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0 Introduction
We study the asymptotic behavior in the semiclassical limit of the scattering phase and
the time delay for the one-dimensional Schr\"odinger equation

$-h^{2} \frac{d^{2}u}{dx^{2}}+V(x)u=Eu$ (0.1)

when the energy $E$ is near acritical value of the potential $V(x)$ . We suppose here that
the critical value is the maximum $V_{0}$ of the potential and consider two cases where $V(x)$

attains the maximum at one point (case I) and two points (case $\mathrm{I}\mathrm{I}$ ). We assume moreover
that these maxima are non-degenerate, i.e. the radii of curvature are finite.

We will show the following facts. Near the critical value $V_{0}$ , the leading term of the
asymptotic expansion as $h$ tends to 0of the time delay function (the derivative with
respect to the energy of the scattering phase) is logarithmic in both cases. Moreover its
coefficient is, in case $\mathrm{I}$ , the radius of curvature of the barrier top and in case $\mathrm{I}\mathrm{I}$ , it is the
average of the radii of curvature of the two barrier tops, plus acontribution from $\mathrm{t},\mathrm{h}\mathrm{e}$

potential well. This contribution from the potential well is an oscillating functioxi with
wavelength $O(h/\log h^{-1})$ near t.he barrier top and it can be continued analytica.lly into
the well, where its behavior is like in the Breit- Wigner formula.

This physical problem is closely related to the purely mathematical problem originated
by H.Weyl [We] on the eigenvalue asymptotics for the Laplace operator in abounded d0-
main $\Omega\in \mathrm{R}^{\mathrm{n}}$ with regular boundary. $\mathrm{I}\mathrm{f}N(E)$ is the number of eigenvalues not excedding

数理解析研究所講究録 1212巻 2001年 18-31

18



$E$ (counting multiplicity), then

$N(E) \sim\frac{\tau_{n}}{(2\pi)^{n}}\mathrm{v}\mathrm{o}\mathrm{l}(\Omega)E^{n/2}$ , $Earrow+\infty$ ,

where $\tau_{n}=\pi^{n/2}/\Gamma(n/2+1)$ is the volume of the unit ball in $\mathrm{R}^{n}$ . L.H\"ormander [H\"o]
generalized this result to compact Riemannian manifolds without boundary with the best
estimate of the error.

On the other hand, the asymptotic behavior of the scattering phase $\theta(E)$ for the
exterior problem with an obstacle $\Omega$ was studied, say, by A.Jensen and T.Kato [Je-Ka],
V.Petkov and G.Popov [Pe-Po] and R.Melrose [Me]. This is defined to be the half of the
argument of the determinant of the scattering matrix which is unitary on $L^{2}(S^{n-1})$ . They
showed that $\theta(E)$ also has the Weyl type asymptotic formula when $Earrow+\infty$ :

$\theta(E)=-\frac{\tau_{n}}{(2\pi)^{n}}\mathrm{v}\mathrm{o}\mathrm{l}(\Omega)E^{n/2}+O(E^{(n-1)/2})$.

In the case of Schr\"odinger operator on $\mathrm{R}^{n}$ with ascalar potential $V(x)$ , the semiclas-
sical problem is also important. Let $V(x)\in C_{0}^{\infty}(\mathrm{R}^{n})$ for simplicity. Then the spectrum
of the Schr\"odinger operator $P=-h^{2}\Delta+V(x)$ on $L^{2}(\mathrm{R}^{n})$ consists of negative eigenvalues
and the essential spectrum lying on $\mathrm{R}_{+}$ . We can define the eigenvalue counting function
$N(E, h)$ for negative $E$ and the scattering phase $\theta(E, h)$ for positive $E$ both depending on
the small parameter $h$ . The semiclassical problem is to describe the asymptotic behavior
of $N(E, h)$ or $\theta(E, h)$ as $h$ tends to 0while $E$ is restricted near afixed energy $E_{0}$ . Remark
that the high energy regime $(Earrow+\infty)$ is aparticular case of the semiclassical regime
$(harrow \mathrm{O})$ with $h=E^{-1/2}$ (see [Ro]).

The spectral shift function $s(E, h)$ combines these two notions. It is defined as a
Schwartz $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\cdot \mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ on $\mathrm{R}$ modulo areal constant by the following equation:

$\mathrm{T}\mathrm{r}(f^{\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}}(P)-f(P_{0}))=-\int_{-\infty}^{+\infty}f’(E)s(E, h)dE$ ,

where $P_{0}=-h^{2}\triangle$ and $f$ is an arbitrary function in the Schwartz space. $s(E, h)$ is uniquely
determined by asking $s(E, h)=\mathrm{O}$ for $E<<0$ . Under this condition, it is easy to see that
$s(E, h)=N(E, h)$ for negative $E$ . The remarkable fact discovered by $\mathrm{M}.\mathrm{S}$ .Birman and
M.G.Krein [Bi-Kr] is the relation between the spectral shift function and the scattering
phase for positive $E$ :

$\theta(E, h)=\pi s(E, h)$ $\mathrm{m}\mathrm{o}\mathrm{d} (\pi \mathbb{Z})$ .

