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1 Introduction
Unlike the model thory of $(\mathrm{C}, +, \cdot,0,1)$ , we do not know hardly anything
about the model thoery of $(\mathrm{C}, +, \cdot, \mathrm{e}\mathrm{x}\mathrm{p}, 0,1)$ . This situation is very differ-
ent from the one concerning the model theory of $(\mathrm{R}, +, \cdot, <,\mathrm{e}\mathrm{x}\mathrm{p}, 0,1)$ or of
$(\mathrm{R}, +, \cdot, <, 0,1, f)_{f\in An([0,1])}$ , where An$([0, 1])=\{f|f$ : $Uarrow \mathrm{R}$ is analytic
for $U$ some open $\supset[0,1]^{n}\}$ .

First attempts to investigate the model theory of $(\mathrm{C}, +, \cdot, \mathrm{e}\mathrm{x}\mathrm{p}, 0,1)$ are
made by B. Zil’ber who has conjectured that the structure is aquasi-minimal
structure which is ageneralization of minimal structures.

Definition 1. An uncountable structue is called $quasi- \min$, imal if its defin-
able sets are at most countable or c0-countable.

The conjecture has not yet been answered neither affirmatively nor neg-
atively. As aminor contribution to this line of research we study basic
properties of quasi-minimal structures. It is well known that we can define a
combinatrial geometry on minimal structures using aclosure operation. It is
then very natual to define asimilar geometry on quasi-minimal structures.

We thank TSUBOI Akito of the University of Tsukuba for his valuable
comments and remarks
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2Pre-Geometry

In this note we only work with countable languages $L$ . We also assume that
the reader is familiar with basic model theory.

Definition 2. Let $M$ be an uncountable structure and $A\subset M$ . Then

$\mathrm{c}\mathrm{c}1_{M}(A)$ $=$ {$b\in M$ : $b$ $\models\varphi$ , $\varphi^{M}$ is countable for some $\varphi\in L(A)$ }

We omit the subscript $M$ if it is clear from context.

Definition 3. Let $X$ be aset and cl be afunction from $P(X)$ to $P(X)$ ,
where $P(X)$ denotes the set of all subsets of $X$ . If $X$ and the function cl
satisfy the following properties, we say that $(X, \mathrm{c}1)$ is apre-geometry. Let
$A\subset X$ and $b$ , $c\in X$ .

(I) $A$ $\subset \mathrm{c}1(A)$ .

(II) (Finite Character) $b$ $\in \mathrm{c}1(A)\Rightarrow b$ $\in \mathrm{c}1(A_{0})$ for some finite $A_{0}\subset A$ .

(III) (Transfer Property) $\mathrm{c}1(\mathrm{c}1(A))=\mathrm{c}1(A)$ .

(IV) (Exchange Property) $b$ $\in \mathrm{c}1(Ac)$ $-\mathrm{c}1(A)\Rightarrow c\in cl(A6)$ .

Let $M$ be an uncountable structure. We first show that $(M, \mathrm{c}\mathrm{c}\mathrm{l})$ satisfies
these properties under some conditions.

Proposition 4. For any infinite structure $M$ , $(M, \mathrm{c}\mathrm{c}\mathrm{l})$ satisfies (I) and (II).

Proof: Clear by the definition of ccl since the language is countable.

Lemma 5. Suppose $M$ is aquasi-minimal structure. Let $A\subset M$ , $|A|<$

$|M|$ and $b$ , $c\in M-\mathrm{c}\mathrm{c}1(\mathrm{A})$ . Then $\mathrm{t}\mathrm{p}(b/A)=\mathrm{t}\mathrm{p}(c/A)$ .

Proof: If $\mathrm{t}\mathrm{p}(b/A)\neq \mathrm{t}\mathrm{p}(c/A)$ , then there is aformula $\varphi(x)\in L(A)$ such
that both $\varphi(b)$ and $\neg\varphi(c)$ hold. By the quasi-minimality of $M$ , either $\varphi$ or
$\neg\varphi$ is countable. Hence either $b$ or $c$ is in $ccl(A)$ . This contradicts to the
assumption on $b$, $c$ .
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Proposition 6. Assume that M is quasi-minimal and homogeneous. Then
(M,ccl) satisfies the transfer property (III).

