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Summary

We give aset of sufficient conditions for the geometrical ergodicity and the non-explosiveness
of the solutions in the second-0rder threshold autoregressive (TAR) processes. We also
discuss some conditions for the geometrical ergodicity of the second-0rder simultaneous
switching autoregressive (SSAR) processes. Unlike the linear autoregressive processes and
the first rder TAR processes, the ergodic regions and non-explosive regions become quite
complicated even in some special TAR processes.

1. Introduction
In the statistical time series analysis several nonlinear time series models have been

proposed in the past decade. In particular, considerable attention has been paid to the
class of threshold autoregressive (TAR) processes, which was systematically investigated
by Tong (1990) and some applications have been reported. The statistical properties of the
first order TAR processes have been investigated first by Petruccelli and Woolford (1984),
and later by Chen and Tsay (1991) in more details. Unlike the linear autoregressive
models, however, the statistical properties of the second order TAR processes have not
been fully investigated mainly due to some technical problems involved. It seems that the
necessary and sufficient conditions for the ergodicity have been known only for the first
order TAR processes. The main purpose of my work is to investigate the basic properties
of the second-0rder TAR processes and the second-0rder SSAR (simultaneous switching
autoregressive) processes.

Let $\{y_{t}\}$ be asequence of scalar time series satisfying

(1.1) $y_{t}=\{$

$a_{1}y_{\mathrm{t}-1}+a_{2}y_{t-2}+\sigma_{1}v_{t}$ if $y_{t-d}\geq 0$

$b_{1}y_{t-1}+\mathrm{b}y_{t-2}+\sigma_{2}v_{t}$ if $y_{t-d}<0$

’My report was based on arevised version of Discussion Paper CIRJE-F-55, Faculty of Economics,
University of Tokyo. Ithank Dr. Seisho Sato of the Institute of Statistical Mathematics for the help of
preparing some figures based on the simulations reported in my work
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where $d$ is apositive (finite) integer parameter, and $\alpha.,b.\cdot,\sigma.\cdot(>0)(i=1,2)$ are un-
known parameters, and $\{v_{t}\}$ are asequence of independently and identicaly distributed
(i.i.d.) random variables having an absolutely continuous density $f(v)$ with respect to
the Lebesgue measure and $E[v_{t}]=0$ . We assume that $f(v)$ is continuous and everywhere
positive in $\mathrm{R}$ the second order threshold autoregressive model given by (1.1) will be
denoted as TAR(2:d) and the integer-valued parameter $d$ is cffid the delayed parameter.
(We also use the notation as TAR(2) for the second order TAR processes. )Petrucelli
and Woolford (1984) have considered the first-0rder TAR process when $a_{2}=4$ $=0$ and
$d=1$ , which is denoted as TAR(I:I). They have shown that the necessary and sufficient
conditions for the geometrical ergodicity are given by

(1.2) $a_{1}<1$ , $b_{1}<1$ , $a_{1}b_{1}<1$ .

Chen and Tsay (1991) have extended their results to the TAR(l:d) processes when $d$

takes an arbitrary positive integer. The conditions they have obtained for the geometrical
ergodicity include (1.2) as aspecial case when $d=1$ .

On the other hand, Kunitomo and Sato $(1996, 2000)$ , and Sato and Kunitomo (1996)
have proposed the class of simultaneous switching autoregressive (SSAR) processes, which
can be regarded as anatural extension of the TAR processes for some econometric appli-
cations. The second-0rder SSAR model can be written as

(1.3) $y_{t}=\{$

$a_{1}y_{t-1}+a_{2}y_{t-2}+\sigma_{1}v_{t}$ if $y_{t}\geq y_{t-1}$

$b_{1}y_{t-1}+hVt-2$ $+\sigma_{2}\mathrm{v}_{t}$ if $ye$ $<yt-i$

where $a:$ , $b\dot{.},\sigma.\cdot(>0)(i=1,2)$ are unknown par ameters, and $\{v_{t}\}$ are asequence of in-
dependently and identically distributed (i.i.d.) random variables having an absolutely
continuous density $f(v)$ with respect to the Lebesgue measure and $E[v_{t}]=0$ . We also $\mathrm{a}*$

sume that $f(v)$ is continuous and everywhere positive in R. The discrete time series model
given by (1.3) will be denoted by SSAR(2). By imposing the restrictions on parameters
given by

(1.4) $\frac{1-a_{1}}{\sigma_{1}}=\frac{1-b_{1}}{\sigma_{2}}=r_{1}$ , $\frac{a_{2}}{\sigma_{1}}=\frac{b_{2}}{\sigma_{2}}=r_{2}$ ,

this time series model can be written as

(1.5) $y_{t}=\{$

$a_{1}y_{t-1}+\mathrm{Q}\mathrm{a}\mathrm{V}\mathrm{t}-2+\sigma_{1}v_{t}$ if $v_{t}\cdot\geq r_{1}y_{t-1}-r_{2}y_{t-2}$

$b_{1}y_{t-1}+\mathrm{h}\mathrm{V}\mathrm{t}-2+\sigma_{2}v_{\ell}$ if $v_{t}<r_{1}y_{t-1}-r_{2}y_{t-2}$

where $r_{i}(i=1,2)$ are unknown parameters. We should note that the class of simultaneous
switching autoregressive (SSAR) process is different from the TAR models given by (1.1).
The two phases at $t$ are determined by both the past time series and the present innovation
at $t$ , we do not have any delayed parameter in the SSAR processes. Then the SSAR(2)
process has the Markovian representation with the state vector $y_{\acute{t}}=(y_{t}, y_{t-1})$ by using
the relation

(1.6) $y_{t}=y_{t-1}+[\sigma_{1}I(v_{t}\geq r_{1}y_{t-1}-r_{2}y_{t-2})$

$+\sigma_{2}I(v_{t}<r_{1}y_{t-1}-r_{2}y_{t-2})][v_{t}-(r_{1}y_{t-1}-\mathrm{r}2\mathrm{y}\mathrm{t}-2)$ ,
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where $I(\cdot)$ is the indicator function. When $\sigma_{1}=\sigma_{2}=\sigma$, then this SSAR process becomes
the standard $AR(2)$ model by a $\mathrm{r}\triangleright$-parametrization. Kunitomo and Sato (1996) have
shown that even the first order SSAR process (denotd as SSAR(I)) When $a_{2}=b_{2}=0$

gives us some explanation and description on an important aspect of the asymmetrical
movement of time series in two different (up ward and down-ward) phases. The ergodicity
condition for the SSAR(I) process is the same as (1.2) with the coherency conditions
implied by (1.4).

