for E << 0. Under this condition, it is easy to see that
s(E,h) = N(E,h) for negative E. The remarkable fact discovered by M.S.Birman and
M.G .Krein [Bi-Kr] is the relation between the spectral shift function and the scattering
phase for positive E:

6(E,h) =ns(E,h) mod(nZ).

The semiclassical asymptotics of the spectral shift function is closely related to its
classical mechanics counterpart. Let s?(E,h) be the classical analogue of the spectral
shift function defined by

[ [ 00(,) - 1oo(@)}dzde = — [ (B)s*ENE,
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where p(z,£) = €2 + V(z) and po(§) = £€2. We see immediately that
(B) = [ {(B-V(@)Y* - BY?)ds,

where a; = max(a,0). An energy level E is said to be non-trapping for the classical
Hamiltonian p(z, ) if every Hamiltonian flow on p~!(E) generated by p escapes to infinity
as time goes to both + and — infinity.

D.Robert and H.Tamura [Ro-Ta] proved that if E is non-trapping in an interval,
s(E, h) has a uniform complete asymptotic expansioin as h — 0 and

s(E,h) = (2mh)™"s*(E) + O(h'™) as h — 0. (0.2)

If the energy is trapping, however, it is believed that the scattering phase varies very
rapidly because of the presence of poles of the scattering matrix called resonances near
the real axis.

Let us mention here two works on the scattering phase associated with a trapped
trajectory in a potential well. A resonance generated by such a closed trajectory is called
shape resonance and is exponentially close to the real axis with respect to h. C.Gérard,
A.Martinez and D.Robert [Gé-Ma-Ro] proved that the scattering phase increases by 7 at
the real part of a shape resonance. In other words, they showed the Breit-Wigner formula
at the bottom of the potential well.

S.Nakamura [Na] considered two Hamiltonians P; and P, corresponding to the bounded
and unbounded component of p~!(E) respectively and showed that the spectral shift
function is approximated by the sum of that for P,, the asymptotic behavior of which
we know from the result of [Ro-Tal, and the eigenvalue counting function for P.. These
eigenvalues are near the shape resonances and cause the rapid variation of the scattering
phase.

The barrier top energy E = Vj is trapping because it takes infinite time for classical
particles to arrive at the barrier top. Remark also that in case I, E is non-trapping above
and below V4 and in case II, non-trapping above V; and trapping below V; because of the
potential well. This change of classical structure at the barrier top is represented as the
logarithmic singularity of s*(E) at E =V, (see Lemma 2.3).

We will see that there is a correction term for s*(E) in a complex neighborhood of V,
of radius O(h) and that it cancels the singularity of s®(E). This term is written in terms
of the Fredholm determinant of the harmonic oscillator. This comes from the fact that
the operator P is reduced to the harmonic oscillator microlocally near the non-degenerate
critical point (see [He-Sj]). Out of this neighborhood, that is where |V; — E|/h tends to
infinity, this term disappears from the leading term and we recover s¥(E).

Once we prove that the leading term is holomorphic in a complex domain, we can
differentiate the asymptotic formula term by term. In fact, the scattering phase itself is
also holomorphic in a complex neighborhood of V; and so is the remainder term in the



21

intersection. We can then estimate the derivative of the remainder term by its supremum
by Cauchy’s formula. Thus we get the asymptotic formula of the time delay function.

The method is based on the ezact WKB analysis (see [Gé-Gr]). In the one-dimesional
case, the scattering matrix can be defined as a 2 X 2 matrix and each element is written
by wronskians of Jost solutions (see Section 2). Therefore the problem is reduced to the
connection problem of Sturm-Liouville equations with small parameter.

In this paper we start from the asymptotic formulas of the scattering matrix obtained
by [Ra] in case I and by [Fu-Ra 1] in case IL

1 Results

We consider the one-dimensional Schrédinger equation (0.1) where the potential V()
satisfies the following conditions:

(H1) V(z) is real on R and dilation analytic, that is, V(z) is holomorphic in a sector
S = {z € C;|Imz| < tanf|Rez|} U {|Imz| < &} for some 0 < 6 < m/2 and
6> 0. .