The semiclassical asymptotics of the spectral shift function is closely related to its
classical mechanics counterpart. Let $s^{d}(E, h)$ be the classical analogue of the spectral
shift function defined by

$\int\int_{\mathrm{R}^{2n}}\{f(p(x, \xi))-f(p_{0}(\xi))\}dxd\xi=-\int_{-\infty}^{+\infty}f’(E)s^{d}(E)dE$ ,
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where $p(x, \xi)=\xi^{2}+V(x)$ and $p_{0}(\xi)=\xi^{2}$ . We see immediately that

$s^{d}(E)= \tau_{n}\int_{\mathrm{R}^{n}}\{(E-V(x))_{+}^{n/2}-E_{+}^{n/2}\}dx$ ,

where $a_{+}= \max(a, 0)$ . An energy level $E$ is said to be non-trapping for the classical
Hamiltonian $p(x, \xi)$ if every Hamiltonian flow on $p^{-1}(E)$ generated by $p$ escapes to infinity
as time goes to $\mathrm{b}\mathrm{o}\mathrm{t}\mathrm{h}+\mathrm{a}\mathrm{n}\mathrm{d}$ –infinity.

D.Robert and H.Tamura [RO-Ta] proved that if $E$ is non-trapping in an interval,
$s(E, h)$ has auniform complete asymptotic expansioin as $harrow \mathrm{O}$ and

$s(E, h)=(2\pi h)^{-n}s^{d}(E)+O(h^{1-n})$ as h $arrow \mathrm{O}$ . (0.2)

If the energy is trapping, however, it is believed that the scattering phase varies very
rapidly because of the presence of poles of the scattering matrix called resonances near
the real axis.

Let us mention here two works on the scattering phase associated with atrapped
trajectory in apotential well. Aresonance generated by such aclosed trajectory is called
shape resonance and is exponentially close to the real axis with respect to $h.$ C.G\’erard,
A.Martinez and D.Robert [G\’e-Ma-Ro]proved that the scattering phase increases by $\pi$ at
the real part of ashape resonance. In other words, they showed the Breit-Wigner formula
at the bottom of the potential well.

S.Nakamura [Na] considered two Hamiltonians $P_{\mathrm{i}}$ and $P_{\mathrm{e}}$ corresponding to the bounded
and unbounded component of $p^{-1}(E)$ respectively and showed that the spectral shift
function is approximated by the sum of that for $P_{\mathrm{e}}$ , the asymptotic behavior of which
we know from the result of [RO-Ta], and the eigenvalue counting function for $P_{\mathrm{i}}$ . These
eigenvalues are near the shape resonances and cause the rapid variation of the scattering
phase.

The barrier top energy $E=V_{0}$ is trapping because it takes infinite time for classical
particles to arrive at the barrier top. Remark also that in case $\mathrm{I},$ $E$ is non-trapping above
and below $V_{0}$ and in case $\mathrm{I}\mathrm{I}$ , non-trapping above $V_{0}$ and trapping below $V_{0}$ because of the
potential well. This change of classical structure at the barrier top is represented as the
logarithmic singularity of $s^{d}(E)$ at $E=V_{0}$ (see Lemma 2.3).

We will see that there is acorrection term for $s^{d}(E)$ in acomplex neighborhood of $V_{0}$

of radius $O(h)$ and that it cancels the singularity of $s^{d}(E)$ . This term is written in terms
of the Fredholm determinant of the harmonic oscillator. This comes from the fact that
the operator $P$ is reduced to the harmonic oscillator microlocally near the non-degenerate
critical point (see [He-Sj]). Out of this neighborhood, that is where $|V_{0}-E|/h$ tends to
infinity, this term disappears from the leading term and we recover $s^{\mathrm{c}l}(E)$ .

Once we prove that the leading term is holomorphic in acomplex domain, we can
differentiate the asymptotic formula term by term. In fact, the scattering phase itself is
also holomorphic in acomplex neighborhood of $V_{0}$ and so is the remainder term in the
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intersection. We can then estimate the derivative of the remainder term by its supremum
by Cauchy’s formula. Thus we get the asymptotic formula of the time delay function.

The method is based on the exact $WKB$ analysis (see [G\’e-Gr]). In the one-dimesional
case, the scattering matrix can be defined as a $2\cross 2$ matrix and each element is written
by wronskians of Jost solutions (see Section 2). Therefore the problem is reduced to the
connection problem of Sturm-Liouville equations with small parameter.