2. Some Preliminaries
The first important property of any statistical time series model is whether it is ergodic

or not. For the Markovian time series models with continuous state spaces and discrete
time intervals, the geometrical ergodicity and the related concepts have been developed
in the nonlnear time series analysis. For the sake of completeness, we mention to its
definition and the drift criterion. For the more precise definitions of related concepts
including irreducibility, aperiodicity, and ergodicity of the Markov chains with the general
state spaces, see Nummelin (1984) or the Appendix of Tong (1990).

Definition 1(Geometrical Ergodicity) :Let $\{\mathrm{y}_{\mathrm{t}}\}$ be an $m\mathrm{x}1$ Markovian process
with the state space of $R^{m}$ .
(i) $\{\mathrm{y}_{\mathrm{t}}\}$ is $\mathrm{g}\infty \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{y}$ ergodic if there exists aprobability measure $\pi$ on $(R^{m},B(R^{m}))$ ,
anon-negative constant $\rho<1$ and $\pi$-integrable non-negative measurable function $h(\cdot)$

such that
(2.1) $||P^{n}(x, \cdot)-\pi(\cdot)||_{\tau}\leq\rho^{\mathfrak{n}}h(x)$ ,

where $||\cdot||_{\tau}$ denotes the total variation norm, $x=(x:)$ is an $m\mathrm{x}1$ vector, and $P(x, \cdot)$ is
the transition probability.
(ii) $\{\mathrm{y}_{\mathrm{t}}\}$ is $\psi- \mathrm{i}\mathrm{r}\mathrm{r}^{\wedge}\mathrm{d}$ucible if for any $x$ $\in R^{m}$ , $A\in B(R^{m})$ with $\psi(A)>0(\psi(\cdot)$ is a $\sigma$-finite
measure), and

(2.2) $. \sum_{*=1}^{\infty}P^{n}(x,A)>0$ .

For the geometrical ergodicity of the Markov Chains with the continuous general
states, $\mathrm{T}\mathrm{j}\phi \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{m}$ (1990) has given adrift criterion, which will be useful for our purpose
and thus reported as Lemma 1. It is an extension of the well- nown drift criterion on the
Markov chain with the general states due to Tweedie (1975).

Lemma 1 $(T\ovalbox{\tt\small REJECT}. s\theta\iota eim (\mathit{1}\mathit{9}\mathit{9}\mathit{0}))$ :Assume that $\{y_{t}\}$ is an aperiodic $\psi$-irreducible Markov
Chain with the state space of $R^{m}$ and $g$ is a non-negative continuous (measurable) func-
tion. Then $\{y_{t}\}$ is geometrically ergodic if there exist a positive integer $h$ , a srrunll set $C$

satisfying (2.2) $uri\theta\iota$ $\psi(C)>0$ , positive constants $\epsilon>0$ , $M<+\infty$ , and $r>1$ such that

(2.3) $rE[g(y_{t+h})|y_{t}=y]\leq g(y)-\epsilon$ if $y\in C$’ ,

for any positive constant $\epsilon$ and

(2.4) $E[g(y_{t+h})|y_{t}=y]\leq M$ if $y\in C$ ,

where C’ is the complement set of $C$ .
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We note that when the density function of disturbances $f(v)$ is continuous and every-
where positive in $\mathrm{R}$ we can take acompact set as the small set in Lemma 1. See Theorem

A.1.7 of Tong (1990) on the related problems.
Now we introduce another concept on the stability of the solution, which is slightly

different ffom the geometrical ergodicity. Because its conditions are slightly weaker than

those in Lemma 1and they are necessary for the geometrical egodicity, we use the ter-

minology of Near Geometrical $E\eta d\dot{\iota}city$. We shall use this concept in this paper due to

the technical reason indicated in later sections. However the detail of its mathematical
properties has not been fully explored and is still under investigation.
Let $Q$ be the state space of the stochastic process $\{y_{t}\}$ . Then we partition the state

space $Q$ into afinite number of disjoint subspaces $Q^{:}(i=1, \cdots, k)$ such that $Q=$

$\bigcup_{i=1}^{k}Q^{:}$ $(\psi(Q^{:})>0, Q^{:}\cap Q^{j}=\phi ;i\neq j)$ md for any $t$

(2.5) $1=. \cdot\sum_{=1}^{k}I(y_{t}\in Q^{:})$ ,

where $I(\cdot)$ is the indicator function and k is apositive integer.

Definition 2 $($Near Geometrical $\mathrm{E}\mathrm{r}\mathrm{g}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y})_{/}$ : We say that the solution $\{y_{t}\}$

is near geometrically ergodic if (i) for any $i,i’(\acute{\iota},\iota=1, \cdots, k)$ and (sufficiently large)

positive integers $h_{j}(j=j(i,i’)\geq 1)$ , there exist asequence of positive constants $\epsilon_{\mathrm{j}}$ and
$r_{j}(r_{j}>1)$ such that

(2.6) $r_{j}E[g(y_{t+h_{\mathrm{j}}})I(y_{t+h_{\mathrm{j}}}\in Q^{i’})|y_{t}=y]\leq g(y)-\epsilon_{\mathrm{j}}$ if $y\in Q^{:}\cap C^{\mathrm{c}}$ ,

where $C$ is asmall set satisfying $\psi(C)>0$ in (2.2),
and (ii) there exists apositive constant $M$ such that

(2.7) $E[g(y_{t+h_{\mathrm{j}}})I(y_{t+h_{\mathrm{j}}}\in Q^{\cdot}.’)|y_{t}=y]\leq Mif$ $y\in Q^{:}\cap C$

for any $i$ , $i^{l}(i,i’=1, \cdots, k)$ and positive integers $h_{j}(hj\geq 1)$ .

We notice that there is adecomposition

(2.8)
$I(y_{t+h} \in Q^{i’})I(y_{\ell}\in Q^{:})=\sum I(y_{t+h}k\in Q^{i^{l}})I(y_{t+h_{1}}\in Q^{l})I(y_{t}\in Q^{:})$

$l=1$

for any $h>h_{1}\geq 1$ and $i,i’=1,2$, $\cdots$ , $k$ . Then it is apparent that (2.6) is reducd to (2.3)

if the term $I(\cdot)$ can be deleted in (2.6) with the common $r=r_{j}$ and $h=h_{\mathrm{j}}(j\geq 1)$ with

afinite $j’s$ . Hence the near geometrical ergodicity we introduce in this section coincides
with the geometrical ergodicity in the nonlinear time series analysis if we can take the

common positive integer $h=h_{\mathrm{j}}$ and the common constant $r=r_{j}(j\geq 1)$ . It is a

kind of the stability property or non-explosiveness of the sample paths of the imderlying

stochastic process, whose behavior is near to the geometrical ergodicity.