(H2) V/(z) is short range, that is, there exists a positive constant € > 0 such that |V (z)| <
(1+|z)) ¢ in S.

Let V, be the maximum of the potential on the real axis which we assume to be
positive. We consider the two cases:

(Case I) V1(Vp) = {01}
(Case 1I) V~1(Vp) = {01,02} (01 < 02)

In both cases, we assume furthermore that the radius of curvature p; is finite at each
critical points:

(H3) V"(0;)=—p;' <0 (j=1,2)

Put A\ = V, — E. The energy is under the maximum of the potential when X is
positive. If A is positive and sufficiently small, the equation V(z) — E = 0 has 2 real roots
a1()), B1(A) near o; (@ < 01 < B1) in both cases and 2 other real roots az(A), f2(A) near
09 (g < 09 < [2) in case II. We then define the action integrals between these turning
points and 400 as follows. For the simplicity of notations, we use the convention that *
stands for 1 in case I and 2 in case II

Definition 1.1  For A = Vj — F positive and sufficiently small, we set

s = [ W@ - Ba, (i=12)
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s=(/" +/;°) (VE -V (z) - VE}dz - VE(, — ),
Si(A) = /:2 VE—V(z)dz (in case II).

Let us remark here that the classical analogue of the spectral shift function s%(FE) is
related with these actions by

] 25.(N) (case I)
s*(E) = { 28 ) + 5:(3)) (case IT)

A very important fact is that S, and S; have a logarithmic singularity at A = 0 (see
Lemma 2.3). We will see that there is a correction term which affects the leading term of
the scattering phase and that it regularizes s*(E) by canceling the logarithmic singularity.
This correction term is written by the following interesting function N(z), which is the
Jost function of the harmonic oscillator (see Remark 2.5). For the properties of this
function, see Lemma, 2.4.

Definition 1.2  We define the function N(2) on {2z € C\;|arg 2| < 7} by

vV 2m e? log(z/e) .

NG&) =717

Let us define, using this function, the regularized actions at the barrier top:

Definition 1.3  We define the real functions o¢(), h) and (), h) for positive and small
A by

Oei(A h) = Sei(A) — g {arg N(zs—;%\l) + arg N(z%)-)} ,

where arg(iS;(A)/(wh)) = m/2 for A > 0. 0.i(A h) can be extended as holomorphic
functions to a complex neighborhood of A = 0 (see Proposition 2.6).

We will see (see (2.6)) that far from the barrier top A = 0, 04i(), k) coincide with
Se,i(A). More precisely,

Oei(A, h) = Sei(A) as |A|/h— +o0 (1.1)

We also define a holomorphic function which will express the width of resonances near
the real axis in case II.

Definition 1.4  We define the positive function (), h) for positive and small A by
Oy = INEERNGE) -1
VAT NGO N RO 1
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As function of A, (A, k) extends holomorphicaly to a complex neighborhood of A = 0
(see Lemma 2.7).

Theorem 1.5  There exists C > 0 such that if \ is real and |A\| < Ch, then we have in
case I

hO(B, h) = o4(A, ) + O(h* log(1/h)) e
and in case II ‘
h8(E,h) = 0e(A, h) + htan™ {’7()\, h) tan f_‘_(_%"l’i)} + O(h?log(1/h)). (1.3)

The asymptotic formula (1.2) and (1.3) are just the analogues of the results of [Ro-Ta)
and [Na] respectively. The second term in the right hand side of (1.3) is related to the
presence of the potential well and causes rapid variations caused by the potential well.
It will be seen more clearly in the next corollary as a rapid oscillation of the time delay,
which is the derivative of the scattering phase with respect ot the energy E.