In this paper we start from the asymptotic formulas of the scattering matrix obtained
by [Ra] in case Iand by [Fu-Ra 1] in case $\mathrm{I}\mathrm{I}$ .

1Results
We consider the one-dimensional Schr\"odinger equation (0.1) where the potential $V(x)$

satisfies the following conditions:

(H1) $V(x)$ is real on $\mathrm{R}$ and dilation analytic, that is, $V(x)$ is holomorphic in asector
$S=\{x\in \mathrm{C};|{\rm Im} x|<\tan\theta_{0}|{\rm Re} x|\}\mathrm{U}\{|{\rm Im} x|<\delta\}$ for some $0<\theta_{0}<\pi/2$ and
$\delta>0$ .

(H2) $V(x)$ is short range, that is, there exists apositive constant $\epsilon>0$ such that $|V(x)|\leq$

$(1+|x|)^{-1-\epsilon}$ in $S$ .

Let $V_{0}$ be the maximum of the potential on the real axis which we assume to be
positive. We consider the two cases:

(Case I) $V^{-1}(V_{0})=\{\mathit{0}_{1}\}$

(Case $\mathrm{I}\mathrm{I}$ ) $V^{-1}(V_{0})=\{\mathit{0}_{1},\mathit{0}_{2}\}$ $(\mathit{0}_{1}<\mathit{0}_{2})$

In both cases, we assume furthermore that the radius of curvature $\rho_{j}$ is finite at each
critical points:

(H3) $V”(\mathit{0}_{j})=-\rho_{j}^{-1}<0$ $(j=1,2)$

Put $\lambda=V_{0}-E$ . The energy is under the maximum of the potential when Ais
positive. If Ais positive and sufficiently small, the equation $V(x)-E=\mathrm{O}$ has 2real roots
$\alpha_{1}(\lambda),$ $\beta_{1}(\lambda)$ near $o_{1}(\alpha_{1}<\mathit{0}_{1}<\beta_{1})$ in both cases and 2other real roots $\alpha_{2}(\lambda),$ $\beta_{2}(\lambda)$ near
$o_{2}(\alpha_{2}<\mathit{0}_{2}<\beta_{2})$ in case $\mathrm{I}\mathrm{I}$ . We then define the action integrals between these turning
points and $\pm\infty$ as follows. For the simplicity of notations, we use the convention that $*$

stands for 1in case Iand 2in case $\mathrm{I}\mathrm{I}$ .

Definition 1.1 For $\lambda=V_{0}-E$ positive and sufficiently small, we set

$S_{j}( \lambda)=\int_{\alpha_{j}}^{\beta_{j}}\sqrt{V(x)-E}dx$, $(j=1,2)$ ,
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$S_{\mathrm{e}}( \lambda)=(\int_{-\infty}^{\alpha_{1}}+\int_{\beta_{\mathrm{r}}}^{\infty})\{\sqrt{E-V(x)}-\sqrt{E}\}dx-\sqrt{E}(\beta_{*}-\alpha_{1})$ ,

$S_{\mathrm{i}}( \lambda)=\int_{\beta_{1}}^{\alpha_{2}}\sqrt{E-V(x)}dx$ (in case $\mathrm{I}\mathrm{I}$ ).

Let us remark here that the classical analogue of the spectral shift function $s^{d}(E)$ is
related with these actions by

$s^{d}(E)=\{$
$2S_{\mathrm{e}}(\lambda)$ (case $I$ )
$2(S_{\mathrm{e}}(\lambda)+S_{\mathrm{i}}(\lambda))$ (case $II$ )

Avery important fact is that $S_{\mathrm{e}}$ and $S_{\mathrm{i}}$ have alogarit.hmic singularity at $\lambda=0$ (see
Lemma 2.3). We will see that there is acorrection term which affects the leading term of
the scattering phase and that it regularizes $s^{d}(E)$ by canceling the logarithmic singularity.
This correction term is written by the following interesting function $N(z)$ , which is the
Jost function of the harmonic oscillator (see Remark 2.5). For the properties of this
function, see Lemma 2.4.

Deflnition 1.2 We define the function $N(z)$ on $\{z\in \mathbb{C}\backslash ;|\arg z|<\pi\}$ by

$N(z)= \frac{\sqrt{2\pi}}{\Gamma(z+1/2)}e^{z\log(z/e)}$ .