3. Ergodic conditions for TAR(2) in the leading case
In this section we consider the conditions for the geometrical ergodicity of the TAR(2)

processes in aspecial case. For this purpose we shall utilize the Markovian representatio$\mathrm{n}$
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of the TAR(2) processes. Let $1^{\mathrm{F}_{*}\ovalbox{\tt\small REJECT}}(\ovalbox{\tt\small REJECT}_{\mathrm{t}_{\mathrm{t}}}y_{t-1})$’be a2 x1 vector of the time series generated
by $\{\mathrm{y}_{\mathrm{t}}\}$. The second order TAR process given by (1.1) can be represented by

(3.1) $y_{t}=\{$

$Ay_{t-1}+D\sigma_{1}v_{\mathrm{t}}$ if $e_{k}’y_{t-1}\geq 0$

$By_{t-1}+D\sigma_{2}v_{t}$ if $d_{k}y_{t-1}<0$

where $e_{1}=(1,0)’,e_{2}=(0,1)’$ (for $e_{k}$ with k $=1,$ 2), and D $=(1,0)’$ are 2 x1 constant
vectors, and A,B are 2 x2 coefficient matrices given by

(3.2) A $=(\begin{array}{ll}a_{1} a_{2}1 0\end{array})$ , B $=(\begin{array}{ll}b_{1} \mathrm{h}\mathrm{l} 0\end{array})$

In the rest of this section we shall consider the leading case for the TAR(2) processes
when $4=0$ . This is simply because we can obtain general characterizations on the
geometrical ergodic regions in the leading case and the necessary and sufficient conditions
for the geometrical ergodicity can be mostly obtainable. we have to stress that even in
this leading case our conditions sometimes become quite complicated and non-standard
in comparison with the results known for the TAR(I) processes. In order to obtain the
conditions for the geometrical ergodicity and state our results, we partition the parameter
space of $(a_{1},a_{2})$ into four different regions given by
$C_{1}=\{a_{1}\geq 0,02\geq 0\}$ , $C_{2}=\{a_{1}<0,a_{2}\geq 0\}$ , $C_{3}=\{a_{1}<0, a_{2}<0\}$ , and
$C_{4}=\{a_{1}\geq 0,a<0\}$ , respectively.
Because we set $4=0$, we need to consider two cases when $b_{1}\leq 0$ and $b_{1}>0$ . Then
it is intuitively obvious that in the latter case we have to restrict the conditions for the
geometrical ergodicity when $0<b_{1}<1$ in order to avoid the possible explosion of the
sample paths of the solutions. Because we have the density function $f(v)$ over $R$, this
can be proven in the rigorous way.

3.1 TAR(2:1) Processes
First, we consider the TAR(2:1) process when $b_{1}>0$ and $4=0$ . This is the simplest

case in the TAR(2) process in terms of our conditions on the coefficients. Although the
characteristic roots of $B$ are $b_{1}(0<b_{1}<1)$ and 0, we have some complications due to
the behaviors of two characteristic roots of $A$ . Let

(3.3) $D(A)=a_{1}^{2}+4a_{2}$ ,

which is the discriminant of the characteristic equation for the first phase in (3.1) given
by
(3.4) $g_{A}(\lambda)=\lambda^{2}-a_{1}\lambda-a_{2}=0$ .
Then we can present the necessary and sufficient conditions for the geometrical ergodicity
in the present case. Some of proofs and derivations of the propositions in this section are
given in Section 5. We consider aset of conditions :

Condition I:
$C_{1}$ : $a_{1}+a_{2}<1,0<b_{1}<1$ ,

18



$C_{2}$

$C_{3}$

$C_{4}$

$0<4$ $<1$ ,
$0<4$ $<1$ ,
[either $a_{1}+a_{\mathit{2}}<1$ (0 $\ovalbox{\tt\small REJECT}$ $a_{1}<2,D(\mathrm{A})\ovalbox{\tt\small REJECT}$ 0) or $D(\mathrm{A})<0$ ], $0<6_{1}<1$ .

Proposition 1:For the TAR(2:1) process with $b_{1}>0$ and $4=0$ , the necessary and
sufficient conditions for the geometrical ergodicity of $\{y_{t}\}$ are given by Condition $I$.

Second, we consider the TAR(2:1) process when $b_{1}\leq 0$ and $4=0$. The conditions in
this case become far more complicated than in the first case. This is mainly because the
stochastic process $\{y_{t}\}$ can be ergodic when $b_{1}<0$ and its absolute value is greater than
1. In order to deal with some complications involved, we define $\rho(A^{k}B)$ be the non-zero
characteristic root of the matrix $A^{k}B$ for any positive integer $k$ . In the present case

$\rho(A^{k}B)=e_{1}^{l}A^{k}b$ ,

where $b’=(b_{1},1)$ .
Then we give aset of conditions for the geometrical ergodicity and the near geometrical
ergodicity of the sample paths of the solutions. The concept of the near geometrical
ergodicity of the solutions has been given in Definition 2in Section 2. We note that it is
not needed for the linear time series processes and TAR(I) processes. We consider aset
of conditions :

Condition $II$ :
$C_{1}$ : $a_{1}+a_{2}<1$ ,
$C_{2}$ : $\rho(AB)<1$ ,
$C_{3}$ : $\rho(A^{\mathrm{j}}B)<1(j=1,2)$ ,
$C_{4}$ : either $[a_{1}+a_{2}<1(0\leq a_{1}<2,D(A)\geq 0)]$ or [$\mathrm{D}(\mathrm{A})<0$ and there exists some
$j(j\geq 1)$ such that $0\leq\rho(A^{j}B)<1]$ .

Proposition 2:For the TAR(2:1) process with $b_{1}\leq 0$ and $b_{2}=0$ , (i) the necessary and
sufficient conditions for the geometrical ergodicity of $\{y_{t}\}$ are given by Condition $II$
$with$ $C_{1}$ , $C_{2}$ , and $C_{3}$ , and (ii) the sufficient conditions for the near geometri$cal$ ergodicity
of the solution $\{y_{t}\}$ are given by Condition $II$ with $C_{4}$ .