Corollary 1.6  There exists C > 0 such that if A is real and |A\| < Ch, then we have

in case I 40 ]

and if X is real and |\| < Ch/log(1/h), then we have in case II

d0=p1+pz 1

R P2y, 7 log
dE 2 (1 — 4?) cos?(oi/h) + 72 h

+ 0(1)

The leading term is logarithmic with respect to h hence the Weyl law fails in such
small neighborhoods of the potential maximum. The function

g
BERN = T coom + 7
is the contribution from the potentail well. The function y(E,h) tends to 0 for E < Vj,
to 1 for E > V; and equals 1/3 for E = V5. When v is small, B presents spikes at each
zero of cos(o;/h) of height 1/ and width v (see Lemma 2.7). Hence this is an extension
of the Breit-Wigner formula to the potential maximum. The zeros of cos(o;/h) are given
by the Bohr-Sommerfeld type quantization condition

oi(E, k) = (n + %)wh.

It follows from Proposition (2.6) that the distance between two such successive zeros when
|\l < Ch/log(1/h) is 2n(py + p2)~hlog(1/h).
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2 Proofs

2.1 Proof of Theorem 1.6

We calculate the asymptotic formula of the scattering phase starting from the results of
[Ra] and [Fu-Ra 1] for the scattering matrix.
Let f(x) and f*(z) be Jost solutions such that

fE(z) ~ e*VEe/h g3 Rez — +00 in S,
fE(z) ~ etVBe/h g3 Rez — —00 in 8.

The existence (and uniqueness) of such solutions is guaranteed by the short range assump-
tion (H.2) for E in Il = {E € C\{0};|arg E| < 26o}. These solutions are holomorphic
in (CC, E) € S x Ilg,.

The two pairs (fi*, fi) and (f, f;) are basis of solutions to (0.1) hence they are
related with each other by a constant 2 x 2 matrix T(E, h):

(F)=m=n(£).

The determinant of this matrix is 1 since [f;*, ;'] = detT [f;, ] and the wronskians
[fi*, 7] and [f;, f7] are both —2iv/E/h. Moreover f;, = (f;)* where f*(z, E) = f(z, E)
by definition, hence T is of the form

a b . ._
T_<b* a")’ aa* — bb* = 1. (2.1)

The elements a and b are written in terms of Jost solutions:
ih th
a(E,h) = —=|[f", 7], b(E,h)=— + ),
( ) 2\/Elfl f ] ( ) 2\/E-[fl fr]
and we see that they, as well as a*(E, h) and b*(FE, h), are all holomorphic in E € Ily,.
On the other hand, the scattering matrix is defined as the matrix associated with the

change of basis between the outgoing pair of solutions (£}, f;”) and the incoming pair of
solutions (f;*, f;); if

oSt +o-fi = fit + - f7,

(gi)=S(E,h)(gt).

We see by an elementary computation that in terms of a and b, S is written by

1 (1 —b
S_E(b 1)'

then



25

Suppose now that E is positive. Then S is unitary by (2.1) and hence its determinant is
a complex number with module 1. The scattering phase §(E, h) is defined as half of the
argument of detS:

det S(E, h) = eX0ER) (2.2)

It is real and given in terms of the element a of the matrix T by

6(E,h) = arga(E,h) = —arga(E, h). (2.3)

Remark that 6(E, h) can also be defined for complex E € Ily, as complex valued function
by
1

2

a(E, h)

8(E, h) B

log
More precisely we have

Lemma 2.1  There exists C > 0 such that 8(E, h) extends holomorphically to the disk
|E — Vp| < Ch in case I and |E — V| < Chlog(1/h) in case II.

Proof:  Since a and a* are holomorphic in Ilg,, 8(E,h) is singular only at zeros of a
and a*. The zeros of a are complex conjugates of those of a* and hence it is enough to
study the asymptotic distribution of zeros of a*, that is, resonances. This was done in
[Ra] and [Fu-Ra 1] in cases I and II respectively. They calculated the leading term of the
asymptotic expansion of a* (see Theorem 2.2) and majorated by Rouché’s theorem the
distance between its zeros and those of a*. ]

Recall here the asymptotic formula of a*(E, h) obtained in [Ra] and [Fu-Ra 1]. See
also [Fu] where S; + S, = —S, and Sy12 = S;.