Proof: Let $A\subset M$ . We show that $\mathrm{c}\mathrm{c}\mathrm{l}(\mathrm{c}\mathrm{c}\mathrm{l}(A))=\mathrm{c}\mathrm{c}\mathrm{l}(A)$ . Clearly $\mathrm{c}\mathrm{c}\mathrm{l}(\mathrm{c}\mathrm{c}\mathrm{l}(A))$

:) $\mathrm{c}\mathrm{c}1(A)$ holds by (I). For the other direction, it is enough to show that
$\mathrm{c}\mathrm{c}\mathrm{l}(\mathrm{c}\mathrm{c}\mathrm{l}(A))\subset \mathrm{c}\mathrm{c}\mathrm{l}(A)$ for finite $A\subset M$ , since $\mathrm{c}\mathrm{c}\mathrm{l}(A)=\mathrm{U}\{\mathrm{c}\mathrm{c}\mathrm{l}(B)$ : $B\subset$

$M$, $|B|<\mathrm{N}_{0}\}$ by (II). Assume that there is an element $b\in \mathrm{c}\mathrm{c}\mathrm{l}(\mathrm{c}\mathrm{c}\mathrm{l}(A))-\mathrm{c}\mathrm{c}\mathrm{l}(A)$ .
Since $|\mathrm{c}\mathrm{c}1(A)|\leq|A|+|L|$ , there is an element $c\in M-\mathrm{c}\mathrm{c}1(\mathrm{c}\mathrm{c}\mathrm{l}(A))$ . By
Lemma 5, we have $\mathrm{t}\mathrm{p}(b/A)=\mathrm{t}\mathrm{p}(c/A)$ . So by the homogeneity assumption
on $M$ , there is an $A$-automorphism $f$ of $M$ such that $f(b)=c$. Since $b$ is in
$\mathrm{c}\mathrm{c}\mathrm{l}(\mathrm{c}\mathrm{c}\mathrm{l}(A))$ , $c$ is also in $\mathrm{c}\mathrm{c}\mathrm{l}(\mathrm{c}\mathrm{c}\mathrm{l}(A))$ . This contradicts to the assumption on $c$ .

Proposition 7. Assume that $M$ is quasi-minimal, homogeneous and $|M|\geq$

$\aleph_{2}$ . Then $(M, \mathrm{c}\mathrm{c}\mathrm{l})$ satisfies the exchange property (IV).

Proof: By the finite character (II), it is enough to show the exchange prop-
erty (IV) assuming that $A\subset M$ is finite. Suppose that there are elements
$b$ , $c\in M$ such that $b\in \mathrm{c}\mathrm{c}1(Ac)-\mathrm{c}\mathrm{c}1(A)$ and $c\not\in \mathrm{c}\mathrm{c}1(Ab)$ . By Lemma 5, we
$\mathrm{h}$

. $\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{t}\mathrm{p}(b/A)=\mathrm{t}\mathrm{p}(c/A)$ . Let $p(x, y)=\mathrm{t}\mathrm{p}(\ /A)$ . We construct asequence
$(b_{i}).\cdot\leq\omega_{1}$ such that $\mathrm{b}$ $=b$, $b_{1}=c$ and $i<j\Rightarrow tp(b\{bj/A)$ $=\mathrm{t}\mathrm{p}(k/A)$ . Suppose
that we have chosen $b_{j}(j<i)$ .

Claim. $\bigcap_{j<i}p(b_{j}, M)\neq\emptyset$.

Proof of claim: Since $\bigcap_{j<:}p(b_{j}, M)=M-\bigcup_{j<i}(M-p(b_{j}, M))$ , it is enough
to show that $M-p(bj, M)$ is countable for each $j$ . Let $d\in M-p(b_{j}, M)$ . Then
there is aformula $\varphi(bj, y)\in p(b_{j},y)$ such that $\neg\varphi(b_{j}, d)$ holds. Since 92 $(6, c)$

and $\mathrm{t}\mathrm{p}(b/A)=\mathrm{t}\mathrm{p}(b_{j}/A)$ , $\varphi(b_{j}, y)$ is not countable in $M$ by the homogeneity
of $M$ . Hence $\neg\varphi(b_{j}, y)$ is countable by the quasi-minimality of $M$ and $d\in$