As an illustration, we present two figures of the ergodic regions and non- xplosive
regions for the TAR(2:1) processes, which are based on the simulations of the stochastic
processes $\{y_{t}\}$ . Contrary to the ergodic regions for the linear $\mathrm{A}\mathrm{R}(2)$ models which have
been known in the statistical time series analysis (see Brockwell and Davis (1991) for
instance), they are often unbounded as we see in these figures. Some of the conditions
above can be written more explicitly by using

$\rho(AB)=a_{1}b_{1}+a_{2}$ , $\rho(A^{2}B)=a_{1}(a_{1}b_{1}+a_{2})+a_{2}b_{1}$ .

The most complicated region in the TAR(2:1) process is $C_{4}$ in Condition II and we
have found some strange shapes as the non-explosive regions for the sample paths of
the solutions depending upon the parameter values of Aand $B$ . Although we canno
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give the complete characterizations of the ergodic regions on the present case, we may
conjecture that the conditions are necessary and sufficient for the geometrical ergodicity
in all cases. As an immediate corolary of the above two propositions, we can obtain the
result originaly derived by Petruccelli and Woolford (1984) for the TAR(I:I) process.

Corollary 1 : For the TAR(l:l) mdel, the necessary and sufficient conditions for the
geometrical ergodicity of $\{y_{t}\}$ are given by

(3.5) $a_{1}<1$ , h $<1$ , $a_{1}b_{1}<1$ .

3.2 TAR(2:2) Processes
Next, we consider the TAR(2:2) process when $b_{1}\leq 0$ and $4=0$ . Contrary to the

TAR(2:1) process, this is simpler than the case when $4>0$ in the TAR(2:2) process. In
the present case we can give the necessary and sufficient conditions :

Condition $III$ :
$C_{1}$ : $a_{1}+a_{2}<1$ , $\rho(AB^{2})<1$ ,
$C_{2}$ : $\rho(AB)<1$ ,
$C_{3}$ : $\mathrm{p}(\mathrm{A}\mathrm{B})<1$ , $\rho(AB^{2})<1$ ,
$C_{4}$ : either $[a_{1}+a_{2}<1(0\leq a_{1}<2,D(A)\geq 0)]$ or $[D(A)<0,\rho(AB^{2})<1]$ .

Proposition 3:For the TAR(2: 2) process with $4\leq 0$ and $4=0$ , the necessary and
sufficient $\omega n\ \cdot t\cdot.ons$ for the geometrical ergodicity of $\{y_{t}\}$ are given by Condition $III$.

Second, we consider the TAR(2:2) process when $b_{1}>0$ and $4=0$ . It is far more
complicated than in the previous case as for the TAR(2:1) process when $b_{1}\leq 0$ and
$4=0$ . In this case we give aset of conditions for the geometrical ergodicity and the
$\mathrm{n}\mathrm{o}\mathrm{n}\ll \mathrm{x}\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{e}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}\infty$ of the solution.

Condition $IV$ :
$C_{1}$ : $a_{1}+a_{2}<1,0<b_{1}<1$ ,
$C_{2}$ : $a_{1}+a_{2}<1$ and there exists some $j(j\geq 2)$ such that $0\leq\rho(A^{\mathrm{j}}B)<1$ ,
$C_{3}$ : $\rho(A^{2}B)<1,0<b_{1}<1$ ,
$C_{4}$ : either $[a_{1}+a_{2}<1(0\leq a_{1}<2, D(A)\geq 0)]$ or $[D(A)<0]$ , $0<b_{1}<1$ .

Proposition 4:For the TAR(2:2) process $uri\theta\iota$ $b_{1}>0$ and $4=0$ , $(\dot{l})$ the necessary and
sufficient conditions for the geometrical ergodicity of $\{y_{t}\}$ are given by Condition $IV$

$uri\theta\iota$ $C_{1},C_{3}$ , and $C_{4}$ , and (ii) the sufficient conditions for the near geometrical ergodicity
of the solution $\{y_{t}\}$ are given by Condition $IV$ with $C_{2}$ .

As an illustration, we present two figures of the ergodic and the non-explosive regions
for the TAR(2:2) processes, which are based on simulations. Some of the conditions above
can be written more explicitly by usin

$\rho(AB^{2})=b_{1}(a_{1}b_{1}+a_{2})$ .
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We note that some of the conditions for the TAR(2:2) process in the leading case when
$D(A)<0$ have been partially discussed by Tong (1990) without the disturbance terms.
From Page 70 of Tong (1990) we set $b_{1}=-0.9,a_{1}=1.8,a_{2}=-0.9$ as Example 1and
$b_{1}=-1.1,a_{1}=0.6,a_{2}=-0.1$ as Example 2. By using Proposition 3, we can conclude
that Example 1is not geometricaly ergodic while Example 2is geometrically ergodic.

Contrary to the ergodic regions for the linear $\mathrm{A}\mathrm{R}(2)$ processes, some of them are un-
bounded as we see in these figures. The most complicated region in the TAR(2:2) process
is $C_{2}$ in Condition IV although it may be difficult to judge this finding directly from the
figure. We have found some strange shapes as the noDhexplosiveness regions in $C_{2}$ de
pending upon the parameter values of $A$ and $B$ . It seems that the complications involved
in this case is different from the corresponding one in the region $C_{4}$ for the TAR(2:1)
process when $b_{1}\leq 0$ . However, we have not succeeded in the complete characterization of
this situation except the present conditions we have obtained.

As an immediate corollary of the above two propositions, we have the result obtained
by Chen and Tsay (1991) for the firat-0rder threshold model TAR(l:d) when $d=2$.

Corollary 2:For the TAR(1:2) process, the necessary anti sufftcient conditions for the
geometrical ergodidty of $\{y_{t}\}$ are given by

(3.6) $a_{1}<1$ , $b_{1}<1$ , $a_{1}h<1$ , $a_{1}^{2}b_{1}<1$ , $a_{1}b_{1}^{2}<1$ .

We should mention that Chen and Tsay (1991) have given the necessary and sufficient
conditions for the TAR(l:d) processes with any positive integer-valued parameter d.