Theorem 2.2  The asymptotic formula of a*(E, h) is given by the following formulas:

(Case 1)
o' (B, h) = e(sl‘i&)/"N(if—;l)(l +O(hlogh)), (2.4)
(Case II)
| | Sio S
* — p(S1+82—iSe)/h [ ,iSi/h j 1 i 22\ o—iSi/h
a'(E,h) =e (e85 + NN i—2yemi5) (25)
x(1+4 O(hlogh))

Let us calculate the argument of a* through (2.4) and (2.5). For simplicity, put

) = NG 6,0, = arg v 2

mh T
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In case I, we get immediately
ThO(E,h) = Se — héy + O(h*log h) = 0, + O(h%log h).
In case II, we have

mhd(E,h) = S, — h arg (eisi/" + rlrzei(‘””‘d”)e"is‘/h) + O(h%log h)

=0, —h arg (ei”‘/h + rlrge“i”'/h) + O(h%logh),

and since
arg (eia‘/h + T17‘2€_i°'/h) = arg {(1 + 7173) cos%i +i(1 — r173) sin %}
= tan~! (ﬂ tan ai)
B 1+ T1T2 h !

we get (1.3).

2.2 Regularized actions

We first recall the analytic property in a complex neighborhood of A = 0 of the action
integrals Sj(A), Se()A) and Si(A) which were defined for small positive X in Definition 1.1.
Let D(R) denote the disk {\ € C;|A\| < R}. See [Fu-Ra 1] for the proof of the following
lemma.

Lemma 2.3  There exist a positive constant R and functions g;()) (j = 1,2), ge()) and
gi(A\) holomorphic in D(R) such that S;j()), Se(A) and Si(\) are all real for 0 < A < R
and

S]()\) = 7rpj/\(1 + AQJ(A)) (_7 =1, 2)

Sei(A) = Sui(0) + 5-(51(0) + 5.(1) log A + Agey(),

where log A > 0 when arg A = 0. _
We also recall some properties of the function N(z).

Lemma 2.4  N(z2) is holomorphic in {z € C\{0}; | arg 2| < 7} and in this domain,

lim N(z) = 1. (2.6)

2|00
In particular, on the positive imaginary axis z = it,t > 0, we have

|N(Git)|? = 1+ e, (2.7)
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arg N (it) = tlogt + tg(t), (2.8)

where g is a real and analytic function and extends holomorphically to a complex neigh-
borhood of the origin.

Proof: The formula (2.6) is nothing but the Stirling formula and (2.7) follows easily from
the product formula of the Gamma function: , v

™

|r(5 v =T(; + it)I‘(% _it) = (29)

_ coshmt’
For (2.8), we have
arg N(it) = tlogt —t — arg ['(1/2 + it).

Using (2.9), we can rewrite the last term of the right hand side as
1
arg F(§ +it) = log7r —tlog F( +it) — = log(cosh mt).

This function can be extended analytically to C\¢(Z + 1/2) and equals 0 when ¢ = 0.
Hence we can write arg N (it) in the form (2.8). O

Remark 2.5 The function N(z) can be characterized as Jost function of the harmonic
oscillator (see [Vol]). Let 14 (z) be the solutions to (0.1) with V(z) = z2 and h = 1 whose
asymptotic behavior is

pi(z) ~ (z° — B) Y exp (ﬂ: f:(y2 - E)‘/zdy) as T — Foo.

It is possible to define these solutions for arbitrary zo € R when E is negative. Then
the Jost function of the harmonic oscillator, which is defined as the wronskian of these
solutions, is written by

[¢+,¢ | = N(——)

Proposition 2.6 There exists C > 0 such that the functions oe(),h) and ai(A\, h)
can be extended as holomorphic functions with respect to A in D(Ch) and the following
asymptotic formula holds in this domain:

Oei(A, h) = Sei(0) — AL ; p*)\log% +0(\) as h—0.