$ccl(A6j)$ . So $M-p(bj, M)$ is countable. This completes the proof of Claim.
Now we finish the proof of proposition. Let $b_{:} \in\bigcap_{j<:}p(b_{j}, M)$ . By the

definition of $b_{i}$ , $B=\{b_{i} : i<\omega_{1}\}\subset \mathrm{c}\mathrm{c}1(Ab_{\omega_{1}})$ . But $B$ is uncountable. This
is acontradiction
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3Some Examples
1. Any strongly minimal structure is quasi-minimal.

2. Let $M$ be uncountable, $P$ aunary predicate and $|\mathrm{A}I^{P}|$ coutable, then
$(M, P)$ is quasi-minimal.

3. Let $T$ be atheory of an equivalence relation $E$ with infinitely many
infinite equivalent classes. Then $T$ has quasi-minimal models such as;

(a) $E$ is an equivalence relation with uncountably many countable
equivalence classes.

(b) $E$ is an equivalence relation with one uncountable class and count-
able countable classes.

4. There are no quasi-minimal random graphs.

Proof: Assume that $(M, R)$ is a $\mathrm{q}\mathrm{u}\mathrm{a},\mathrm{s}\mathrm{i}$-minimal random graph. Let
$a\in M$ and $b$ , $c\in M-\mathrm{c}\mathrm{c}1(a)$ . By Lemma 5, we may assume without
loss of generality that any element in $M-\mathrm{c}\mathrm{c}1(a)$ is connected to $a$ .
Since $M$ is arandom graph, there is an element $d\in M$ such that
$R(d, a)\wedge R(d, b)\Lambda\neg R(d, c)$ holds. Then $d\in \mathrm{c}\mathrm{c}1(a)$ , because $R(d, a)$

holds. Hence $\mathrm{t}\mathrm{p}(b/d)=\mathrm{t}\mathrm{p}(c/d)$ , but $R(d, b)\wedge\neg R(d, c)$ holds as well.
This is acontradiction.

.5. (a) $(\omega_{1}, <)$ is not quasi-minimal, since the successor points are defin-
able.

(b) $(\omega_{1}\cross \mathrm{Z}, <)$ ( $<\mathrm{i}\mathrm{s}$ the lexicographic order) is quasi-minimal but not
homogeneous.

(c) $(\omega_{1}\cross \mathrm{Q}, <)$ is quasi-minimal and homogeneous. But the exchange
property (IV) does not holds (since the cardinality is less than
$\aleph_{2})$ .

4Remarks
Unlike strongly minial sets, the first-0rder property of quasi-minimal sets
are not easily understood. The reason for this is that for two elementaril
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equivalent structures $M$ and $N$ , the quasi-minimality of $M$ may or may not
imply the quasi-minimality of $N$ . This forbids us to employ the usual model
theoretic tools such as compactness arguments.

Another difficulty is that the luck of natural interesting examples. ZiPber’s
conjecture on the structute $(\mathrm{C}, +, \cdot, \mathrm{e}\mathrm{x}\mathrm{p}, 0,1)$ seems plausible but at this m0-

ment we do not know how to study the structure. As avery small first step
we notice the following:

Remark 8. It seems very natural to claim that for aquasi-minimal struc-
ture $(M$, $\cdots$ $)$ , the expanded structure $(M, \cdots, P_{i}(i\in\omega))$ is also quasi-minimal
where each $P_{i}$ is aunary predicate whose interpretation is acountable sub-
set of $M$ . As acorollary to this we have that $(\mathrm{C}, +, \cdot, 0, 1, P_{i}(i\in\omega))$ is
quasi-minimal where each $P_{i}$ is aunary predicate whose interpretation is a
countable subset of C.

Remark 9. In Section 2we studied the basic pre geometric properties of
quasi-minimal sets. Although our proof used the additional homogeneity
assumption on the structure, it is not clear whether this assumption is nec-
essary.

Remark 10. In model theory we often work in asaturated model. It seems
that our usual arguments for constructing saturated models are not enough
to define asaturated quasi-minimal structures.
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