4. Discussions

4.1 SSAR(2) Processes

By using (1.3)-(1.5), the SSAR(2) process have the Markovian representation, which
is simlar to the one given in (3.1) for the TAR(2) processes. Let $y_{t}=(\mathrm{y}\mathrm{t},y_{t-1})’$ be a 2 $\mathrm{x}1$

vector of time series. Then the SSAR(2) process in (1.3)-(1.5) can be represented by

(4.1) $y_{t}=\{$

$Ay_{t-1}+D\sigma_{1}v_{t}$ if $e’y_{t}\geq 0$

$By_{t-1}+D\sigma_{2}v_{t}$ if $e’y_{t}<0$

where $e=(1, -1)’$ , $D=(1,0)’$ , and the coefficient matrices Aand $B$ are given by
(3.2) with the coherency conditions (1.4). We first note that due to the structure of the
SSAR processes, it is not possible to investigate the leading case as in Section 3. The
determination of phases at time $t$ depends on afinite number of past time series and the
present innovation as given by (1.6), the stability of the paths of the solution become
quite complex and it depends on the complicated products of matrices $A^{k}B^{l}$ and $B^{k}A^{l}$

for $0\leq k,l$ in general. As the sufficient conditions, we consider the restrictions :

Condition V :

(4.2) $a_{1}+|a_{2}|<1$ , $b_{1}+|b_{2}|<1$ , $(a_{1}-|a_{2}|)(b_{1}-|b_{2}|)<1$ , $\min\{|a_{2}|, |b_{2}|\}<1$ .
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By using the coherency conditions (1.4) on 04, $b_{\ovalbox{\tt\small REJECT}}$ (i $\ovalbox{\tt\small REJECT}$1,2) for the SSAR(2) process, the
above conditions can be rewritten in the parameter space of $o_{i}$ (i $\ovalbox{\tt\small REJECT}$1,2) and $7_{\mathrm{j}}^{\ovalbox{\tt\small REJECT}}$ (i $\ovalbox{\tt\small REJECT}$1,2)
as

Condition $V^{0}$ :

(4.3) $r_{1}>|r_{2}|$ , $r_{1}+|r_{2}|< \frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}$ , $|r_{2}|< \dot{\mathrm{m}}\mathrm{n}\{\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}\}$ .

Presently it is only possible to show that the first three conditions are necessary for the
geometrical ergodicity by investigating possible many cases which would be occurred and
we omit their lengthy proofs. The last condition in (4.3) is quite strong one, which is not
necessary, but we expect that Condition $\mathrm{V}$ are sufficient for the geometrical ergodicity
of $\{y_{t}\}$ in the SSAR(2) process. They are slightly weaker than the sufficient conditions

(4.4) $\rho=\mathrm{m}\mathrm{i}$.$\{|a_{1}|+|a_{2}|, |b_{1}|+|b_{2}|\}<1$ .

This type of conditions for the TAR(p:l) processes [$p$ $\geq 1)$ has been obtained by Chan
and Tong (1985). However, they are not necessary even for the TAR(2:1) processes as we
have shown in Section 3. As an illustration, we present one figure of the non-explosive
regions for the SSAR(2) process, which is based on the simulations and drawn in the
$(r_{1},r_{2})$ phase. The geometrically ergodic regions in this case seem to be different from
the corresponding ones in the TAR(2) processes and the ergodic region is bounded in
the $(r_{1},r_{2})$ -space due to the coherency conditions given by (1.4). The conditions for the
geometricaly ergodicity of the SSAR(I) process is considerably simpler than the SSAR(2)
process, which can be summarized as the next proposition.

Proposition 5:For the SSAR(l) process, the necessary and sufficient conditions for
the geometrical ergodicity of $\{y_{t}\}$ are given by

(4.3) $a_{1}<1$ , $b_{1}<1$ , $a_{1}b_{1}<1$ .

By using the coherency conditions given by (1.4) for the SSAR(2) process, these con-
ditions can be further $\mathrm{r}\triangleright \mathrm{r}\mathrm{e}\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}$ as

(4.6) $0<r_{1}< \frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}$ .

Rom this representation it is clear that (4.2) and (4.3) are natural generalizations of (4.5)
and (4.6) in sense. We should note that the ergodic region in terms of the $(r_{1},r_{2})$ space
is bounded for the SSAR(I) model.

4.2 TAR(2) Processes
In principle it would be possible to develop the conditions for the geometrical ergodicity

and the near geometrical ergodicity for the general case of the TAR(2) processes. However,
they become substantially more complicated than in the leading case (i.e. $b_{2}=0$ ) we
have discussed in Section 3. In particular, it is quite tedious to write down the explici $\mathrm{t}$

22



expressions in terms of the coefficient matrices Aand $B$ as the necessary $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ sufficient
conditions of the geometrical ergodicity and the near geometrical ergodicity. Thus for the
illustrative purpose we have done some simulations. Among many simulations we only
present several figures having complex shapes in some regions. However, they have some
similar aspects essentially to those in the leading cases when the TAR(2:1) process with
$b_{1}\leq 0$ and the TAR(2:2) process with $b_{1}>0$ as we have discussed in Section 3. For
illustrations we also give some figures suggesting the mathematical complexities involved
in our situations. Also we have confirmed that the analytical characterizations of those
figures are not easy tasks.

4.3 Concluding Remarks

Since the conditions for the geometrical ergodicity are the basic property of the MarkO-
vian stochastic processes, they have some implications for statistical inferences and the
modelling procedure of the TAR(2) processes. In general, from our findings in this paper
we expect that the higher order TAR(p) processes with an arbitrary delayed parameter $d$

have quite complicated ergodic conditions. Although it is possible to use the least squares
estimation method 1 for the consistent estimation of the unknown parameters in the TAR
processes, we need amore careful investigation on the properties of the estimation results
in empirical studies. Because of our results reported in the previous sections, however, it
is far beyond the scope of this paper to have acomplete characterization of the stochastic
processes of the TAR(p) and the SSAR(p) processes for practical usages and there still
remains many statistical problems to be solved.

5. The Method of Proofs
In this section, we discuss the our method of derivations and proofs of our results in

Section 3. Due to the lack of space, the interested readers should ask the author to send
the revised version of the full paper presented. The method of proofs is basically similar to
the one developed by Chen and Tsay (1991) for the TAR(I) processes. For the theoretical
results on Markov chain with the general state space, see Nummelin (1984), or $\mathrm{T}\mathrm{j}\phi \mathrm{t}\mathrm{h}\mathrm{e}$

$\dot{\mathrm{u}}\mathrm{n}$

(1990). Here we prepare some notations used in this section. Let $\mathcal{F}_{t}$ be the $\sigma$-field
generated by asequence of random variables $\{y_{s}, s\leq t\}$ and we use the notation for
the conditional expectation $E_{t}[\cdot]=E[\cdot|\mathcal{F}_{t}]$ . Also define asequence of time dependent
phases for the stochastic process $\{y_{t}\}$ as $Q_{t}^{1}=\{y_{t}>0,\mathrm{y}\mathrm{t}-\mathrm{i}>0\}$ , $Q_{t}^{2}=\{y_{t}\leq 0,\mathrm{y}\mathrm{t}-\mathrm{i}>0\}$ ,
$Q_{t}^{3}=\{y_{t}\leq 0,y_{t-1}\leq 0\}$ , and $Q_{t}^{4}=\{y_{t}>0,\mathrm{y}\mathrm{t}-\mathrm{i}\leq 0\}$ .