Let us define, using this function, the regularized actions at the barrier top:

Definition 1.3 We define the real functions $\sigma_{\mathrm{e}}(\lambda, h)$ and $\sigma_{\mathrm{i}}(\lambda, h)$ for positive and small
Aby

$\sigma_{\mathrm{e},\mathrm{i}}(\lambda, h)=S_{\mathrm{e},1}(\lambda)-\frac{h}{2}\{\arg N(i\frac{S_{1}(\lambda)}{\pi h})+\arg N(i\frac{S_{*}(\lambda)}{\pi h})\}$ ,

where $\arg(iS_{j}(\lambda)/(\pi h))=\pi/2$ for $\lambda>0$ . $\sigma_{\mathrm{e},\mathrm{i}}(\lambda, h)$ can be extended as holomorphic
functions to acomplex neighborhood of $\lambda=0$ (see Proposition 2.6).

We will see (see (2.6)) that far from the barrier top $\lambda=0,$ $\sigma_{\mathrm{e},\mathrm{i}}(\lambda,$h) coincide with
$S_{\mathrm{e},\mathrm{i}}(\lambda)$ . More precisely,

$\sigma_{\mathrm{e},\mathrm{i}}(\lambda, h)arrow S_{\mathrm{e},\mathrm{i}}(\lambda)$ as $|\lambda|/harrow+\infty$ (1.1)

We also define aholomorphic function which will express the width of resonances near
the real axis in case II.

Definition 1.4 We define the positive function $\gamma(\lambda, h)$ for positive and small Aby

$\gamma(\lambda, h)=\frac{|N(i_{h}^{\lambda}\frac{s_{1}}{\pi}\mathrm{u})N(i_{\pi h}^{s\mathrm{u}}s^{\lambda})|-1}{|N(i_{\pi h}^{\underline{s}}1[perp]\lambda[perp])N(i_{h}^{\lambda}\frac{s_{2}}{\pi}\mathrm{u})|+1}$ .
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As function of $\lambda,$ $\gamma(\lambda, h)$ extends holomorphicaly to acomplex neighborhood of $\lambda=0$

(see Lemma 2.7).

Theorem 1.5 There exists $C>\mathrm{O}$ such that if Ais real and $|\lambda|\leq Ch$, then we have in
case $I$

$h\theta(E, h)=\sigma_{\mathrm{e}}(\lambda, h)+O(h^{2}\log(1/h))$ , (1.2)

and in case $II$

$h \theta(E, h)=\sigma_{\mathrm{e}}(\lambda, h)+h\tan^{-1}\{\gamma(\lambda, h)\tan\frac{\sigma_{\mathrm{i}}(\lambda,h)}{h}\}+O(h^{2}\log(1/h))$ . (1.3)

The asymptotic formula (1.2) and (1.3) are just the analogues of the results of [RO-Ta]
and [Na] respectively. The second term in the right hand side of (1.3) is related to the
presence of the potential well and causes rapid variations caused by the potential well.
It will be seen more clearly in the next corollary as arapid oscillation of the time delay,
which is the derivative of the scattering phase with respect $\mathrm{o}\mathrm{t}$ the energy $E$ .

Corollary 1.6 There exists $C>\mathrm{O}$ such that if Ais real and $|\lambda|\leq Ch$ , then we have
in case $I$

$h \frac{d\theta}{dE}=\rho_{1}\log\frac{1}{h}+O(1)$

and if Ais real and $|\lambda|\leq Ch/\log(1/h)$ , tlien we htave in case $II$

$h \frac{d\theta}{dE}=\frac{\rho_{1}+\rho_{2}}{2}\{1+\frac{\gamma}{(1-\gamma^{2})\cos^{2}(\sigma_{\mathrm{i}}/h)+\gamma^{2}}\}\log\frac{1}{h}+O(1)$

The leading term is logarithmic with respect to $h$ hence the Weyl law fails in such
small neighborhoods of the potential maximum. The function

$B(E, h)= \frac{\gamma}{(1-\gamma^{2})\cos^{2}(\sigma_{\mathrm{i}}/h)+\gamma^{2}}$

is the contribution from the potentail well. The function $\gamma(E, h)$ tends to 0for $E<V_{0}$ ,
to 1for $E>V_{0}$ and equals 1/3 for $E=V_{0}$ . When $\gamma$ is small, $B$ presents spikes at each
zero of $\cos(\sigma_{\mathrm{i}}/h)$ of height $1/\gamma$ and width $\gamma$ (see Lemma 2.7). Hence this is an extension
of the Breit- Wigner fomula to the potential maximum. The zeros of $\cos(\sigma_{\mathrm{i}}/h)$ are given
by the Bohr-Sommerfeld type quantization condition

$\sigma_{\mathrm{i}}(E, h)=(n+\frac{1}{2})\pi h$ .

It follows from Proposition (2.6) that the distance between two such successive zeros when
$|\lambda|\leq Ch/\log(1/h)$ is $2\pi(\rho_{1}+\rho_{2})^{-1}h\log(1/h)$ .
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2Proofs

2.1 Proof of Theorem 1.6
We calculate the asymptotic formula of the scattering phase starting from the results of
[Ra] and [Fu-Ra 1] for the scattering matrix.