Proof: From Lemmas 2.3 and 2.4, we get

LG,

Gei(A ) = Sei(0) — %Alog ;
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wiull

_ S5 [ o5 . W4 Piz 100
G =Agei = 3 [% {g(wh) + log (p;(1 + /\ga))} + 5 A%g5log E] :

2.3 Proof of Corollary 1.7

Here we deduce Corollary 1.6 from Theorem 1.5 by making use of the analyticity of the
remainder terms in the asymptotic formulas (1.2) and (1.3). Let R;()\, k), Ri;(\, h) be
the the remainder terms of (1.2), (1.3) respectively;

Ri(\, h) = whl(E, h) — oe(A, h),

Rir(\ h) = ThO(E, h) — 0¢(\, h) — htan™! {'y()\, h) tan g‘-(%h—)} :

First let us observe some properties of the function (A, k).

Lemma 2.7 There exist positive C and R such that the function (A, h) is holomorphic
in (=R, R) x i(—Ch,Ch). Moreover, on (—R, R) in particular, 0 < v < 1 and

(i) if X = O(h), there exist 0 < 79 < 1 < 1 independent of A\ and of h such that
Yo < ¥(A\, k) < 1 and in particular (0, h) = 1/3,

(ii) if |\/h| = oo,

O(e 251V/h | g=25:(N/ky (A > 0),
Y\ h) = 1— O(e(sl(,\)+Sz(»\))/h) (A <0).

Proof: With (2.7), one obtains

V1 + e 2510/h /1 4 e=252(N/h _ 1
V1 + e 25100/ky/1 4 e-25N/k 41’

and the lemma follows easily. In particular this function has singularities at the points
satisfying S;(A) = (n + 1/2)mih (5 = 1,2). ]

(A h) =

Proposition 2.8  There exists a positive constant C such that Ry(\, h) and Rrr(\, h)
are holomorphic with respect to A in D(Ch) and in D(Ch/log(1/h)) respectively for
sufficiently small h.
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Proof: The functions 8(E, h) and o¢()\, h) are holomorphic in the required domain by
Lemma 2.1 and Proposition 2.6. It remains toshow that the last term of R;; is also
holomorphic in D(Ch/log(1/h)). Let us calculate the derivative:

1 oi\\' _ 79i + hy cos(oi/h) sin(oi/h)
h {tan ('ytan h)} (1 =72)cos%(ai/h) + 72

(2.10)

Both 7 and o; being holomorphic, it suffices to see that the denominator D(\, h) =
(1 —~?) cos?(ai/h) ++2 does not vanish in D(Ch/log(1/h)). First we see that for real X in
this domain, d()\, h) is real and bounded from below by a positive constant independent
of both X and h. Next for complex )\, we see

1 o p1+ p2 1
y = 9 < -
v(A, k) 3 lImhl_C 5 +O(log(1/h))’

as h tends to 0. Hence, by continuity, d(), h) stays away from 0 for sufficiently small C
and h. O
Proposition 2.8 enables us to estimate the derivatives of R; and Ry in terms of
themselves by Cauchy’s integral formula; if a function R()\) is holomorphic in D(r), then
its derivative is bounded from above in D(r/2) by 2supp,) |R(A)|/r. Recalling that
Ry = O(h?log(1/h)) and Ry = O(h?log(1/h)), we obtain '

dR; dRpy

1 = -1 hatde. S 2
On the other hand, we know from Proposition 2.6 that
doei p1+p2, 1
F = 3 log 5 +0(1)

and since hdy/dE = O(1)

d - gi p1+ Ps ¥ 1
— tan — | § = -
th {tan (7 an h)} 2 (1 —+92)cos?(oi/h) + 72 log Bt o)

This completes the proof of Corollary 1.6.
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