By using the indicator function $I(\cdot)$ , we can decompose 1into the indicator functions
with four different phases as $1=I(Q_{t}^{1})+I(Q_{t}^{2})+I(Q_{\ell}^{3})+I(Q_{t}^{4})$ . Then we can further
decompose $I(Q_{t}^{1})$ as $I(Q_{t}^{1})=I(Q_{t}^{1}Q_{t-1}^{1})+I(Q_{t}^{1}Q_{t-1}^{4})$ , for instance. The most important
technical finding in our derivations and proofs of our resutls lies in the fact that we can
ignore many terms when we evaluate the growth condition (2.3) as long as for the leading
cases $(i.e. 4 =0)$ .

1 For the SSAR processes, however, Sato and Kunitomo (1996) have shown that the standard least
squares method does not give us any reliable estimation results
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We illustrate the details of our method by using the case of TAR(2:1) when $b_{1}>0$ .

[1] In this stochastic process we notice that for $Q_{t+h}^{4}(h\geq 1)$ we have $y_{t+h-1}\leq 0$ and
$y_{t+h}=b_{1}y_{t+h-1}+\tau k+h>0$ . It implies that $fl_{+h-1}[|y_{t+h}|I(Q_{t+h}^{4})]$ and $|y_{t+h-1}|$ are bounded
because we have $b_{1}>0$, $v_{t+h}>-b_{1}y_{t+h-1}\geq 0$ , and $2|v_{t+h}|>|y_{t+h}|$ . Then we have used
the relation
(5.1) $\frac{1}{b_{1}}ffl_{+h-1}[|v_{t+h}|]>|y_{t+h-1}|\geq 0$ .

We notice that the boundedness of the conditional expectations of $y_{t+h-1}$ and $y_{\mathrm{t}+h}$ im-
plies the boundedness of the conditional expectation of $y_{t+h+1}$ . Sequentially we can show
that fl $[|yt+h+\iota|I(Q_{t+h}^{4})]$ are bounded for any integer $h$ $\geq 1$ . Hence we can find aposi-
tive constant $c_{1.1}$ such that ffl $[||y_{t+h+k}||I(Q_{t+h}^{4})]\leq c_{1.1}$ for any (positive) integers $h\geq 1$

and $k$ $\geq 1$ . By using this boundedness relation, we have several consequences. For in-
stance, since we can decompose $I(Q_{t+h}^{1})=I(Q_{t+h}^{1}Q_{t+h-1}^{1})+I(Q_{t+h}^{1}Q_{t+h-1}^{4})$ and $I(Q_{t+h}^{2})=$

$I(Q_{t+h}^{2}Q_{t+h-1}^{1})+I(Q_{t+h}^{2}Q_{t+h-1}^{4})$ , the conditional expectations of $E_{t}[||y_{t+h}||I(Q_{t+h}^{1}Q_{t+h-1}^{4})]$

and fl $[||y_{t+h}||I(Q_{t+h}^{2}Q_{t+h-1}^{4})]$ are bounded for any integer $h\geq 1$ .
By this consideration on the present case, we only need to evaluate the conditional ex-
pectation terms associated with the four phases on the process :
$I(Q!+hQ_{t+h-1}^{1})$ , $I(Q_{t+h}^{2}Q_{t+h-1}^{1})$ , $I(Q_{t+h}^{3}Q_{t+h-1}^{2}Q_{t+h-2}^{1})$ , and $I(Q_{t+h}^{3}Q_{t+h-1}^{3})$ .
Then we shall consider the ergodic conditions for four regions of the parameter values
$C_{1},C_{2},C_{3}$ , and $C_{4}$ , separately.

[2] $C_{1}$ : In this case we first notice that $0\leq e_{1}’Al$ $<1$ implies $0\leq e_{1}’A^{2}l<1$ for
a2 $\mathrm{x}1$ vector $l=(1,1)’$ . Define the indicator functions by $I_{t+2}^{(1)}=I(y_{t+2}\geq y_{t+1})$ and
$I_{t+2}^{(2)}=I(y_{t+2}<\Re_{+1})$ . Then there exists apositive $c_{1S}$ such that

$\leq fl[(e_{1}’ A^{2}lI_{t+2}^{(1}’+e_{1}’ AlI_{t+2}^{(2)})||y_{t}||(I(Q_{t+2}^{1}Q_{t+1}^{1})+I(Q_{t+2}^{2}Q_{t+1}^{1}))]+c_{1.2}fl[||y_{t+2}||(I(Q_{t+2}^{1}Q_{t+1}^{1})+I(Q_{t+2}^{2}Q_{t+1}^{1}))]$

.

Hence we can find positive constants $c_{13}$ and $\delta_{1.1}(0\leq\delta_{1.1}<1)$ such that

$E_{t}[||y_{t+2}||(I(Q_{t+2}^{1}Q_{t+1}^{1})+I(Q_{t+2}^{2}Q_{t+1}^{1}))]\leq\delta_{1.1}||y_{1}||ffl[I(Q_{t+2}^{1}Q_{t+1}^{1})+I(Q_{t+2}^{2}Q_{\ell+1}^{1})]+c_{1.3}$ .

For the phase $Q_{t+2}^{3}Q_{t+1}^{2}$ , we substitute (3.1) for $||y_{t+2}||=-y_{t+2}I_{t+2}^{(1)}-y_{t+1}I_{t+2}^{(2)}$ and we
take positive constants $c_{1.4}$ and $\delta_{12}(0\leq\delta_{1.2}<1)$ such that

ffl $[||y_{t+2}||I(Q_{t+2}^{3}Q_{t+1}^{2})]$

$=$ ffl $[(b_{1}|e_{1}’Ay_{t}|I_{t+2}^{(1)}+|e_{1}’Ay_{t}|I_{t+2}^{(2)}+|v_{t+2}+b_{1}v_{\ell+1}|I_{t+2}^{(1)}+|v_{t+1}|I_{t+1}^{(2)})I(Q_{t+2}^{3}Q_{t+1}^{2})]$

$\leq$ $\delta_{1.2}||y_{t}||fl[I(Q_{t+2}^{3}Q_{t+1}^{2})]+c_{1.4}$ ,

where we have taken apositive constant $612= \max\{b_{1}(a_{1}+02),a_{1}+a_{2}\}$ . Similarly, for
the phase $Q_{t+2}^{3}Q_{t+1}^{3}$ , we can find apositive constant Cl.l such that

ffl $[||y_{t+2}||I(Q_{t+2}^{3}Q_{t+1}^{3})] \leq\max\{b_{1}^{2}, b_{1}\}(-y_{t})$ffl $[I(Q_{\ell+2}^{3}Q_{t+1}^{3})]+c_{1.5}$ .