Let $f_{l}^{\pm}(x)$ and $f_{f}^{\pm}(x)$ be Jost solutions such that

$f_{f}^{\pm}(x)\sim e^{\pm:\sqrt{E}x/h}$ as ${\rm Re} xarrow+\infty$ in S,
$f_{l}^{\pm}(x)\sim e^{\pm \mathrm{t}\sqrt{E}x/h}$ as ${\rm Re} xarrow$ -oo in S.

The existence (and uniqueness) of such solutions is guaranteed by the short range assump-
tion (H.2) for $E$ in $\Pi_{\theta_{0}}=\{E\in \mathbb{C}\backslash \{0\};|\arg E|<2\theta_{0}\}$ . These solutions are holomorphic
in $(x, E)\in \mathrm{S}\cross\Pi_{\theta_{0}}$ .

The two pairs $(f_{l}^{+}, f_{l}^{-})$ and $(f_{f}^{+}, f_{f}^{-})$ are basis of solutions to (0.1) hence they are
related with each other by aconstant $2\cross 2$ matrix $\mathrm{T}(E, h)$ :

$(\begin{array}{l}f_{l}^{+}f_{l}^{-}\end{array})=\mathrm{T}(E,$h) $(\begin{array}{l}f_{f}^{+}f_{f}^{-}\end{array})$ .

The determinant of this matrix is 1since $[f_{l}^{+}, f_{l}^{-}]=\det \mathrm{T}[f_{f}^{+}, f_{f}^{-}]$ and the wronskians
$[f_{l}^{+},f_{l}^{-}]$ and $[f_{f}^{+}, f_{f}^{-}]$ are $\mathrm{b}\mathrm{o}\mathrm{t}\mathrm{h}-2i\sqrt{E}/h$ . Moreover $f_{l,\mathrm{r}}^{-}=(f_{l,\tau}^{+})^{*}$ where $f^{*}(x, E)=\overline{f(\overline{x},\overline{E})}$

by definition, hence $\mathrm{T}$ is of the form

$\tau=(\begin{array}{ll}a bb^{\mathrm{r}} a^{*}\end{array})$ , $aa^{*}-bb^{*}=1$ . (2.1)

The elements $a$ and $b$ are written in terms of Jost solutions:

$a(E, h)= \frac{ih}{2\sqrt{E}}[f_{l}^{+}, f_{f}^{-}]$ , $b(E, h)=- \frac{ih}{2\sqrt{E}}[f_{l}^{+}, f_{f}^{+}]$ ,

and we see that they, as well as $a^{*}(E, h)$ and $b^{*}(E, h)$ , are all holomorphic in $E\in\Pi_{\theta_{0}}$ .
On the other hand, the scattering matrix is defined as the matrix associated with the

change of basis between the outgoing pair of solutions $(f_{f}^{+}, f_{l}^{-})$ and the incoming pair of
solutions $(f_{l}^{+}, f_{f}^{-})$ ;if

$p_{+}f_{f}^{+}+p_{-}f_{l}^{-}=q_{+}f_{l}^{+}+q_{-}f_{f}^{-}$ ,

then
$(\begin{array}{l}p_{+}p_{-}\end{array})=\mathrm{S}(E, h)(\begin{array}{l}q_{+}q_{-}\end{array})$ .

We see by an elementary computation that in terms of $a$ and $b,$ $\mathrm{S}$ is written by

$\mathrm{s}=\frac{1}{a}*(\begin{array}{ll}\mathrm{l} -b^{*}b 1\end{array})$ .
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Suppose now that $E$ is positive. Then $\mathrm{S}$ is unitary by (2.1) and hence its determinant is
acomplex number with module 1. The scattering phase $\theta(E, h)$ is defined as half of the
argument of $\det \mathrm{S}$ :

$\det \mathrm{S}(E, h)=e^{2\theta(E,h)}|.$ . (2.2)

It is real and given in terms of the element $a$ of the matrix $\mathrm{T}$ by

$\theta(E, h)=\arg a(E, h)=-\arg\overline{a(E,h)}$ . (2.3)

Remark that $\theta(E, h)$ can also be defined for complex $E\in\Pi_{\theta_{0}}$ as complex valued function
by

$\theta(E, h)=\frac{1}{2i}\log\frac{a(E,h)}{a^{*}(E,h)}$ .

More precisely we have

Lemma 2.1 There exists $C>\mathrm{O}$ such that $\theta(E, h)$ extends holomorphically to the disk
$|E-V_{0}|<Ch$ in case I and $|E-V_{0}|<Ch\log(1/h)$ in case $II$.