By summarizing the above inequalities on four phases, we can find positive constants $c_{1.6}$

and $\delta_{1.3}(0\leq\delta_{1.3}<1)$ such that $E_{t}[||y_{t+2}||]\leq\delta_{1.3}||y_{t}||+\mathrm{C}1.1$ , which leads to (2.3) in
Lemma 1. This is because we can find asufficiently large $M$ and acompact set $C(M)$
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depending on $M$ such that $C(M)=\{||y||\leq M\}$ and the growth condition (2.3) in Lemma
1can be satisfied.

In the following derivations for other cases we need to use the above type of arguments
repeatedly in each case. Because the arguments are quite similar and tedious, however,
we shaU try to discuss the essential differences and not to repeat the same arguments.

[3] $C_{2}$ : By repeating the procedure we have used in [2] and taking the conditional
expectations given $F_{t}$ , we can find apositive integer $h(\geq 2)$ and apositive constant $c_{1.7}$

such that

(5.2) fl $[||y_{t+h}||]$ $\leq E_{t}[||y_{t+h}||(I(Q_{t+h}^{1}Q_{t+h-1}^{1}Q_{t+h-2}^{1})+I(Q_{t+h}^{2}Q_{t+h-1}^{1}Q_{t+h-2}^{1})$

$+I(Q_{t+h}^{3}Q_{t+h-1}^{2}Q_{t+h-2}^{1})+I(Q_{t+h}^{3}Q_{t+h-1}^{3}Q_{t+h-2}^{3}))]+c_{1.7}$ .

Since $c_{1.7}$ is bounded, we need to evaluate its first four terms. Let $\lambda_{:}(i=1,2)$ be the
characteristic roots of $g_{A}(\lambda)=0$ in (3.4). Because $a_{1}<0$ and $a_{2}\geq 0$ in $C_{2}$ , we have the
relation that $\lambda_{1}>0>\lambda_{2}$ and $|\lambda_{2}|>|\lambda_{1}|$ . Then there exists apositive integer $h_{1}$ such
that $e_{1}’A^{h_{1}}y_{t}<0$ given $y_{t}\in Q_{t}^{1}$ because each component of $e_{1}’A^{h_{1}}$ become eventualy
negative for asufficiently large $h_{1}$ . If we write

(5.3) $y_{t+h_{1}}=e_{1}’A^{h_{1}}y_{t}+ \sigma_{1}(.\cdot\sum_{=1}^{h_{1}}e_{1}A^{:-1}e_{1}v_{t+}.)’$.

and we denote the second term of (5.4) as $w_{t+h_{1}}$ , then we have the condition $w_{t+h_{1}}>$

$-e_{1}A^{h_{1}}y_{t}’\geq 0$ when $y_{t+h_{1}}\in Q_{t+h_{1}}^{1}$ . Hence there exists apositive constant $c_{1.8}$ such that
$E_{t}[||y_{t+h_{1}}||I(\mathrm{I}\mathrm{L}_{=0}^{h_{1}}.Q_{t+}^{1}.\cdot)]\leq c_{1.8}$ .

For the last term of (5.3), we use the relation that $y_{t+h_{2}}=b_{1}y_{t+h_{2}-1}+v_{t+h_{2}}$ when
$y_{t+h_{2}}\in Q_{t+h_{2}}^{3}$ for any positive integer $h_{2}$ and we can take apositive $c_{1.9}$ such that

$E_{t}[||y_{t+h_{2}}||I(\Pi_{arrow-0}^{h}.Q_{t+h_{2}-:}^{3})]\leq fl[(b_{1}^{h_{2}}I_{t}^{(1)}+b_{1}^{h_{2}-1}I_{t}^{(2)})(-y_{t})I(\mathrm{I}\mathrm{L}_{=0}^{h_{2}}.Q_{t+h_{2}-:}^{3})]+c_{1.9}$ .

By repeating the substitution of each phase on the right hand side of (5.4), we take a
sufficiently large $h_{3}(\geq h_{1}+h_{2}+2)$ and we can reduce the second and the third terms of
(5.4) to their first and last terms. By using the condition $0\leq b_{1}<1$ we can find positive
constants $c_{1.10}$ and $\delta_{1.4}(0\leq\delta_{1.4}<1)$ such that $E_{t}[||y_{t+h_{3}}||]\leq\delta_{1.4}||y_{t}||+c_{1.10}$ .

[4] $C_{3}$ : In this case we notice that when $y_{t+3}\in Q_{t+3}^{1}$ and $y_{t+2}\in Q_{t+2}^{1}$ , the equation
$y_{t+3}=a_{1}y_{t+2}+a_{2}y_{t+1}+v_{t+3}$ implies that $v_{\iota+\mathrm{s}}>(-a_{1})y_{t+2}+(-a_{2})y_{t+1}\geq 0$ . Then by apply-
ing the same argument as [2] and [3] to $y_{t+1}$ , we can show that $E_{t}[||y_{t+3}||I(Q_{t+3}^{1}Q_{t+2}^{1}Q_{t+1}^{1})]$

is bounded. By using the facts that we can decopmpose

$I(Q_{t+3}^{2}Q_{\ell+2}^{1}Q_{t+1}^{1})=I(Q_{t+3}^{2}Q_{t+2}^{1}Q_{t+1}^{1}Q_{t}^{1})+I(Q_{t+3}^{2}Q_{t+2}^{1}Q_{t+1}^{1}Q_{t}^{4})$ ,

and the conditional expectations $y_{t+2}$ and $y_{t+1}$ are bounded for the phase $Q_{t+1}^{1}Q_{t}^{1}$ , we
find that $E_{t}[|y_{t+2}|I(Q_{t+2}^{1}Q_{t+1}^{1})]$ is bounded and hence $E_{t}[||y_{t+3}||I(Q_{t+3}^{2}Q_{t+2}^{1}Q_{t+1}^{1})]$ is also
bounded. Also by using that $0<y_{t+1}=a_{1}y_{t}+a_{2}y_{t-1}+v_{t+1}<v_{t+1}$ for the phase
$Q_{t+3}^{2}Q_{t+2}^{1}Q_{t+1}^{1}Q_{t}^{1}$ , we have that $E_{t}[y_{t+1}I(Q_{t+1}^{1}Q_{t}^{1})]$ is bounded. Then ffl $[||y_{t+2}||I(Q_{t+2}^{1}Q_{t+1}^{1})]$

and $E_{t}[||y_{t+3}||I(Q_{t+3}^{3}Q_{t+2}^{2}Q_{t+1}^{1}Q_{t}^{1})]$ are bounded. For the term for $I(Q_{t+3}^{3}Q_{t+2}^{3})$ , we can
take apositive constant $c_{1.11}$ such that

$E_{t}[||y_{t+3}||I(Q_{t+3}^{3}Q_{t+2}^{3})]\leq E$ $[(b_{1}^{2}I_{t}^{(1)}+b_{1}I_{t}^{(2)})(-y_{t})I(Q_{\ell+3}^{3}Q_{t+2}^{3})]+c_{1.11}$ .
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Because $0<b_{1}<1$ , we can find positive constants $c_{1.12}$ and $\delta_{1.5}(0\leq\delta_{1.5}<1)$ such that
$E_{t}[||y_{t+3}||]\leq\delta_{1B}||y_{t}||+c_{1.12}$ .

[5] $C_{4}$ : We need to consider the terms involving the phases $Q_{t+h}^{1}Q_{t+h-1}^{1}$ and $Q_{\ell+h}^{2}Q_{t+h-1}^{1}$

$(h\geq 2)$ in particular. Since $a_{2}<0\leq a_{1}$ in $C_{4}$ , there are two different cases depending on
whether the characteristic roots of $g_{A}(\lambda)=0$ in (3.4) are real or complex, separately.

When $D(A)\geq 0$ and $0\leq a_{1}+a_{2}<1$ , the characteristic roots are real and their
absolute values are less than one. In this case we immediately confirm the conditions
that $0\leq e_{1}’Al$ $<1$ and $e_{1}’A^{2}l<1$ . Then we have the same inequality as in [2]. When
$D(A)<0$ , on the other hand, there exists apositive integer $h$ such that (5.6) holds
because the angle $\theta$ of two roots is in $(0, \pi)$ or $(\pi, 2\pi)$ . Then we can reduce the problem
into the one with $Q_{t+h}^{3}Q_{t+h-1}^{3}$ in [3]. Hence we find positive constants $\delta_{1.6}(0\leq\delta_{1.6}<1)$

and $c_{1.13}$ such that the last inequalty holds instead of $\delta_{1.4}$ and $c_{1.10}$ in [3].
For the remaining term involving the phase $Q_{t+h}^{3}Q_{t+h-1}^{3}$ , we can use the same argument

as [3] for $C_{2}$ because of the condition $0<b_{1}<1$ .

[6] Necessity :For proving the necessity of our conditions, we modify the similar
arguments used by Petruccell and Woolford (1984). Because they become quite lengthy
and tedious, we consider the case when $\alpha$

. $>0(i=1,2)$ and $a_{1}+a_{2}>1$ as an illustration.
In this case we have two real characteristic roots $\lambda_{:}(i=1,2)$ , which satisfy the condition
$\lambda_{1}>1>0>\lambda_{2}$ . Then we have two cases depending on the relative magnitudes of two
roots, that is, (i) $|\lambda_{1}|>|\lambda_{2}|$ and (ii) $|\lambda_{1}|<|\lambda_{2}|$ . By defining anonsingulax 2 $\mathrm{x}2$ matrix

$\mathrm{A}=(\begin{array}{ll}\lambda_{1} \lambda_{2}1 \mathrm{l}\end{array})$

and tranforming the original system as 2 $\mathrm{x}1$ vector $x_{t}=(x_{1t},x_{2\mathrm{C}})’=\mathrm{A}^{-1}y_{t}$ . If we write
$U_{t}=(u_{1t},u_{21})’=\mathrm{A}^{-1}(\sigma(t)v_{t},0)’$ with $\mathrm{a}(\mathrm{t})=\sigma_{1}I(y_{t-1}>0)+\sigma_{2}I(y_{t-1}\leq 0)$ , we have a
new representation of the process $x_{u}$. $=\mathrm{A}.x_{\mathrm{u}-1}.+u_{\mathrm{u}}(i=1,2)$ . For the case of (i), we
consider $\{x_{u}\}$ and it is not difficult to show that its solution explodes with apositive
probability by the same method used of Petruccelli and Woodford (1984). For the case of
(ii), we consider $\{x_{\mathfrak{U}}\}$ and it is also not difficult to show that its solution explodes with
apositive probabilty.
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Appendix :Some Figures

In this appendix, we give several figures. All figures reported here are the results of the
simulations on the sets of 10,000 realizations of $\{y_{t}\}$ based on the TAR(2) processes and
the SSAR(2) processes without any disturbance terms. We also have checked the non-
explosiveness of the sample paths of the solutions and basically confirmed the adequacy of
the same regions by the corresponding simulations for the TAR(2) and SSAR(2) processes
with disturbances. It was all we could do because the criteria of convergence in simulations
are more difficult and subtle when there are noise terms.

All figures for the TAR(2:d) processes are denoted by TAR(2) with the delayed pa-
rameter $d$ and drawn in the $(a_{1}, a_{2})$ space while the figure for the SSAR(2) process are
drawn in the $(r_{1},r_{2})$ space. The shaded areas in figures are the non-explosive regions in
our simulations
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Appendix : Some Figures

TAR (2) : $\mathrm{b}’\overline{-}0.6$ . $\mathrm{b}2=$ $0$ . $\mathrm{d}=$ ’ TAR (2) : $\mathrm{b}’--\triangleleft$. $l$ . $\mathrm{b}2=$ $0$ . $\mathrm{d}--$ ’

Figure 1 Fi ure 2

TAR(2) : $\mathrm{b}\prime_{-}^{-}0.2$ . $\mathrm{b}2=$ $0$ . $\mathrm{d}=$ $2$

$\mathrm{F}\mathrm{l}\mathrm{e}\mathrm{u}\cdot*3$ Figure 4
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Appendix :Some Figures (Continued)

SSAR (2) : $\mathrm{s}\mathrm{i}.’--$ ’ . . $j.2–0$. ’ TAR (2) : $\mathrm{b}\mathrm{t}--0.2$ . bh $\triangleleft$. 5. $\#$ ’

Fi ure 5 Figure 6

$\mathrm{Y}\mathrm{A}\mathrm{R}(2)$ : $\mathrm{b}’---0.2$ . $\mathrm{b}\mathrm{z}_{-}^{-}\mathrm{o}.$ ’ . d–,

Figure 7
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