Proof: Since $a$ and $a^{*}$ are holomorphic in $\Pi_{\theta_{0}},$ $\theta(E, h)$ is singular only at zeros of $a$

and $a^{*}$ . The zeros of $a$ are complex conjugates of those of $a^{*}$ and hence it is enough to
study the asymptotic distribution of zeros of $a^{*}$ , that is, resonances. This was done in
[Ra] and [Fu-Ra 1] in cases Iand $\mathrm{I}\mathrm{I}$ respectively. They calculated the leading term of the
asymptotic expansion of $a^{*}$ (see Theorem 2.2) and majorated by Rouche”s theorem the
distance between its zeros and those of $a^{*}$ . $\square$

Recall here the asymptotic formula of $a^{*}(E, h)$ obtained in [Ra] and [Fu-Ra 1]. See
also [Fu] where $S_{l}+S_{f}=-S_{\mathrm{e}}$ and $S_{12}=S_{\mathrm{i}}$ .

Theorem 2.2 The asymptotic formula of $a^{*}(E, h)$ is given by the following formulas:

(Case $I$)
$a^{*}(E, h)=e^{(S_{1}-iS_{\mathrm{e}})/h}N(i \frac{S_{1}}{\pi h})(1+O(h\log h))$ , (2.4)

(Case $II$)
$a^{*}(E, h)=e^{(S_{1}+S_{2}-iS_{\mathrm{e}})/h}(e^{iS_{\mathrm{i}}/h}+N(i \frac{S_{1}}{\pi h})N(i\frac{S_{2}}{\pi h})e^{-iS_{\mathrm{i}}/h})$ (2.5)

$\cross(1+O(h\log h))$

Let us calculate the argument of $a^{*}$ through (2.4) and (2.5). For simplicity, put

$r_{j}( \lambda, h)=|N(i\frac{S_{j}(\lambda)}{\pi h})|$ , $\phi_{j}(\lambda, h)=\arg N(i\frac{S_{j}(\lambda)}{\pi h})$ .
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In case $\mathrm{I}$ , we get immediately

$\pi h\theta(E, h)=S_{\mathrm{e}}-h\phi_{1}+O(h^{2}\log h)=\sigma_{\mathrm{e}}+O(h^{2}\log h)$.

In case $\mathrm{I}\mathrm{I}$ , we have

$\pi h\theta(E, h)=S_{\mathrm{e}}-h\arg(e^{iS_{\mathrm{I}}/h}+r_{1}r_{2}e^{i(\phi_{1}+\phi_{2})}e^{-iS_{\mathrm{i}}/h})+O(h^{2}\log h)$

$=\sigma_{\mathrm{e}}-h\arg(e^{i\sigma_{\mathrm{I}}/h}+r_{1}r_{2}e^{-i\sigma_{1}/h})+O(h^{2}\log h)$ ,

and since

$\arg(e^{:\sigma_{\mathrm{I}}/h}+r_{1}r_{2}e^{-:\sigma 1/h})=\arg\{(1+r_{1}r_{2})\cos\frac{\sigma_{\mathrm{i}}}{h}+i(1-r_{1}r_{2})\sin\frac{\sigma_{\mathrm{i}}}{h}\}$

$= \tan^{-1}(\frac{1-r_{1}r_{2}}{1+r_{1}r_{2}}\tan\frac{\sigma_{1}}{h})$ ,

we get (1.3).

2.2 Regularized actlons
We first recall the analytic property in acomplex neighborhood of $\lambda=\mathrm{O}$ of the action
integrals $S_{j}(\lambda),$ $S_{\mathrm{e}}(\lambda)$ and $S_{\mathrm{i}}(\lambda)$ which were defined for small positive Ain Definition 1.1.
Let $D(R)$ denote the disk {A $\in \mathrm{c};|\lambda|<R$}. See [Fu-Ra 1] for the proof of the following
lemma.

Lemma 2.3 There exist apositive constant $R$ and functions $g_{j}(\lambda)(j=1,2),$ $g_{\mathrm{e}}(\lambda)$ and
$g_{\mathrm{i}}(\lambda)$ holomorphic in $D(R)$ such that $S_{j}(\lambda),$ $S_{\mathrm{e}}(\lambda)$ and $S_{\mathrm{i}}(\lambda)$ are all real for $0<\lambda<R$

and
$S_{j}(\lambda)=\pi\rho_{j}\lambda(1+\lambda g_{j}(\lambda))$ $(j=1,2)$ .

$S_{\mathrm{e},\mathrm{i}}( \lambda)=S_{\mathrm{e},\mathrm{i}}(0)+\frac{1}{2\pi}(S_{1}(\lambda)+S_{*}(\lambda))\log\lambda+\lambda g_{\mathrm{e},\mathrm{i}}(\lambda)$ ,

where $\log\lambda>0$ when $\arg\lambda=0$ .
We also recall some properties of the function $N(z)$ .

Lemma 2.4 $N(z)$ is holomorphic in $\{z\in \mathrm{C}\backslash \{0\};|\arg z|<\pi\}$ and in this domain,

$\lim_{|z|arrow\infty}N(z)=1$ . (2.6)

In particular, on the positive imaginary axis $z=it$ , $t>0$ , we have

$|N(it)|^{2}=1+e^{-2\pi t}$ , (2.7)
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$\arg N(it)=t\log t+tg(t)$ , (2.8)

where $g$ is areal and analytic function and extends holomorphically to acomplex neigh-
borhood of the origin.

Proof: The formula (2.6) is nothing but the Stirling formula and (2.7) follows easily from
the product formula of the Gamma function:

$| \Gamma(\frac{1}{2}+\cdot t)|^{2}=\Gamma(\frac{1}{2}+\dot{\iota}t)\Gamma(\frac{1}{2}-i.t)=\frac{\pi}{\cosh\pi t}$. (2.9)

For (2.8), we have
$\arg N(i\mathrm{t})=t\log t-t-\arg\Gamma(1/2+it)$ .

Using (2.9), we can rewrite the last term of the right hand side as

$\arg\Gamma(\frac{1}{2}+it)--\frac{i}{2}\log\pi-i\log\Gamma(\frac{1}{2}+it)-\frac{i}{2}\log(\cosh\pi t)$.

This function can be extended analytically
$.\mathrm{t}\mathrm{o}.\mathrm{C}\backslash i(\mathrm{Z}+1/2)$

and equals 0when
$t=0\square$

.
Hence we can write $\arg N$ (it) in the form (2.8).

Remark 2.5 The function $N(z)$ can be characterized as Jost function of the harmonic
oscillator (see [Vo]). Let $\psi_{\pm}(x)$ be the solutions to (0.1) with $V(x)=x^{2}$ and $h=1$ whose
asymptotic behavior is

$\psi_{\pm}(x)\sim(x^{2}-E)^{-1/4}\exp(\pm\int_{x_{0}}^{x}(y^{2}-E)^{1/2}dy)$ as x $arrow\mp\infty$ .

It is possible to define these solutions for arbitrary $x_{0}\in \mathbb{R}$ when $E$ is negative. Then
the Jost function of the harmonic oscillator, which is defined as the wronskian of these
solutions, is written by

$\frac{1}{2}[\psi_{+}, \psi_{-}]=N(-\frac{E}{2})$ .

Proposition 2.6 There exists $C>\mathrm{O}$ such that the functions $\sigma_{\mathrm{e}}(\lambda, h)$ and $\sigma_{\mathrm{i}}(\lambda, h)$

can be extended as holomorphic functions with respect to Ain $D(Ch)$ and the following
asymptotic formula holds in this domain:

$\sigma_{\mathrm{e},\mathrm{i}}(\lambda, h)=S_{\mathrm{e},\mathrm{i}}(0)-\frac{\rho_{1}+\rho_{*}}{2}\lambda\log\frac{1}{h}+O(\lambda)$ as $harrow \mathrm{O}$ .

Proof: From Lemmas 2.3 and 2.4, we get

$\sigma_{\mathrm{e},\mathrm{i}}(\lambda, h)=S_{\mathrm{e},\mathrm{i}}(0)-\frac{\rho_{1}+\rho_{*}}{2}\lambda\log\frac{1}{h}+G(\lambda, h)$,
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$\mathrm{w}1\iota 11$

G $= \lambda g_{\mathrm{e},\mathrm{i}}-\sum_{j=1,*}[\frac{S_{j}}{2\pi}\{g(\frac{S_{j}}{\pi h})+\log(\rho_{j}(1+\lambda g_{j}))\}+\frac{\rho_{j}}{2}\lambda^{2}g_{j}\log\frac{1}{h}]$ .

$\square$

2.3 Proof of Corollary 1.7
Here we deduce Corollary 1.6 from Theorem 1.5 by making use of the analyticity of the
remainder terms in the asymptotic formulas (1.2) and (1.3). Let $R_{I}(\lambda, h),$ $R_{II}(\lambda, h)$ be
the the remainder terms of (1.2), (1.3) respectively;

$R_{I}(\lambda, h)=\pi h\theta(E, h)-\sigma_{\mathrm{e}}(\lambda, h)$ ,

$R_{II}( \lambda, h)=\pi h\theta(E, h)-\sigma_{\mathrm{e}}(\lambda, h)-h\tan^{-1}\{\gamma(\lambda, h)\tan\frac{\sigma_{\mathrm{i}}(\lambda,h)}{h}\}$ .

First let us observe some properties of the function $\gamma(\lambda, h)$ .

Lemma 2.7 There exist positive C and R such that the function $\gamma(\lambda,$h) is holomorphic
in (-R,$R)\cross i(-Ch,$Ch). Moreover, on (-R, R) in particular, $0<\gamma<1$ and

(i) if $\lambda=O(h)$ , there exist $0<\gamma_{0}<\gamma_{1}<1$ independent of Aand of h such that
$\gamma_{0}<\gamma(\lambda, h)<\gamma_{1}$ and in particular $\gamma(0, h)=1/3$ ,

(ii) $\mathrm{i}f|\lambda/h|arrow\infty$ ,

$\gamma(\lambda, h)=\{$

$O(e^{-2S_{1}(\lambda)/\hslash}+e^{-2S_{2}(\lambda)/h})$ $(\lambda>0)$ ,
$1-O(e^{(S_{1}(\lambda)+S_{2}(\lambda))/h})$ $(\lambda<0)$ .

Proof: With (2.7), one obtains

$\gamma(\lambda, h)=$

and the lemma follows easily. In particular this function has singularities at the points
satisfying $S_{j}(\lambda)=(n+1/2)\pi ih(j=1,.2)$ . $\square$

Proposition 2.8 There exists apositive constant $C$ such that $R_{I}(\lambda, h)$ and $R_{II}(\lambda, h)$

are holomorphic vvith respect to Ain $D(Ch)$ and in $D(Ch/\log(1/h))$ respectively for
sufficiently small $h$ .
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Proof: The functions $\theta(E, h)$ and $\sigma_{\mathrm{e}}(\lambda, h)$ are holomorphic in the required domain by
Lemma 2.1 and Proposition 2.6. It remains toshow that the last term of $R_{II}$ is also
holomorphic in $D(Ch/\log(1/h))$ . Let us calculate the derivative:

$h \{\tan^{-1}(\gamma\tan\frac{\sigma_{\mathrm{i}}}{h})\}’=\frac{\gamma\sigma_{\mathrm{i}}’+h\gamma’\cos(\sigma_{\mathrm{i}}/h)\sin(\sigma_{\mathrm{i}}/h)}{(1-\gamma^{2})\cos^{2}(\sigma_{\mathrm{i}}/h)+\gamma^{2}}$ . (2.10)

Both $\gamma$ and $\sigma_{\mathrm{i}}$ being holomorphic, it suffices to see that the denominator $D(\lambda, h)=$

$(1-\gamma^{2})\cos^{2}(\sigma_{\mathrm{i}}/h)+\gamma^{2}$ does not vanish in $D(Ch/\log(1/h))$ . First we see that for real Ain
this domain, $d(\lambda, h)$ is real and bounded from below by apositive constant independent
of both Aand $h$ . Next for complex $\lambda$ , we see

$\gamma(\lambda, h)arrow\frac{1}{3}$ , $|{\rm Im} \frac{\sigma_{\mathrm{i}}}{h}|\leq C\frac{\rho_{1}+\rho_{2}}{2}+O(\frac{1}{\log(1/h)})$ ,

as $h$ tends to 0. Hence, by continuity, $d(\lambda, h)$ stays away from 0for sufficiently small $C$

and $h$ . $\square$

Proposition 2.8 enables us to estimate the derivatives of $R_{I}$ and $R_{II}$ in terms of
themselves by Cauchy’s integral formula; if afunction $R(\lambda)$ is holomorphic in $\overline{D(r)}$ , then
its derivative is bounded from above in $D(r/2)$ by 2 $\sup_{D(r)}|R(\lambda)|/r$ . Recalling that
$R_{I}=O(h^{2}\log(1/h))$ and $R_{II}=O(h^{2}\log(1/h))$ , we obtain

$\frac{dR_{I}}{d\lambda}=O(h\log h^{-1})$ , $\frac{dR_{II}}{d\lambda}=O(h(\log h)^{2})$ .

On the other hand, we know from Proposition 2.6 that

$\frac{d\sigma_{\mathrm{e},\mathrm{i}}}{dE}=\frac{\rho_{1}+\rho_{2}}{2}\log\frac{1}{h}+O(1)$

and since $hd\gamma/dE=O(1)$

$h \frac{d}{dE}\{\tan^{-1}(\gamma\tan\frac{\sigma_{\mathrm{i}}}{h})\}=\frac{\rho_{1}+\rho_{*}}{2}\frac{\gamma}{(1-\gamma^{2})\cos^{2}(\sigma_{\mathrm{i}}/h)+\gamma^{2}}\log\frac{1}{h}+O(1)$

This completes the proof of Corollary 1.6.
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